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Logical Form and Logical 
Equivalence

SECTION 2.1



Statements



Statements
Most of the definitions of formal logic have been developed 

so that they agree with the natural or intuitive logic used 
by people who have been educated to think clearly and 
use language carefully.  

!
The differences that exist between formal and intuitive logic 

are necessary to avoid ambiguity and obtain consistency. 
!
In any mathematical theory, new terms are defined by using 

those that have been previously defined. However, this 
process has to start somewhere. A few initial terms 
necessarily remain undefined.



Statements
In logic, the words sentence, true, and false are the initial 
undefined terms.



Compound Statements



Compound Statements
We now introduce three symbols that are used to build more 
complicated logical expressions out of simpler ones.  
 
The symbol ~ denotes not, ∧ denotes and, and ∨ denotes or. 
!
Given a statement p, the sentence “~p” is read “not p” or “It is 
not the case that p” and is called the negation of p. In some 
computer languages the symbol ● is used in place of ~.



Compound Statements
Given another statement q, the sentence “p ∧ q” is read    “p 
and q” and is called the conjunction of p and q.  

The sentence “p ∨ q” is read “p or q” and is called the 
disjunction of p and q. 
!
In expressions that include the symbol ~ as well as ∧ or ∨, 
the order of operations specifies that ~ is performed first. 

For instance, ~p ∧ q = (~p) ∧ q.



Compound Statements
In logical expressions, as in ordinary algebraic expressions, 
the order of operations can be overridden through the use 
of parentheses. 

Thus ~(p ∧ q) represents the negation of the conjunction 
of p and q. 

In this, as in most treatments of logic, the symbols ∧ and ∨ 
are considered coequal in order of operation, and an 
expression such as p ∧ q ∨ r is considered ambiguous. 

This expression must be written as either (p ∧ q) ∨ r or  
 p ∧ (q ∨ r) to have meaning.



Example 2 – Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting  
h = “It is hot” and s = “It is sunny.” 

a. It is not hot but it is sunny. 
b. It is neither hot nor sunny. 
!
Solution: 
a. The given sentence is equivalent to “It is not hot and it is  
    sunny,” which can be written symbolically as ~h ∧ s. 
!
b. To say it is neither hot nor sunny means that it is not hot  
    and it is not sunny. Therefore, the given sentence can be  
    written symbolically as ~h ∧ ~s.



Truth Values



Truth Values
In Example 2 we built compound sentences out of 
component statements and the terms not, and, and or.  
!
If such sentences are to be statements, however, they must 
have well-defined truth values—they must be either true or 
false.  
!
We now define such compound sentences as statements by 
specifying their truth values in terms of the statements that 
compose them.



Truth Values
The negation of a statement is a statement that exactly 
expresses what it would mean for the statement to be false. 
!
!
!
!
!
!
The truth values for negation are summarized in a truth table.

Truth Table for ~p



Truth Values

!
!
!
!
The truth values for conjunction can also be summarized in a 

truth table.

Truth Table for p ∧ q



Truth Values
!
!
!
!
Here is the truth table for disjunction:

Truth Table for p ∨ q



Evaluating the Truth of More 
General Compound Statements



Evaluating the Truth of More General Compound Statements

Now that truth values have been assigned to ~p, p ∧ q, and 
p ∨ q, consider the question of assigning truth values to 
more complicated expressions such as ~p ∨ q,  
(p ∨ q) ∧ ~(p ∧ q), and (p ∧ q) ∨ r. Such expressions are 
called statement forms (or propositional forms).



Construct the truth table for the statement form  
(p ∨ q) ∧ ~(p ∧ q). 
!
Note that when or is used in its exclusive sense, the 
statement “p or q” means “p or q but not both” or “p or q and 
not both p and q,” which translates into symbols as  
(p ∨ q) ∧ ~(p ∧ q). 
!
This is sometimes abbreviated 

  

Example 4 – Truth Table for Exclusive Or



Example 4 – Solution

1.Set up columns labeled p, q, p ∨ q, p ∧ q, ~(p ∧ q), and  
(p ∨ q) ∧ ~(p ∧ q). 

2.Fill in p and q columns with all the logically possible 
combinations of T’s and F’s. 

3.Use truth tables for ∨ and ∧ to fill in the p ∨ q and p ∧ q columns 
with appropriate truth values. 

4.Fill in the ~(p ∧ q) column by taking the opposites of the truth 
values for p ∧ q, e.g., the entry for ~(p ∧ q) in the first row is F 
because in the first row the truth value of p ∧ q is T. 

5.Fill in the (p ∨ q) ∧ ~(p ∧ q) column by considering the truth table 
for an and statement together with the computed truth values for 
p ∨ q and ~(p ∧ q). 



Logical Equivalence



Logical Equivalence
The statements 

               6 is greater than 2 and 2 is less than 6 !
are two different ways of saying the same thing. Why? Because of 
the definition of the phrases greater than and less than. By contrast, 
although the statements 

(1) Dogs bark and cats meow 
 
and  
 
(2) Cats meow and dogs bark 
 
are also two different ways of saying the same thing, the reason has 
nothing to do with the definition of the words.It has to do with the 
logical form of the statements.



Logical Equivalence
Any two statements whose logical forms are related in the 
same way as (1) and (2) would either both be true or both be 
false.  
!
You can see this by examining the following truth table, 
where the statement variables p and q are substituted for the 
component statements “Dogs bark” and “Cats meow,” 
respectively.



Logical Equivalence
The table shows that for each combination of truth values for 
p and q, p ∧ q is true when, and only when, q ∧ p is true. 
!
In such a case, the statement  
forms are called logically  
equivalent, and we say  
that (1) and (2) are  
logically equivalent  
statements.



Logical Equivalence



Logical Equivalence
Testing Whether Two Statement Forms P and Q Are 
Logically Equivalent 
!
1. Construct a truth table with one column for the truth 
    values of P and another column for the truth values of Q. 
2. Check each combination of truth values of the statement 
    variables to see whether the truth value of P is the same  
    as the truth value of Q. 
!
    a. If in each row the truth value of P is the same as the  
        truth value of Q, then P and Q are logically equivalent. 

    b. If in some row P has a different truth value from Q, 
        then P and Q are not logically equivalent.



Example 6 – Double Negative Property: ∼(∼p) ≡ p

Construct a truth table to show that the negation of the 
negation of a statement is logically equivalent to the 
statement, annotating the table with a sentence of 
explanation. 
!
Solution: 
 



Logical Equivalence
There are two ways to show that statement forms P and Q 
are not logically equivalent. As indicated previously, one is to 
use a truth table to find rows for which their truth values 
differ.  
!
The other way is to find concrete statements for each of the 
two forms, one of which is true and the other of which is 
false.  
!
The next example illustrates both of these ways.



Show that the statement forms ~(p ∧ q) and ~p ∧ ~q are not 
logically equivalent. 
!
Solution: 
a. This method uses a truth table annotated with a sentence 
    of explanation.

Example 7 – Showing Nonequivalence



Example 7 – Solution
b. This method uses an example to show that ~(p ∧ q) and  
    ~p ∧ ~q are not logically equivalent. 
!
 Let p be the  
    statement “0 < 1” and let q be the statement “1 < 0.” 
!
    Then  
     
 which is true. 
!
    On the other hand, 
!
 

    which is false.

cont’d



Example 7 – Solution
    This example shows that there are concrete statements  
    you can substitute for p and q to make one of the  
    statement forms true and the other false.  
!
    Therefore, the statement forms are not logically  
    equivalent.

cont’d



Logical Equivalence
The two logical equivalences are known as De Morgan’s 
laws of logic in honor of Augustus De Morgan, who was the 
first to state them in formal mathematical terms.



Logical Equivalence
Symbolically we can represent the two logic equivalences 

as:  
 
 
and



Write negations for each of the following statements: 
a. John is 6 feet tall and he weighs at least 200 pounds. 
b. The bus was late or Tom’s watch was slow. 
!
Solution: 
a. John is not 6 feet tall or he weighs less than 200 pounds. 
!
b. The bus was not late and Tom’s watch was not slow. 
     
Since the statement “neither p nor q” means the same as  
“~p and ~q,” an alternative answer for (b) is “Neither was the 
bus late nor was Tom’s watch slow.”

Example 9 – Applying De Morgan’s Laws



Tautologies and Contradictions



Tautologies and Contradictions

!
!
!
!
!
!
!
the truth of a tautological statement and the falsity of a 

contradictory statement are due to the logical structure of 
the statements themselves and are independent of the 
meanings of the statements.



Example 13 – Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, show that  
p ∧ t ≡ p and p ∧ c ≡ c. 
!
Solution: 
  



Summary of Logical Equivalences



Summary of Logical Equivalences
Knowledge of logically equivalent statements is very useful 

for constructing arguments.  
!
It often happens that it is difficult to see how a conclusion 

follows from one form of a statement, whereas it is easy to 
see how it follows from a logically equivalent form of the 
statement.



Summary of Logical Equivalences



Use Theorem 2.1.1 to verify the logical equivalence 
!
!
Solution: 
Use the laws of Theorem 2.1.1 to replace sections of the 
statement form on the left by logically equivalent 
expressions.  
!
Each time you do this, you obtain a logically equivalent 
statement form. 

Example 14 – Simplifying Statement Forms



Continue making replacements until you obtain the 
statement form on the right. 
  

Example 14 – Solution
cont’d
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Conditional Statements
SECTION 2.2



Conditional Statements
Let p and q be statements. A sentence of the form  “If p then 
q” is denoted symbolically by “p → q”; p is called the 
hypothesis and q is called the conclusion, e.g.,  
!
!
!
Such a sentence is called conditional because the truth of 
statement q is conditioned on the truth of statement p.



Conditional Statements

 As is the case with other connectives, formal definition of 
truth values for →(if-then) is based on its everyday, intuitive 
meaning. 
  
Manager:  “If you show up for work Monday morning, then you 
will get the job”  
When will you be able to say that the manager lies?  
!
A conditional statement that is true by virtue of the fact that its 
hypothesis is false is often called vacuously true or true by 
default.  

Thus the statement is vacuously true if you do not show up for 
work Monday morning.  

In general, when the “if” part of an if-then statement is false, 
the statement as a whole is said to be true, regardless of 
whether the conclusion is true or false.

Truth Table for p ↔ q



Conditional Statements



Example 1 – A Conditional Statement with a False Hypothesis

Consider the statement: 
                                
                                If 0 = 1 then 1 = 2. 

As strange as it may seem, since the hypothesis of this 
statement is false, the statement as a whole is true.



Conditional Statements
In expressions that include → as well as other logical 
operators such as ∧, ∨, and ∼, the order of operations is 
that → is performed last.  
!
Thus, according to the specification of order of operations, ∼ 
is performed first, then ∧ and ∨, and finally →.



Example 2 – Truth Table for p ∨ ∼ q → ∼p

Construct a truth table for the statement form p ∨ ∼q → ∼p. 

Solution: 
By the order of operations given above, the following two 
expressions are equivalent: p ∨ ∼q → ∼p and                     (p 
∨ (∼q)) → (∼p), and this order governs the construction of the 
truth table. 

First fill in the four possible combinations of truth values for p 
and q, and then enter the truth values for ∼p and ∼q using 
the definition of negation.



Example 2 – Solution
Next fill in the p ∨ ∼q column using the definition of ∨. Finally, 
fill in the p ∨ ∼q → ∼p column using the definition  
of  →. 
!
The only rows in which the hypothesis p ∨ ∼q is true and the 
conclusion ∼p is false are the first and second rows. 
!
So you put F’s in those two rows and T’s in the other two 
rows.

cont’d



Logical Equivalences Involving →



Example 3 – Division into Cases: Showing that p ∨ q → r ≡ ( p → r) ∧ (q → r)

Use truth tables to show the logical equivalence of the 
statement forms p ∨ q → r and (p → r ) ∧ (q → r). Annotate 
the table with a sentence of explanation. 
!
Solution: 
First fill in the eight possible combinations of truth values for 
p, q, and r.  
!
Then fill in the columns for p ∨ q, p → r , and q → r using the 
definitions of or and if-then.



Example 3 – Solution
For instance, the p → r column has F’s in the second and 
fourth rows because these are the rows in which p is true 
and q is false. 
!
Next fill in the p ∨ q → r column using the definition of       if-
then. The rows in which the hypothesis p ∨ q is true and the 
conclusion r is false are the second, fourth, and sixth. 

So F’s go in these rows and T’s in all the others.

cont’d



Example 3 – Solution
The complete table shows that p ∨ q → r and                     (p 
→ r) ∧ (q → r) have the same truth values for each 
combination of truth values of p, q, and r. Hence the two 
statement forms are logically equivalent.

cont’d



Representation of If-Then As Or



Example 4 – Application of the Equivalence between ∼ p ∨ q and p → q

Rewrite the following statement in if-then form. 
           Either you get to work on time or you are fired. 
!
Solution: 
Let ∼p be  
                                     You get to work on time. 
    and q be  
                                         You are fired. !
    Then the given statement is ∼p ∨ q. Also p is 

                                         You do not get to work on time. !
    So the equivalent if-then version, p → q, is 

            If you do not get to work on time, then you are fired.



The Negation of a Conditional 
Statement



Negation of a Conditional Statement

By definition, p → q is false if, and only if, its hypothesis, p, is 
true and its conclusion, q, is false. It follows that 
!
!
!
!
This can be restated symbolically as follows:                            



Example 5 – Negations of If-Then Statements

Write negations for each of the following statements: 
a. If my car is in the repair shop, then I cannot get to class. 
b. If Sara lives in Athens, then she lives in Greece. 
!
Solution: 
a. My car is in the repair shop and I can get to class. 
!
b. Sara lives in Athens and she does not live in Greece. 

(Sara might live in Athens, Georgia; Athens, Ohio; or 
Athens, Wisconsin.)



Contrapositive of a Conditional 
Statement



Contrapositive of a Conditional Statement

One of the most fundamental laws of logic is the equivalence 
between a conditional statement and its contrapositive. 
!
!
!
!
!
!
The fact is that



Example 6 – Writing the Contrapositive

Write each of the following statements in its equivalent 
contrapositive form: 
a. If Howard can swim across the lake, then Howard can 
swim to the island. 
b. If today is Easter, then tomorrow is Monday. 
!
Solution: 
a. If Howard cannot swim to the island, then Howard   
    cannot swim across the lake. 
!
b. If tomorrow is not Monday, then today is not Easter.



The Converse and Inverse of  
a Conditional Statement



The Converse and Inverse of a Conditional Statement

The fact that a conditional statement and its contrapositive 
are logically equivalent is very important and has wide 
application. Two other variants of a conditional statement are 
not logically equivalent to the statement.



Example 7 – Writing the Converse and the Inverse

Write the converse and inverse of each of the following 
statements: 
a. If Howard can swim across the lake, then Howard can    
    swim to the island. 
b. If today is Easter, then tomorrow is Monday. 
!
Solution: 
a. Converse: If Howard can swim to the island, then  
                      Howard can swim across the lake. 
     Inverse:    If Howard cannot swim across the lake, then   
                      Howard cannot swim to the island.



Example 7 – Solution
b. Converse:   If tomorrow is Monday, then today is Easter. 
     Inverse:      If today is not Easter, then tomorrow is not  
                        Monday.

cont’d



The Converse and Inverse of a Conditional Statement

1. A conditional statement and its converse are not logically 
equivalent. 

!
2. A conditional statement and its inverse are not logically   

 equivalent. 
!
3. The converse and the inverse of a conditional statement 

are logically equivalent to each other.



Only If and the Biconditional



Only If and the Biconditional
To say “p only if q” means that p can take place only if q 
takes place also. That is, if q does not take place, then p 
cannot take place.  
Another way to say this is that if p occurs, then q must also 
occur (by the logical equivalence between a statement and 
its contrapositive).



Example 8 – Converting Only If to If-Then

Rewrite the following statement in if-then form in two ways, 
one of which is the contrapositive of the other. 
           John will break the world’s record for the mile run     
           only if he runs the mile in under four minutes. 
!
Solution: 
 Version 1: If John does not run the mile in under four  
                  minutes, then he will not break the world’s    
                  record. 
 
 Version 2: If John breaks the world’s record, then he will      
                   have run the mile in under four minutes.



Only If and the Biconditional
!
!
!
!
!
The biconditional has the following truth table:

Truth Table for p ↔ q



Only If and the Biconditional
In order of operations ↔ is coequal with →. As with ∧ and ∨, 

the only way to indicate precedence between them is to 
use parentheses. 

The full hierarchy of operations for the five logical operators 
is: 



Only If and the Biconditional
According to the separate definitions of if and only if, saying 
“p if, and only if, q” should mean the same as saying both “p 
if q” and “p only if q.” 
 
The following annotated truth table shows that this is the 
case:

Truth Table Showing that p ↔ q ≡ (p → q) ∧ (q → p)



Example 9 – If and Only If
Rewrite the following statement as a conjunction of two     if-
then statements: 
This computer program is correct if, and only if, it produces 
correct answers for all possible sets of input data. 
!
Solution: 
If this program is correct, then it produces the correct 
answers for all possible sets of input data; and if this 
program produces the correct answers for all possible sets 
of input data, then it is correct.



Necessary and Sufficient 
Conditions



Necessary and Sufficient Conditions
The phrases necessary condition and sufficient condition, as 
used in formal English, correspond exactly to their definitions 
in logic. 
!
!
!
!
!
In other words, to say “r is a sufficient condition for s” means 
that the occurrence of r is sufficient to guarantee the 
occurrence of s.



Necessary and Sufficient Conditions
On the other hand, to say “r is a necessary condition for s” 
means that if r does not occur, then s cannot occur either: 
The occurrence of r is necessary to obtain the occurrence of 
s. Note that because of the equivalence between a 
statement and its contrapositive, 

!
!
!
Consequently,



Example 10 – Interpreting Necessary and Sufficient Conditions

Consider the statement “If John is eligible to vote, then he is 
at least 18 years old.”  

The truth of the condition “John is eligible to vote” is 
sufficient to ensure the truth of the condition “John is at least 
18 years old.” 

In addition, the condition “John is at least 18 years old” is 
necessary for the condition “John is eligible to vote” to be 
true.  

If John were younger than 18, then he would not be eligible 
to vote.
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Valid and Invalid Arguments
SECTION 2.3



Valid and Invalid Arguments
In mathematics and logic an argument is not a dispute. It is a 
sequence of statements ending in a conclusion.  
How to determine whether an argument is valid — that is, 
whether the conclusion follows necessarily from the 
preceding statements.  
!
This determination depends only on the form of an 
argument, not on its content.



Valid and Invalid Arguments
For example, the argument 
 If Socrates is a man, then Socrates is mortal. 
 Socrates is a man. 
                Socrates is mortal. 
!
has the abstract form 
 If p then q 
 p 
            q 
!
    p and q as variables for which statements may be substituted.  
!
An argument form is called valid if, and only if, whenever 
statements are substituted that make all the premises true, the 
conclusion is also true.

∴

∴



Valid and Invalid Arguments
!
!
!
!
!
!
!
!
!
When an argument is valid and its premises are true, the 
truth of the conclusion is said to be inferred or deduced from 
the truth of the premises. 



Testing validity of argument form
1. Identify premises and conclusion of argument form. 
!
2. Construct a truth table showing truth values of all 
    premises and conclusion, under all possible truth values for variables. 
!
3. A row of the truth table in which all the premises are true  
    is called a critical row. 

o     If there is a critical row in which  conclusion is false, then it is 
possible for an argument of the given form to have true premises 
and a false conclusion, and so the argument form is invalid. 

o     If conclusion in every critical row is true, then argument form is 
valid.



Example 1 – Determining Validity or Invalidity

      p → q ∨ ∼r                 
      q → p ∧ r                 
               p → r                 
!
!
!
!
!
!
!
Solution: 
there is one situation (row 4) where the premises are true 
and the conclusion is false.

cont’d

∴



Modus Ponens and Modus Tollens



Modus Ponens
An argument form consisting of two premises and a 
conclusion is called a syllogism.  
The first and second premises are called the major premise 
and minor premise, respectively. 
!
The most famous form of syllogism in logic is called modus 
ponens with the following form: 
   

   If p then q. 
   p 

             q∴



Modus Ponens
It is instructive to prove that modus ponens is a valid form of 
argument, if for no other reason than to confirm the 
agreement between the formal definition of validity and the 
intuitive concept.  
!
To do so, we construct a truth table for the premises and 
conclusion.



Modus Tollens
Now consider another valid argument form called modus 
tollens. It has the following form: 
!
    If p then q. 
    ∼q 

              ∼p∴



Example 2 – Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of 
the following arguments so that they become valid 
inferences. 
!
a. If there are more pigeons than there are pigeonholes,  
    then at least two pigeons roost in the same hole. 
    There are more pigeons than there are pigeonholes. 
     •                                                                                         . 
!
b. If 870,232 is divisible by 6, then it is divisible by 3. 
    870,232 is not divisible by 3. 
     •                                                                                         .



Example 2 – Solution
a. At least two pigeons roost in the same hole.  
!
b. 870,232 is not divisible by 6. 



Additional Valid Argument Forms:  
Rules of Inference



Additional Valid Argument Forms: Rules of Inference

A rule of inference is a form of argument that is valid. Thus 
modus ponens and modus tollens are both rules of 
inference.  
!
The following are additional examples of rules of inference 
that are frequently used in deductive reasoning.



Example 3 – Generalization
The following argument forms are valid: 
      a.     p                        b.     q 

           •  p ∨ q                       •  p ∨ q 
!
These argument forms are used for making generalizations. 
For instance, according to the first, if p is true, then, more 
generally, “p or q” is true for any other statement q.  
!
As an example, suppose you are given the job of counting 
the upperclassmen at your school. You ask what class Anton 
is in and are told he is a junior.



Example 3 – Generalization
You reason as follows: 
     Anton is a junior.                 
!
    • (more generally) Anton is a junior or Anton is a senior. 
!
Knowing that upperclassman means junior or senior, you 
add Anton to your list.

cont’d



Example 4 – Specialization
The following argument forms are valid: 
      a.     p ∧ q               b.     p ∧ q 

              p                             q  
!
These argument forms are used for specializing. When 
classifying objects according to some property, you often 
know much more about them than whether they do or do not 
have that property.  
!
When this happens, you discard extraneous information as 
you concentrate on the particular property of interest.

∴∴



Example 4 – Specialization
For instance, suppose you are looking for a person who 
knows graph algorithms to work with you on a project. You 
discover that Ana knows both numerical analysis and graph 
algorithms. You reason as follows: 
!
       Ana knows numerical analysis and Ana knows graph  
algorithms. 
  •  (in particular) Ana knows graph algorithms. 
!
Accordingly, you invite her to work with you on your project.

cont’d



Additional Valid Argument Forms: Rules of Inference

Both generalization and specialization are used frequently in 
mathematics to tailor facts to fit into hypotheses of known 
theorems in order to draw further conclusions.  

!
Elimination, transitivity, and proof by division into cases are 

also widely used tools.



Example 5 – Elimination
The following argument forms are valid: 
      a.     p ∨ q                 b.     p ∨ q 

            ∼q                            ∼p 

         p                              q      
!
These argument forms say that when you have only two 
possibilities and you can rule one out, the other must be the 
case. For instance, suppose you know that for a particular 
number x,

∴∴



Example 5 – Elimination
If you also know that x is not negative, then x ≠ −2, so 
!
!
By elimination, you can then conclude that

cont’d

∴



Example 6 – Transitivity
The following argument form is valid: 
  p → q              
  q → r              
    •   p → r      
!
Many arguments in mathematics contain chains of if-then 
statements.  
!
From the fact that one statement implies a second and the 
second implies a third, you can conclude that the first 
statement implies the third. 



Example 6 – Transitivity
Here is an example: 
!
   If 18,486 is divisible by 18, then 18,486 is divisible by 9. 
!
   If 18,486 is divisible by 9, then the sum of the digits of 
18,486 is divisible by 9. 
!
•  If 18,486 is divisible by 18, then the sum of the digits of 
18,486 is divisible by 9.

cont’d



Example 7 – Proof by Division into Cases

The following argument form is valid: 
  p ∨ q              
  p → r              
  q → r              
           r      
!
It often happens that you know one thing or another is true. If 
you can show that in either case a certain conclusion 
follows, then this conclusion must also be true.  
!
For instance, suppose you know that x is a particular 
nonzero real number.

∴



Example 7 – Proof by Division into Cases

The trichotomy property of the real numbers says that any 
number is positive, negative, or zero. Thus (by elimination) 
you know that x is positive or x is negative.  
!
You can deduce that x2 > 0 by arguing as follows: 
!
    x is positive or x is negative.                 
    If x is positive, then x2 > 0.                 
    If x is negative, then x2 > 0.                 
   •  x2 > 0.                

cont’d



Additional Valid Argument Forms: Rules of Inference

The rules of valid inference are used constantly in problem 
solving. Here is an example from everyday life.



Example 8 – Application: A More Complex Deduction

You are about to leave for school in the morning and discover that 
you don’t have your glasses. You know the following statements 
are true: 
!
a. If I was reading the newspaper in the kitchen, then my glasses are on 
the kitchen table. 
!
b. If my glasses are on the kitchen table, then I saw them at  breakfast. 
!
c. I did not see my glasses at breakfast. 
!
d. I was reading the newspaper in the living room or I was reading the 
newspaper in the kitchen. 
!
e. If I was reading the newspaper in the living room then my glasses are 
on the coffee table. 
!
Where are the glasses?



Example 8 – Application: A More Complex Deduction

!
Solution: 
Let  RK = I was reading the newspaper in the kitchen. 
       GK = My glasses are on the kitchen table. 
       SB  = I saw my glasses at breakfast. 
       RL  = I was reading the newspaper in the living room. 
       GC = My glasses are on the coffee table.

cont’d



Example 8 – Solution
Here is a sequence of steps you might use to reach the 
answer, together with the rules of inference that allow you to 
draw the conclusion of each step: 
!
1. 
!
!
!
!
2.

cont’d



Example 8 – Solution
3. 
!
!
!!
4. 
!
!
!
!
Thus the glasses are on the coffee table.

cont’d



Fallacies



Fallacies
A fallacy is an error in reasoning that results in an invalid 
argument. Three common fallacies are using ambiguous 
premises, and treating them as if they were unambiguous, 
circular reasoning (assuming what is to be proved without 
having derived it from the premises), and jumping to a 
conclusion (without adequate grounds).  
!
In this section we discuss two other fallacies, called 
converse error and inverse error, which give rise to 
arguments that superficially resemble those that are valid by 
modus ponens and modus tollens but are not, in fact, valid.



Fallacies



Example 9 – Converse Error
Show that the following argument is invalid: 
!

 If Zeke is a cheater, then Zeke sits in the back row. 
 Zeke sits in the back row. 
        •  Zeke is a cheater. 
!
Solution: 
Many people recognize the invalidity of the above argument 
intuitively, reasoning something like this: 
The first premise gives information about Zeke if it is known 
he is a cheater. It doesn’t give any information about him if it 
is not already known that he is a cheater.



Example 9 – Solution
One can certainly imagine a person who is not a cheater but 
happens to sit in the back row. Then if that person’s name is 
substituted for Zeke, the first premise is true by default and 
the second premise is also true but the conclusion is false. 
!
The general form of the previous argument is as follows: 
!
    p → q 

    q 

             p

cont’d



Fallacies
The fallacy underlying this invalid argument form is called 
the converse error because the conclusion of the argument 
would follow from the premises if the premise  
p → q were replaced by its converse.  
!
Such a replacement is not allowed, however, because a 
conditional statement is not logically equivalent to its 
converse. Converse error is also known as the fallacy of 
affirming the consequent.  
!
Another common error in reasoning is called the inverse 
error.



Example 10 – Inverse Error
Consider the following argument: 
             If interest rates are going up, stock market prices  
             will go down. 
             Interest rates are not going up. 

•  Stock market prices will not go down. 
!
Note that this argument has the following form: 
                                    p → q 

                                   ∼p 

                                •  ∼q



Example 10 – Inverse Error
The fallacy underlying this invalid argument form is called 
the inverse error because the conclusion of the argument 
would follow from the premises if the premise p → q were 
replaced by its inverse. 
!
Such a replacement is not allowed, however, because a 
conditional statement is not logically equivalent to its inverse. 
Inverse error is also known as the fallacy of denying the 
antecedent.

cont’d



Example 11 – A Valid Argument with a False Premise and a False Conclusion

The argument below is valid by modus ponens. But its major 
premise is false, and so is its conclusion. 
!
 If John Lennon was a rock star, then John Lennon  
           had red hair. 
 John Lennon was a rock star. 
        •  John Lennon had red hair.



Example 12 – An Invalid Argument with True Premises and a True Conclusion

The argument below is invalid by the converse error, but it 
has a true conclusion. 
!
 If New York is a big city, then New York has tall  
           buildings. 
 New York has tall buildings. 
        •  New York is a big city.



Fallacies



Contradictions and Valid 
Arguments



Contradictions and Valid Arguments
The concept of logical contradiction can be used to make 
inferences through a technique of reasoning called the 
contradiction rule. Suppose p is some statement whose truth 
you wish to deduce.



Example 13 – Contradiction Rule
Show that the following argument form is valid: 
!
  ∼p → c, where c is a contradiction 

         •  p 
!
Solution: 
Construct a truth table for the premise and the conclusion of 
this argument.



Contradictions and Valid Arguments
The contradiction rule is the logical heart of the method of 
proof by contradiction.  
!
A slight variation also provides the basis for solving many 
logical puzzles by eliminating contradictory answers: If an 
assumption leads to a contradiction, then that assumption 
must be false.



Summary of Rules of Inference

Table 2.3.1

Valid Argument Forms


