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Application: Algorithms
The word algorithm refers to a step-by-step method for 
performing some action. 
!
Some examples of algorithms in everyday life are food 
preparation recipes, directions for assembling equipment or 
hobby kits, sewing pattern instructions, and instructions for 
filling out income tax forms.  
!
Much of elementary school mathematics is devoted to 
learning algorithms for doing arithmetic such as multidigit 
addition and subtraction, multidigit (or long) multiplication, 
and long division.



An Algorithmic Language



An Algorithmic Language
The algorithmic language used in this book is a kind of 
pseudocode, combining elements of Pascal, C, Java, and 
VB.NET, and ordinary, but fairly precise, English. 
!
We will use some of the formal constructs of computer 
languages—such as assignment statements, loops, and so 
forth—but we will ignore the more technical details, such as 
the requirement for explicit end-of-statement delimiters, the 
range of integer values available on a particular installation, 
and so forth.



An Algorithmic Language
The algorithms presented in this text are intended to be 
precise enough to be easily translated into virtually any 
high-level computer language. 
!
In high-level computer languages, the term variable is used 
to refer to a specific storage location in a computer’s 
memory. 
!
To say that the variable x has the value 3 means that the 
memory location corresponding to x contains the number 3. 



An Algorithmic Language
A given storage location can hold only one value at a time. 
So if a variable is given a new value during program 
execution, then the old value is erased. 
!
The data type of a variable indicates the set in which the 
variable takes its values, whether the set of integers, or real 
numbers, or character strings, or the set {0, 1}  
(for a Boolean variable), and so forth.



An Algorithmic Language
An assignment statement gives a value to a variable. It 
has the form 
!
!
!
where x is a variable and e is an expression. This is read 
“x is assigned the value e” or “let x be e.”



An Algorithmic Language
When an assignment statement is executed, the expression e 
is evaluated (using the current values of all the variables in 
the expression), and then its value is placed in the memory 
location corresponding to x (replacing any previous contents 
of this location). 
!
Ordinarily, algorithm statements are executed one after 
another in the order in which they are written.



An Algorithmic Language
Conditional statements allow this natural order to be 
overridden by using the current values of program variables 
to determine which algorithm statement will be executed 
next. 
!
Conditional statements are denoted either 
!
!
!
!
!
where condition is a predicate involving algorithm variables 
and where s1 and s2 are algorithm statements or groups of 
algorithm statements.



An Algorithmic Language
We generally use indentation to indicate that statements 
belong together as a unit.  
!
When ambiguity is possible, however, we may explicitly bind 
a group of statements together into a unit by preceding the 
group with the word do and following it with the words end 
do.



An Algorithmic Language
Execution of an if-then-else statement occurs as follows: 
!
1. The condition is evaluated by substituting the current 
    values of all algorithm variables appearing in it and 
    evaluating the truth or falsity of the resulting statement. 
!

2. If condition is true, then s1 is executed and execution 
    moves to the next algorithm statement following the 
    if-then-else statement. 
!

3. If condition is false, then s2 is executed and execution     
    moves to the next algorithm statement following the 
    if-then-else statement.



An Algorithmic Language
Execution of an if-then statement is similar to execution of 
an if-then-else statement, except that if condition is false, 
execution passes immediately to the next algorithm 
statement following the if-then statement.  
!
Often condition is called a guard because it is stationed 
before s1 and s2 and restricts access to them.



Example 1 – Execution of if-then-else and if-then Statements

Consider the following algorithm segments: 
!
a.                                                 b.  
!
!
!
!
What is the value of y after execution of these segments for 
the following values of x? 
 
i.                                                     ii. 



Example 1(a) – Solution
(i) Because the value of x is 5 before execution, the guard 
    condition x > 2 is true at the time it is evaluated. Hence 
    the statement following then is executed, and so the 
    value of x + 1 = 5 + 1 is computed and placed in the 
    storage location corresponding to y.  
     
    So after execution, y = 6. 
!
(ii) Because the value of x is 2 before execution, the guard 
     condition x > 2 is false at the time it is evaluated. 
!
    Hence the statement following else is executed. 



Example 1(a) – Solution
    The value of x – 1 = 2 – 1 is computed and placed in the 
    storage location corresponding to x, and the value of  
    3 ● x = 3 ● 1 is computed and placed in the storage location 
    corresponding to y. So after execution, y = 3.

cont’d



Example 1(b) – Solution
(i) Since x = 5 initially, the condition x > 2 is true at the time  
    it is evaluated. So the statement following then is  
    executed, and y obtains the value 25 = 32. 
!
(ii) Since x = 2 initially, the condition x > 2 is false at the    
     time it is evaluated. Execution, therefore, moves to the 
     next statement following the if-then statement, and the 
     value of y does not change from its initial value of 0.

cont’d



An Algorithmic Language
Iterative statements are used when a sequence of 
algorithm statements is to be executed over and over again. 
We will use two types of iterative statements: while loops 
and for-next loops. 
!
A while loop has the form 
!
!
!
!
!
!
where condition is a predicate involving algorithm variables.



An Algorithmic Language
The word while marks the beginning of the loop, and the 
words end while mark its end.  
!
Execution of a while loop occurs as follows: 
!
1. The condition is evaluated by substituting the current 
    values of all the algorithm variables and evaluating the 
    truth or falsity of the resulting statement. 
!

2. If condition is true, all the statements in the body of the 
    loop are executed in order. Then execution moves back 
    to the beginning of the loop and the process repeats.



An Algorithmic Language
3. If condition is false, execution passes to the next    
    algorithm statement following the loop. 
!
The loop is said to be iterated (IT-a-rate-ed) each time the 
statements in the body of the loop are executed. 
!
Each execution of the body of the loop is called an iteration 
(it-er-AY-shun) of the loop.



Example 2 – Tracing Execution of a while Loop

Trace the execution of the following algorithm segment by 
finding the values of all the algorithm variables each time 
they are changed during execution: 
!
!
!
!
!
!
 



Example 2 – Solution
Since i is given an initial value of 1, the condition i ≤ 2 is true 
when the while loop is entered.  
!
So the statements within the loop are executed in order: 
!
!
!
Then execution passes back to the beginning of the loop.



Example 2 – Solution
The condition i ≤ 2 is evaluated using the current value of i, 
which is 2.  
!
The condition is true, and so the statements within the loop 
are executed again: 
!
!
!
Then execution passes back to the beginning of the loop.

cont’d



Example 2 – Solution
The condition i ≤ 2 is evaluated using the current value of i, 
which is 3. This time the condition is false, and so execution 
passes beyond the loop to the next statement of the 
algorithm. 

This discussion can be summarized in a table, called a 
trace table, that shows the current values of algorithm 
variables at various points during execution.

cont’d

Trace Table



Example 2 – Solution
The trace table for a while loop generally gives all values 
immediately following each iteration of the loop. 
(“After the zeroth iteration” means the same as “before the 
first iteration.”)

cont’d



An Algorithmic Language
The second form of iteration we will use is a for-next loop. A 
for-next loop has the following form: 
!
!
!
!
!
!
A for-next loop is executed as follows: 
!
1. The for-next loop variable is set equal to the value of 
    initial expression.



An Algorithmic Language
2. A check is made to determine whether the value of 
    variable is less than or equal to the value of final  
    expression. 
!

3. If the value of variable is less than or equal to the value 
    of final expression, then the statements in the body of 
    the loop are executed in order, variable is increased by 
    1, and execution returns back to step 2. 
!

4. If the value of variable is greater than the value of final  
    expression, then execution passes to the next algorithm 
    statement following the loop.



Example 3 – Trace Table for a for-next Loop

Convert the for-next loop shown below into a while loop. 
Construct a trace table for the loop. 
!
!
!
!
!
!
!
!
!
 



Example 3 – Solution
The given for-next loop is equivalent to the following: 
!
!
!
!
!
!
!
Its trace table is as follows:

Trace Table



A Notation for Algorithms



A Notation for Algorithms
We generally include the following information when 
describing algorithms formally: 
!
1. The name of the algorithm, together with a list of input 
    and output variables. 
!

2. A brief description of how the algorithm works. 

3. The input variable names, labeled by data type  
    (whether integer, real number, and so forth).



A Notation for Algorithms
4. The statements that make up the body of the algorithm, 
     possibly with explanatory comments. 
!
5. The output variable names, labeled by data type.



The Division Algorithm



The Division Algorithm
For an integer a and a positive integer d, the  
quotient-remainder theorem guarantees the existence of 
integers q and r such that 
!
!
!
 
In this section, we give an algorithm to calculate q and r for 
given a and d where a is nonnegative.



The Division Algorithm
Algorithm 4.8.1 Division Algorithm : 
[Given a nonnegative integer a and a positive integer d, the 
aim of the algorithm is to find integers q and r that satisfy 
the conditions 
!
This is done by subtracting d repeatedly from a until the 
result is less than d but is still nonnegative. 
!
!
!
The total number of d’s that are subtracted is the quotient q. 
The quantity a – d q equals the remainder r.]



The Division Algorithm
Input: a [a nonnegative integer], d [a positive integer] 
!
Algorithm Body: 
r := a, q := 0 
[Repeatedly subtract d from r until a number less than d is 
obtained. Add 1 to q each time d is subtracted.] 
!
!
!
!
!
!
[After execution of the while loop, a = d q + r.]



The Division Algorithm
Output:  
q, r [nonnegative integers] 
!
Note that the values of q and r obtained from the division 
algorithm are the same as those computed by the div and 
mod functions built into a number of computer languages. 
!
That is, if q and r are the quotient and remainder obtained 
from the division algorithm with input a and d, then the 
output variables q and r satisfy



The Euclidean Algorithm



The Euclidean Algorithm
The greatest common divisor of two integers a and b is the 
largest integer that divides both a and b. For example, the 
greatest common divisor of 12 and 30 is 6. 
 
The Euclidean algorithm provides a very efficient way to 
compute the greatest common divisor of two integers.



Example 5 – Calculating Some gcd’s

a. Find gcd(72, 63). 
!

b. Find gcd(1020, 630). 
!

c. In the definition of greatest common divisor, gcd(0, 0) is 
    not allowed. Why not? What would gcd(0, 0) equal if it 
    were found in the same way as the greatest common 
    divisors for other pairs of numbers? 
!

Solution: 
a. 72 = 9 ● 8 and 63 = 9 ● 7. So 9 | 72 and 9 | 63, and no   
    integer larger than 9 divides both 72 and 63. 
!
    Hence gcd(72, 63) = 9.



Example 5 – Solution
b. By the laws of exponents, 1020 = 220 ● 520 and  
    630 = 230 ● 330 = 220 ● 210 ● 330. It follows that 
!
!
!
    and by the unique factorization of integers theorem, no 
    integer larger than 220 divides both 1020 and 630 (because  
    no more than twenty 2’s divide 1020, no 3’s divide 1020, 
    and no 5’s divide 630). 

    Hence gcd(1020, 630) = 220.

cont’d



Example 5 – Solution
c. Suppose gcd(0, 0) were defined to be the largest   
    common factor that divides 0 and 0.  
!
    The problem is that every positive integer divides 0 and 
    there is no largest integer. 
!
    So there is no largest common divisor!

cont’d



The Euclidean Algorithm
Calculating gcd’s using the approach illustrated in Example 5 
works only when the numbers can be factored completely. 

By the unique factorization of integers theorem, all numbers 
can, in principle, be factored completely. But, in practice, even 
using the highest-speed computers, the process is unfeasibly 
long for very large integers. 
!
Over 2,000 years ago, Euclid devised a method for finding 
greatest common divisors that is easy to use and is much 
more efficient than either factoring the numbers or repeatedly 
testing both numbers for divisibility by successively larger 
integers. 



The Euclidean Algorithm
The Euclidean algorithm is based on the following two facts, 
which are stated as lemmas.



The Euclidean Algorithm
The Euclidean algorithm can be described as follows: 
!
1. Let A and B be integers with A > B ≥ 0. 
!

2. To find the greatest common divisor of A and B, first 
     check whether B = 0. If it is, then gcd(A, B) = A by  
     Lemma 4.8.1. 
  
     If it isn’t, then B > 0 and the quotient-remainder theorem 
     can be used to divide A by B to obtain a quotient q and  
     a remainder r :



The Euclidean Algorithm
By Lemma 4.8.2, gcd(A, B) = gcd(B, r). Thus the problem of 
finding the greatest common divisor of A and B is reduced 
to the problem of finding the greatest common 
divisor of B and r. 
!
What makes this piece of information useful is that B and r 
are smaller numbers than A and B.  
!
To see this, recall that we assumed



The Euclidean Algorithm
Also the r found by the quotient-remainder theorem satisfies 
!
 
Putting these two inequalities together gives 
!
!
So the larger number of the pair (B, r) is smaller than the 
larger number of the pair (A, B). !
3. Now just repeat the process, starting again at (2), but use 
    B instead of A and r instead of B. The repetitions are  
    guaranteed to terminate eventually with r = 0 because   
    each new remainder is less than the preceding one and all 
    are nonnegative.



Example 6 – Hand-Calculation of gcd’s Using the Euclidean Algorithm

Use the Euclidean algorithm to find gcd(330, 156). !
Solution: !
1. Divide 330 by 156: 
!
!
!
!

!
    Thus 330 = 156 ● 2 + 18 and hence 
    gcd(330, 156) = gcd(156, 18) by Lemma 4.8.2.



Example 6 – Solution
2. Divide 156 by 18: 
!
!
!
!
!
    Thus 156 = 18 ● 8 + 12 and hence 
    gcd(156, 18) = gcd(18, 12) by Lemma 4.8.2.

cont’d



Example 6 – Solution
3. Divide 18 by 12: 
!
!
!
!
!
    Thus 18 = 12 ● 1 + 6 and hence gcd(18, 12) = gcd(12, 6) 
    by Lemma 4.8.2.

cont’d



Example 6 – Solution
4. Divide 12 by 6: 
!
!
!
!
!
    Thus 12 = 6 ● 2 + 0 and hence gcd(12, 6) = gcd(6, 0) by 
    Lemma 4.8.2.

cont’d



Example 6 – Solution
Putting all the equations above together gives 
!
!
!
!
!
!
!
!
!
Therefore, gcd(330, 156) = 6.

cont’d



The Euclidean Algorithm
The following is a version of the Euclidean algorithm written 
using formal algorithm notation. 
!
Algorithm 4.8.2 Euclidean Algorithm : 
[Given two integers A and B with A > B ≥ 0, this algorithm 
computes gcd(A, B). It is based on two facts: 
!
1.                               if a, b, q, and r are integers with 
!
!
2.                      ]       



The Euclidean Algorithm
Input: A, B [integers with A > B ≥ 0] 
!
Algorithm Body: 
!
                 
!
[If b ≠ 0, compute a mod b, the remainder of the integer 
division of a by b, and set r equal to this value. Then repeat 
the process using b in place of a and r in place of b.] 
                



The Euclidean Algorithm
[The value of a mod b can be obtained by calling the 
division algorithm.] 
                 
!
!
!
[After execution of the while loop,                         ]  
                 
!
Output: gcd [a positive integer]


