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CHAPTER 10

GRAPHS AND TREES
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Graphs: Definitions and 
Basic Properties

SECTION 10.1



Graphs: Definitions and Basic Properties

Imagine an organization that wants to set up teams of three 
to work on some projects.  
!
In order to maximize the number of people on each team 
who had previous experience working together successfully, 
the director asked the members to provide names of their 
past partners.



This information is displayed below both in a table and in a 
diagram.
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From the diagram, it is easy to see that Bev, Cai, and Flo 
are a group of three past partners, and so they should form 
one of these teams.  
!
The following figure shows the result when these three 
names are removed from the diagram.

Graphs: Definitions and Basic Properties



This drawing shows that placing Hal on the same team as 
Ed would leave Gia and Ira on a team containing no past 
partners. 
!
However, if Hal is placed on a team with Gia and Ira, then 
the remaining team would consist of Ana, Dan, and Ed, and 
both teams would contain at least one pair of past partners. 
!
Drawings such as those shown previously are illustrations of 
a structure known as a graph. 
!
The dots are called vertices (plural of vertex) and the line 
segments joining vertices are called edges.
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The edges may be straight or curved and should either 
connect one vertex to another or a vertex to itself, as shown 
below.
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In this drawing, the vertices have been labeled with v ’s and 
the edges with e’s. 
!
When an edge connects a vertex to itself (as e5 does), it is 
called a loop. When two edges connect the same pair of 
vertices (as e2 and e3 do), they are said to be parallel.  
!
It is quite possible for a vertex to be unconnected by an 
edge to any other vertex in the graph (as v5 is), and in that 
case the vertex is said to be isolated. 

Graphs: Definitions and Basic Properties
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Example 1 – Terminology
Consider the following graph: 
!
!
!
!
!
!!
a. Write the vertex set and the edge set, and give a table 
    showing the edge-endpoint  function. !
b. Find all edges that are incident on v1, all vertices that  
    are adjacent to v1, all edges that are adjacent to e1, all  
    loops, all parallel edges, all vertices that are adjacent to 
    themselves, and all isolated vertices.



Example 1(a) – Solution
vertex set = {v1, v2, v3, v4, v5, v6} 
edge set = {e1, e2, e3, e4, e5, e6, e7} 
!
edge-endpoint function:



Example 1(a) – Solution
Note that the isolated vertex v4 does not appear in this 
table.  
!
Although each edge must have either one or two endpoints, 
a vertex need not be an endpoint of an edge.

cont’d



Example 1(b) – Solution
e1, e2, and e3 are incident on v1.  
!
v2 and v3 are adjacent to v1. 
!
e2, e3, and e4 are adjacent to e1. 
!
e6 and e7 are loops. 
!
e2 and e3 are parallel. 
!
v5 and v6 are adjacent to themselves. 
!
v4 is an isolated vertex.

cont’d



As noted earlier, a given pictorial representation uniquely 
determines a graph.  
!
However, a given graph may have more than one pictorial 
representation.  
!
Such things as the lengths or curvatures of the edges and 
the relative position of the vertices on the page may vary 
from one pictorial representation to another.

Graphs: Definitions and Basic Properties



We have discussed the directed graph of a binary relation 
on a set. 
!
Directed graph is similar to graph, except that one 
associates an ordered pair of vertices with each edge 
instead of a set of vertices.  
!
Thus each edge of a directed graph can be drawn as an 
arrow going from the first vertex to the second vertex of the 
ordered pair.

Graphs: Definitions and Basic Properties



!
!
!
!
!
!
Note that each directed graph has an associated ordinary 
(undirected) graph, which is obtained by ignoring the 
directions of the edges.
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Examples of Graphs



Graphs are a powerful problem-solving tool because they 
enable us to represent a complex situation with a single 
image that can be analyzed both visually and with the aid of 
a computer.

Examples of Graphs



Example 4 – Using a Graph to Represent a Network

Telephone, electric power, gas pipeline, and air transport 
systems can all be represented by graphs, as can computer 
networks—from small local area networks to the global 
Internet system that connects millions of computers 
worldwide.  
!
Questions that arise in the design of such systems involve 
choosing connecting edges to minimize cost, optimize a 
certain type of service, and so forth.



Example 4 – Using a Graph to Represent a Network

A typical network, called a hub and spoke model, is shown 
below.

cont’d



Special Graphs



One important class of graphs consists of those that do not 
have any loops or parallel edges.  
!
Such graphs are called simple. In a simple graph, no two 
edges share the same set of endpoints, so specifying two 
endpoints is sufficient to determine an edge.

Special Graphs



Example 8 – A Simple Graph
Draw all simple graphs with the four vertices {u, v, w, x} and 
two edges, one of which is {u, v}. 
!
Solution: 
Each possible edge of a simple graph corresponds to a 
subset of two vertices.  
!
Given four vertices, there are      = 6 such subsets in all:  
{u, v}, {u, w}, {u, x}, {v, w}, {v, x}, and {w, x}. 



Example 8 – Solution
Now one edge of the graph is specified to be {u, v}, so any 
of the remaining five from this list can be chosen to be the 
second edge.  
!
The possibilities are shown below.

cont’d



Complete Graphs on n Vertices: K1, K2, K3, K4, K5

The complete graphs K1, K2, K3, K4, and K5 can be drawn as 
follows:



In complete bipartite graph: the vertex set can be separated 
into two subsets: Each vertex in one of the subsets is 
connected by exactly one edge to each vertex in the other 
subset, but not to any vertices in its own subset.

Special Graphs



Special Graphs



The Concept of Degree



The degree of a vertex is the number of end segments of 
edges that “stick out of” the vertex. 

The Concept of Degree



Example 12 – Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph G shown below. 
Then find the total degree of G.



Example 12 – Solution
deg(v1) = 0 since no edge is incident on v1 (v1 is isolated). 
!
deg(v2) = 2 since both e1 and e2 are incident on v2. !!
deg(v3) = 4 since e1 and e2 are incident on v3 and the loop e3 
is also incident on v3 (and contributes 2 to the degree of v3). 
!!
total degree of G = deg(v1) + deg(v2) + deg(v3)  
 
        = 0 + 2 + 4  
                      
                               = 6.



Note that the total degree of the graph G of Example 12, 
which is 6, equals twice the number of edges of G, which is 
3.  
!
Roughly speaking, this is true because each edge has two 
end segments, and each end segment is counted once 
toward the degree of some vertex. This result generalizes to 
any graph. 
!
In fact, for any graph without loops, the general result can 
be explained as follows: Imagine a group of people at a 
party. Depending on how social they are, each person 
shakes hands with various other people.

The Concept of Degree



So each person participates in a certain number of 
handshakes—perhaps many, perhaps none—but because 
each handshake is experienced by two different people, if 
the numbers experienced by each person are added 
together, the sum will equal twice the total number of 
handshakes. 
!
This is such an attractive way of understanding the situation 
that the following theorem is often called the handshake 
lemma or the handshake theorem.

The Concept of Degree



The Concept of Degree
As the proof demonstrates, the conclusion is true even if the 
graph contains loops.



The Concept of Degree
The following proposition is easily deduced from Corollary 
10.1.2 using properties of even and odd integers.
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Trails, Paths, and Circuits
SECTION 10.2



Trails, Paths, and Circuits
The subject of graph theory began in the year 1736 when 
the great mathematician Leonhard Euler published a paper 
giving the solution to the following puzzle: 
!
The town of Königsberg in Prussia (now Kaliningrad in 
Russia) was built at a point where two branches of the 
Pregel River came together. 
!
It consisted of an island and some land along the river 
banks.



Trails, Paths, and Circuits
Is it possible for a person to take a walk around town, 
starting and ending at the same location and crossing each 
of the seven bridges exactly once? 
!
To solve this puzzle, Euler translated it into a graph theory 
problem. He noticed that all points of a given land mass can 
be identified with each other since a person can travel 
from any one point to any other point of the same land mass 
without crossing a bridge.

The Seven Bridges of Königsberg



Trails, Paths, and Circuits
To solve this puzzle, Euler translated it into a graph theory 
problem.  
  He noticed that all points of a given land mass can be 
identified with each other since a person can travel 
from any one point to any other point of the same land mass 
without crossing a bridge.



Trails, Paths, and Circuits
!
    Is it possible to find a route through the 
graph that starts and ends at some 
vertex, one of A, B, C, or D, and traverses 
each edge exactly once? 
!
Equivalently: 
 
    Is it possible to trace this graph, 
starting and ending at the same point, 
without ever lifting your pencil from the   
paper?



Trails, Paths, and Circuits
Take a few minutes to think about the question yourself. 
Can you find a route that meets the requirements? Try it! 
!
Looking for a route is frustrating because you continually 
find yourself at a vertex that does not have an unused edge 
on which to leave, while elsewhere there are unused edges 
that must still be traversed.  
!
If you start at vertex A, for example, each time you pass 
through vertex B, C, or D, you use up two edges because 
you arrive on one edge and depart on a different one.



So, if it is possible to find a route that uses all the edges of 
the graph and starts and ends at A, then the total umber of 
arrivals and departures from each vertex B, C, and D must 
be a multiple of 2. 
!
Or, in other words, the degrees of the vertices B, C, and D 
must be even. 
!
But they are not: deg(B) = 5, deg(C) = 3, and deg(D) = 3. 
Hence there is no route that solves the puzzle by starting 
and ending at A. 

Trails, Paths, and Circuits



Trails, Paths, and Circuits
Similar reasoning can be used to show that there are no 
routes that solve the puzzle by starting and ending at B, C, 
or D.  
!
Therefore, it is impossible to travel all around the city 
crossing each bridge exactly once.



Definitions



Definitions
Travel in a graph is accomplished by moving from one 
vertex to another along a sequence of adjacent edges.  
!
In the graph below, for instance, you can go from u1 to u4 by 
taking f1 to u2 and then f7 to u4. This is represented by 
writing u1f1u2f7u4.



Definitions
Or you could take the roundabout route 
!
!
!
Certain types of sequences of adjacent vertices and edges 
are of special importance in graph theory: those that do not  
have a repeated edge, those that do not have a repeated  
vertex, and those that start and end at the same vertex.



Definitions



Definitions
For ease of reference, these definitions are summarized in 
the following table: 
!
!
!
!
!
!
!
!
Often a walk can be specified unambiguously by giving 
either a sequence of edges or a sequence of vertices.



Example 2 – Walks, Trails Paths, and Circuits

In the graph below, determine which of the following walks 
are trails, paths, circuits, or simple circuits. 
a.    b.      c. 
!
d.    e.       f. 
!
 



Example 2 – Solution
a. This walk has a repeated vertex but does not have a  

  repeated edge, so it is a trail from v1 to v4 but not a path. 
!

b. This is just a walk from v1 to v5. It is not a trail because it  
  has a repeated edge. 

!
c. This walk starts and ends at v2, contains at least one   

 edge, and does not have a repeated edge, so it is a  
 circuit. Since the vertex v3 is repeated in the middle, it is  
 not a simple circuit. 

!
d. This walk starts and ends at v2, contains at least one  

 edge, does not have a repeated edge, and does not  
 have a repeated vertex. Thus it is a simple circuit.



Example 2 – Solution
e. This is just a closed walk starting and ending at v1. It is 

not a circuit because edge e1 is repeated. 
!
f. The first vertex of this walk is the same as its last vertex, 

but it does not contain an edge, and so it is not a circuit. It 
is a closed walk from v1 to v1. (It is also a trail from v1 to 
v1.)

cont’d



Definitions
Because most of the major developments in graph theory 
have happened relatively recently and in a variety of 
different contexts, the terms used in the subject have not 
been standardized.  
!
For example, what this book calls a graph is sometimes 
called a multigraph, what this book calls a simple graph is 
sometimes called a graph, what this book calls a vertex is 
sometimes called a node, and what this book calls an edge 
is sometimes called an arc. 



Definitions
Similarly, instead of the word trail, the word path is 
sometimes used; instead of the word path, the words simple 
path are sometimes used; and instead of the words simple 
circuit, the word cycle is sometimes used.  
!
The terminology in this book is among the most common, 
but if you consult other sources, be sure to check their 
definitions.



Connectedness



Connectedness
It is easy to understand the concept of connectedness on an 
intuitive level. 
!
Roughly speaking, a graph is connected if it is possible to 
travel from any vertex to any other vertex along a sequence 
of adjacent edges of the graph.



Connectedness
The formal definition of connectedness is stated in terms of 
walks.  
!
!
!
!
!
If you take the negation of this definition, you will see that a 
graph G is not connected if, and only if, there are two 
vertices of G that are not connected by any walk.



Example 3 – Connected and Disconnected Graphs

Which of the following graphs are connected? 
!
 



Example 3 – Solution
The graph represented in (a) is connected, whereas those 
of (b) and (c) are not. To understand why (c) is not 
connected, we know that in a drawing of a graph, two edges 
may cross at a point that is not a vertex. 
!
Thus the graph in (c) can be redrawn as follows:



Connectedness
Some useful facts relating circuits and connectedness are 
collected in the following lemma.



Connectedness
The graphs in (b) and (c) are both made up of three pieces, 
each of which is itself a connected graph.  
!
A connected component of a graph is a connected subgraph 
of largest possible size.



Connectedness
!
!
!
!
!
!
!
The fact is that any graph is a kind of union of its connected 
components.



Example 4 – Connected Components

Find all connected components of the following graph G. 
!
!
!
!
Solution: 
G has three connected components: H1, H2, and H3 with 
vertex sets V1, V2, and V3 and edge sets E1, E2, and E3, 
where



Euler Circuits



Euler Circuits
Now we return to consider general problems similar to the 
puzzle of the Königsberg bridges. 
!
The following definition is made in honor of Euler.



Euler Circuits
The analysis used earlier to solve the puzzle of the 
Königsberg bridges generalizes to prove the following 
theorem:



Euler Circuits
We know that the contrapositive of a statement is logically 
equivalent to the statement.  
!
The contrapositive of Theorem 10.2.2 is as follows: 
!
!
!
!
This version of Theorem 10.2.2 is useful for showing that a 
given graph does not have an Euler circuit.



Example 5 – Showing That a Graph Does Not Have an Euler Circuit

Show that the graph below does not have an Euler circuit. 
!
!
!
!
!
Solution: 
Vertices v1 and v3 both have degree 3, which is odd. Hence 
by (the contrapositive form of) Theorem 10.2.2, this graph 
does not have an Euler circuit. 
 



Euler Circuits
Now consider the converse of Theorem 10.2.2: If every 
vertex of a graph has even degree, then the graph has an 
Euler circuit. Is this true?  
!
The answer is no. There is a graph G such that every vertex 
of G has even degree but G does not have an Euler circuit. 
In fact, there are many such graphs. The illustration below 
shows one example.



Euler Circuits
Note that the graph in the preceding drawing is not 
connected.  
!
It turns out that although the converse of Theorem 10.2.2 is 
false, a modified converse is true: If every vertex of a graph 
has positive even degree and if the graph is connected, 
then the graph has an Euler circuit. 



Euler Circuits
The proof of this fact is constructive: It contains an algorithm 
to find an Euler circuit for any connected graph in which 
every vertex has even degree.



Euler Circuits
A corollary to Theorem 10.2.4 gives a criterion for  
determining when it is possible to find a walk from one 
vertex of a graph to another, passing through every vertex 
of the graph at least once and every edge of the graph 
exactly once.



Example 7 – Finding an Euler Trail
The floor plan shown below is for a house that is open for 
public viewing. Is it possible to find a trail that starts in room 
A, ends in room B, and passes through every interior 
doorway of the house exactly once? If so, find such a trail.



Example 7 – Solution
Let the floor plan of the house be represented by the graph 
below. 
!
!
!
!
Each vertex of this graph has even degree except for A and 
B, each of which has degree 1. 
!
Hence by Corollary 10.2.5, there is an Euler path from A to 
B. One such trail is 
                       AGHFEIHEKJDCB.



Hamiltonian Circuits



Hamiltonian Circuits
Theorem 10.2.4 completely answers the following question:  
!
!
!
!
Given a graph G, is it possible to find a circuit for G in which 
all the edges of G appear exactly once?  
!
A related question is this: Given a graph G, is it possible to 
find a circuit for G in which all the vertices of G (except the 
first and the last) appear exactly once? 



Hamiltonian Circuits
In 1859 the Irish mathematician Sir William Rowan Hamilton 
introduced a puzzle in the shape of a dodecahedron  
(DOH-dek-a-HEE-dron). (Figure 10.2.6 contains a drawing of 
a dodecahedron, which is a solid figure with 12 identical 
pentagonal faces.)

Figure 10.2.6

Dodecahedron



Hamiltonian Circuits
Each vertex was labeled with the name of a city—London, 
Paris, Hong Kong, New York, and so on. 
!
The problem Hamilton posed was to start at one city and 
tour the world by visiting each other city exactly once and 
returning to the starting city. 
!
One way to solve the puzzle is to imagine the surface of the 
dodecahedron stretched  out and laid flat in the plane, as 
follows:



Hamiltonian Circuits
The circuit denoted with black lines is one solution. Note 
that although every city is visited, many edges are omitted 
from the circuit. (More difficult versions of the puzzle 
required that certain cities be visited in a certain order.) 
!
The following definition is made in honor of Hamilton.



Hamiltonian Circuits
Note that although an Euler circuit for a graph G must 
include every vertex of G, it may visit some vertices more 
than once and hence may not be a Hamiltonian circuit.  
!
On the other hand, a Hamiltonian circuit for G does not 
need to include all the edges of G and hence may not be an 
Euler circuit. 
!
Despite the analogous-sounding definitions of Euler and 
Hamiltonian circuits, the mathematics of the two are very 
different.



Hamiltonian Circuits
Theorem 10.2.4 gives a simple criterion for determining 
whether a given graph has an Euler circuit.  
!
!
!
!
Unfortunately, there is no analogous criterion for determining 
whether a given graph has a Hamiltonian circuit, nor is there 
even an efficient algorithm for finding such a circuit. 



Hamiltonian Circuits
There is, however, a simple technique that can be used in 
many cases to show that a graph does not have a 
Hamiltonian circuit.  
!
This follows from the following considerations: 
!
Suppose a graph G with at least two vertices has a 
Hamiltonian circuit C given concretely as 
!
!
Since C is a simple circuit, all the ei are distinct and all the vj 
are distinct except that v0 = vn. Let H be the subgraph of G 
that is formed using the vertices and edges of C.



Hamiltonian Circuits
An example of such an H is shown below. 
!
!
!
!
!
Note that H has the same number of edges as it has 
vertices since all its n edges are distinct and so are its n 
vertices v1, v2, . . . , vn. 
!
Also, by definition of Hamiltonian circuit, every vertex of G is 
a vertex of H, and H is connected since any two of its 
vertices lie on a circuit. In addition, every vertex of H has 
degree 2.



Hamiltonian Circuits
The reason for this is that there are exactly two edges 
incident on any vertex. These are ei and ei+1 for any vertex 
vi except v0 = vn, and they are e1 and en for v0 (= vn).  
!
These observations have established the truth of the 
following proposition in all cases where G has at least two 
vertices.



Hamiltonian Circuits
Note that if G contains only one vertex and G has a 
Hamiltonian circuit, then the circuit has the form v e v, 
where v is the vertex of G and e is an edge incident on v. 
!
In this case, the subgraph H consisting of v and e satisfies 
conditions (1)–(4) of Proposition 10.2.6.



Hamiltonian Circuits
We know that the contrapositive of a statement is logically  
equivalent to the statement.  
!
The contrapositive of Proposition 10.2.6 says that if a graph 
G does not have a subgraph H with properties (1)–(4), then 
G does not have a Hamiltonian circuit. 
!
The next example illustrates a type of problem known as a 
traveling salesman problem. It is a variation of the 
problem of finding a Hamiltonian circuit for a graph.



Example 9 – A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities 
and the distances in kilometers between them. 
!
Suppose that a salesman must travel to each city exactly 
once, starting and ending in city A. Which route from city to 
city will minimize the total distance that must be traveled?



Example 9 – Solution
This problem can be solved by writing all possible 
Hamiltonian circuits starting and ending at A and calculating 
the total distance traveled for each. 
!
!
!
!
!
!
!
Thus either route ABCDA or ADCBA gives a minimum total 
distance of 125 kilometers.



Hamiltonian Circuits
The general traveling salesman problem involves finding a 
Hamiltonian circuit to minimize the total distance traveled for 
an arbitrary graph with n vertices in which each edge is 
marked with a distance.  
!
One way to solve the general problem is to use the method 
of Example 9: Write down all Hamiltonian circuits starting 
and ending at a particular vertex, compute the total distance 
for each, and pick one for which this total is minimal.



Hamiltonian Circuits
However, even for medium-sized values of n this method is 
impractical.  
!
For a complete graph with 30 vertices, there would be      
                             Hamiltonian circuits starting and ending at 
a particular vertex to check.  
!
Even if each circuit could be found and its total distance 
computed in just one nanosecond, it would require 
approximately 1.4 × 1014 years to finish the computation.



Hamiltonian Circuits
At present, there is no known algorithm for solving the 
general traveling salesman problem that is more efficient. 
!
However, there are efficient algorithms that find “pretty 
good” solutions—that is, circuits that, while not necessarily 
having the least possible total distances, have smaller total 
distances than most other Hamiltonian circuits.
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Matrix Representations  
of Graphs

SECTION 10.3



Matrix Representations of Graphs
All the information needed to specify a graph can be 
conveyed by a structure called a matrix, and matrices 
(matrices is the plural of matrix) are easy to represent inside 
computers.  



Matrices



Matrices are two-dimensional analogues of sequences. 
They are also called two-dimensional arrays.

Matrices



The ith row of A is 
!
!
and the jth column of A is 
!
!
!
!
!
!
The entry aij in the ith row and jth column of A is called the  
i jth entry of A. An m × n matrix is said to have size m × n.

Matrices



If A and B are matrices, then A = B if, and only if, A and B 
have the same size and the corresponding entries of A and 
B are all equal; that is, 
!
!
!
!
A matrix for which the numbers of rows and columns are 
equal is called a square matrix.

Matrices



If A is a square matrix of size n × n, then the main diagonal 
of A consists of all the entries a11, a22, . . . , ann:

Matrices



Example 1 – Matrix Terminology
The following is a 3 × 3 matrix over the set of integers. 
!
!
!
!
a. What is the entry in row 2, column 3? 
!
b. What is the second column of A? 
!
c. What are the entries in the main diagonal of A?                                            



Example 1 – Solution
a. 5                                                       
!
b.  
!
!
c. 1, –1 and 0                                                     



Matrices and Directed Graphs



Consider the directed graph shown in Figure 10.3.1.

Matrices and Directed Graphs

Figure 10.3.1

A Directed Graph and Its Adjacency Matrix



This graph can be represented by the matrix A = (ai j) for 
which ai j = the number of arrows from vi to vj, for all i = 1, 2, 
3 and j = 1, 2, 3.  
!
Thus a11 = 1 because there is one arrow from v1 to v1,  
a12 = 0 because there is no arrow from v1 to v2, a23 = 2 
because there are two arrows from v2 to v3, and so forth.  
!
A is called the adjacency matrix of the directed graph.  
!
For convenient reference, the rows and columns of A are 
often labeled with the vertices of the graph G.

Matrices and Directed Graphs



!
!
!
!!
Note that nonzero entries along the main diagonal of an 
adjacency matrix indicate the presence of loops, and entries 
larger than 1 correspond to parallel edges.  
!
Moreover, if the vertices of a directed graph are reordered, 
then the entries in the rows and columns of the 
corresponding adjacency matrix are moved around.

Matrices and Directed Graphs



Example 2 – The Adjacency Matrix of a Graph

The two directed graphs shown below differ only in the 
ordering of their vertices. Find their adjacency matrices.

(a) (b)



Example 2 – Solution
Since both graphs have three vertices, both adjacency 
matrices are 3 × 3 matrices. 
!
For (a), all entries in the first row are 0 since there are no 
arrows from v1 to any other vertex.  
!
For (b), the first two entries in the first row are 1 and the 
third entry is 0 since from v1 there are single arrows to v1 
and to v2 and no arrows to v3. 



Example 2 – Solution
Continuing the analysis in this way, you obtain the following 
two adjacency matrices:

(a) (b)

cont’d



If you are given a square matrix with nonnegative integer 
entries, you can construct a directed graph with that matrix 
as its adjacency matrix.  
!
However, the matrix does not tell you how to label the 
edges, so the directed graph is not uniquely determined.

Matrices and Directed Graphs



Matrices and Undirected Graphs



Once you know how to associate a matrix with a directed 
graph, the definition of the matrix corresponding to an 
undirected graph should seem natural to you. 
!
 As before, you must order the vertices of the graph, but in 
this case you simply set the i j th entry of the adjacency 
matrix equal to the number of edges connecting the i th and 
j th vertices of the graph.

Matrices and Undirected Graphs



Example 4 – Finding the Adjacency Matrix of a Graph

Find the adjacency matrix for the graph G shown below. 
!
!
!
!
!
!
Solution: 
  



Note that if the matrix A = (ai j) in Example 4 is flipped 
across its main diagonal, it looks the same: ai j = aj i, for i,  
j = 1, 2, . . . , n. Such a matrix is said to be symmetric. 
!
!
!
!
!
!
It is easy to see that the matrix of any undirected graph is 
symmetric since it is always the case that the number of 
edges joining vi and vj equals the number of edges joining vj 
and vi for all i, j = 1, 2, . . . , n.

Matrices and Undirected Graphs



Matrices and Connected  
Components



Consider a graph G, as shown below, that consists of 
several connected components. 
!
!
!
!
!
The adjacency matrix of G is

Matrices and Connected Components



As you can see, A consists of square matrix blocks (of 
different sizes) down its diagonal and blocks of 0’s 
everywhere else.  
!
The reason is that vertices in each connected component 
share no edges with vertices in other connected 
components. 
!
For instance, since v1, v2, and v3 share no edges with v4, v5, 
v6, or v7, all entries in the top three rows to the right of the 
third column are 0 and all entries in the left three columns 
below the third row are also 0.  
!
Sometimes matrices whose entries are all 0’s are 
themselves denoted 0.
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If this convention is followed here, A is written as
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The previous reasoning can be generalized to prove the 
following theorem:
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Matrix multiplication is an enormously useful operation that 
arises in many contexts, including the investigation of walks 
in graphs.  
!
Although matrix multiplication can be defined in quite 
abstract settings, the definition for matrices whose entries 
are real numbers will be sufficient for our applications. 
!
The product of two matrices is built up of scalar or dot 
products of their individual rows and columns.
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!
!
!
!
!
!
!
!
!
More generally, if A and B are matrices whose entries are 
real numbers and if A and B have compatible sizes in the 
sense that the number of columns of A equals the number 
of rows of B, then the product AB is defined. 
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It is the matrix whose i j th entry is the scalar product of the  
i th row of A times the j th column of B, for all possible 
values of i and j.
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Example 7 – Computing a Matrix Product

!
!
!
Solution: 
A has size 2 × 3 and B has size 3 × 2, so the number of 
columns of A equals the number of rows of B and the matrix 
product of A and B can be computed.  
  



Example 7 – Solution
Then 
!
!
!
where
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Example 7 – Solution
!
!
!
!
!
!
Hence
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Matrix multiplication is both similar to and different from 
multiplication of real numbers.  
!
One difference is that although the product of any two 
numbers can be formed, only matrices with compatible 
sizes can be multiplied. 
!
Also, multiplication of real numbers is commutative (for all 
real numbers a and b, ab = ba), whereas matrix 
multiplication is not. 
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For instance, 
!
!
!!
On the other hand, both real number and matrix 
multiplications are associative ((ab)c = a(bc), for all 
elements a, b, and c for which the products are defined). 
!
As far as multiplicative identities are concerned, there are 
both similarities and differences between real numbers and 
matrices.
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You know that the number 1 acts as a multiplicative 
identity for products of real numbers.  
!
It turns out that there are certain matrices, called identity 
matrices, that act as multiplicative identities for certain 
matrix products. 
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For instance, mentally perform the following matrix 
multiplications to check that for any real numbers a, b, c, d, 
e, f, g, h and i, 
!
!
!
and
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These computations show that         acts as an identity on  
the left side for multiplication with 2 × 3 matrices and that !
           acts as an identity on the right side for multiplication 

with 3 × 3 matrices.
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Note that         cannot act as an identity on the right side for 
multiplication with 2 × 3 matrices because the sizes are not 
compatible. 
!
!
!
!
!
!
The German mathematician Leopold Kronecker introduced 
the symbol δi j to make matrix computations more 
convenient. In his honor, this symbol is called the Kronecker 
delta. 
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Prove that if A is any m × n matrix and I is the n × n identity 
matrix, then AI = A.  
!
Proof: 
Let A be any n × n matrix and let ai j be the i j th entry of A 
for all integers i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Consider 
the product AI, where I is the n × n identity matrix.
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Observe that 
!
!
!
!
!
because
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!
!
!
!
!
Thus AI = A, as was to be shown.
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There are also similarities and differences between real 
numbers and matrices with respect to the computation of 
powers.  
!
Any number can be raised to a nonnegative integer power, 
but a matrix can be multiplied by itself only if it has the same 
number of rows as columns. 
!
As for real numbers, however, the definition of matrix 
powers is recursive.  
!
Just as any number to the zero power is defined to be 1, so 
any n × n matrix to the zero power is defined to be the  
n × n identity matrix. 

Matrix Multiplication



The nth power of an n × n matrix A is defined to be the 
product of A with its (n – 1)st power.
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Example 10 – Powers of a Matrix
!
!
!
Solution: 
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A walk in a graph consists of an alternating sequence of 
vertices and edges. 
!
If repeated edges are counted each time they occur, then 
the number of edges in the sequence is called the length of 
the walk.  
!
For instance, the walk v2e3v3e4v2e2v2e3v3 has length 4 
(counting e3 twice). 
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Consider the following graph G: 
!
!
!
!
!
!
How many distinct walks of length 2 connect v2 and v2?
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You can list the possibilities systematically as follows: From 
v1, the first edge of the walk must go to some vertex of G: 
v1, v2, or v3. There is one walk of length 2 from v2 to v2 that 
starts by going from v2 to v1: 
!

v2e1v1e1v2. 
!
There is one walk of length 2 from v2 to v2 that starts by 
going from v2 to v2: 
!

v2e2v2e2v2.
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And there are four walks of length 2 from v2 to v2 that start 
by going from v2 to v3: 
!

v2e3v3e4v2, 
!

v2e4v3e3v2, 
!

v2e3v3e3v2, 
!

v2e4v3e4v2. 
!
Thus the answer is six.
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The general question of finding the number of walks that 
have a given length and connect two particular vertices of a 
graph can easily be answered using matrix multiplication. 
!
Consider the adjacency matrix A of the graph G.
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Compute A2 as follows: 
!
!
!
!
!
Note that the entry in the second row and the second 
column is 6, which equals the number of walks of length 2 
from v2 to v2. 
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This is no accident! To compute a22, you multiply the second 
row of A times the second column of A to obtain a sum of 
three terms: 
!
!
!
!
Observe that
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Now consider the ith term of this sum, for each i = 1, 2, and 
3. It equals the number of edges from v2 to vi times the 
number of edges from vi to v2.  
!
By the multiplication rule this equals the number of pairs of 
edges from v2 to vi and from vi back to v2.  
!
But this equals the number of walks of length 2 that start 
and end at v2 and pass through vi. 
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Since this analysis holds for each term of the sum for i = 1, 
2, and 3, the sum as a whole equals the total number of 
walks of length 2 that start and end at v2: !

1·1 + 1·1 + 2·2 = 1 + 1 + 4 = 6. 
!
More generally, if A is the adjacency matrix of a graph G, 
the i j th entry of A2 equals the number of walks of length 2 
connecting the i th vertex to the j th vertex of G.
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Even more generally, if n is any positive integer, the i j th 
entry of An equals the number of walks of length n 
connecting the i th and the j th vertices of G.
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