
Copyright © Cengage Learning. All rights reserved.

CHAPTER 2

THE LOGIC OF
COMPOUND

STATEMENTS

Copyright © Cengage Learning. All rights reserved.

Application: Digital Logic
Circuits

SECTION 2.4

Application: Digital Logic Circuits
The drawing in Figure 2.4.1(a) shows the appearance of 
the two positions of a simple switch. When the switch is  
closed, current can flow from one terminal to the other;  
when it is open, current cannot flow.
!
Imagine that such a switch is part of the circuit shown in  
figure 2.4.1(b). The light bulb turns on if, and only if, current  
flows through it. And this happens if, and only if, the switch  
is closed.

(a) (b)
Figure 2.4.1

Application: Digital Logic Circuits
Now consider the more complicated circuits of Figures
2.4.2(a) and 2.4.2(b).
!
!
!
!
!
!
In the circuit of Figure 2.4.2(a) current flows and the light 
bulb turns on if, and only if, both switches P and Q are  
closed. The switches in this circuit are said to be in series.

Figure 2.4.2

 (a) Switches “in series” (b) Switches “in parallel”

Application: Digital Logic Circuits
In the circuit of Figure 2.4.2(b) current flows and the light
bulb turns on if, and only if, at least one of the switches P
or Q is closed. The switches in this circuit are said to be in
parallel. All possible behaviors of these circuits are
described by Table 2.4.1.

Table 2.4.1

(a) Switches in Series (b) Switches in Parallel

Application: Digital Logic Circuits
Observe that if the words closed and on are replaced by T
and open and off are replaced by F, Table 2.4.1(a)  
becomes the truth table for and and Table 2.4.1(b)  
becomes the truth table for or.
!
Consequently, the switching circuit of Figure 2.4.2(a) is said
to correspond to the logical expression P ∧ Q, and that  
of Figure 2.4.2(b) is said to correspond to P ∨ Q.

Figure 2.4.2

 (a) Switches “in series” (b) Switches “in parallel”

More complicated circuits correspond to more complicated  
logical expressions. This correspondence has been used  
extensively in the design and study of circuits.
!
Electrical engineers continue to use the language of logic  
when they refer to values of signals produced by an 
electronic switch as being “true” or “false.” But they  
generally use the symbols 1 and 0 rather than T and F to  
denote these values.
!
The symbols 0 and 1 are called bits, short for binary digits.  
This terminology was introduced in 1946 by the statistician
John Tukey.

Application: Digital Logic Circuits

Black Boxes and Gates

Black Boxes and Gates
Combinations of signal bits (1’s and 0’s) can be  
transformed into other combinations of signal bits (1’s
and 0’s) by means of various circuits.
!
Because a variety of different technologies are used in circuit
construction, computer engineers and digital system
designers find it useful to think of certain basic circuits as
black boxes.

The inside of a black box contains the detailed  
implementation of the circuit and is often ignored while  
attention is focused on the relation between the input and  
the output signals.
!
!
!
!
The operation of a black box is completely specified by
constructing an input/output table that lists all its  
possible input signals together with their corresponding  
output signals.

Black Boxes and Gates

Black Boxes and Gates
For example, the black box picture has three input signals.
Since each of these signals can take the value 1 or 0, there
are eight possible combinations of input signals.

Black Boxes and Gates
One possible correspondence of input to output signals is as
follows:

An Input/Output Table

Black Boxes and Gates
An efficient method for designing more complicated circuits
is to build them by connecting less complicated black box  
circuits. Three such circuits are known as NOT-, AND-, and
OR-gates.
!
A NOT-gate (or inverter) is a circuit with one input signal
and one output signal. If the input signal is 1, the  
output signal is 0.
!
Conversely, if the input signal is 0, then the output signal  
is 1. An AND-gate is a circuit with two input signals and one
output signal. If both input signals are 1, then the output
signal is 1.

Otherwise, the output signal is 0. An OR-gate also has two
input signals and one output signal. If both input signals are
0, then the output signal is 0. Otherwise, the output signal is
1.
!
The actions of NOT-, AND-, and OR-gates are summarized 
in Figure 2.4.3, where P and Q represent input signals and  
R represents the output signal.

Black Boxes and Gates

Figure 2.4.3

Black Boxes and Gates

Figure 2.4.3 (continued)

It should be clear from Figure 2.4.3 that the actions of the
NOT-, AND-, and OR-gates on signals correspond exactly to
those of the logical connectives ∼, ∧, and ∨ on statements, if
the symbol 1 is identified with T and the symbol 0 is
identified with F.
!
Gates can be combined into circuits in a variety of ways. If  
the rules shown on the next page are obeyed, the result is 
a combinational circuit, one whose output at any time 
is determined entirely by its input at that time without regard
to previous inputs.

Black Boxes and Gates

Rules for a Combinational Circuit

 Never combine two input wires.
!
 A single input wire can be split partway  
 and used as input for two separate gates.
!
 An output wire can be used as input.
!
 No output of a gate can eventually feed  
 back into that gate.
!
Rule (2.4.4) is violated in more complex circuits, called
sequential circuits, whose output at any given time
depends both on the input at that time and also on previous 
inputs.

Rules for a Combinational Circuit

2.4.1

2.4.2

2.4.3

2.4.4

The Input/Output Table for a
Circuit

If you are given a set of input signals for a circuit, you can
find its output by tracing through the circuit gate by gate.

The Input/Output Table for a Circuit

Example 1 – Determining Output for a Given Input

Indicate the output of the circuits shown below for the given
input signals.
!
a.
!
!
!
b.

Move from left to right through the diagram, tracing the
action of each gate on the input signals.
!
The NOT-gate changes P = 0 to a 1, so both inputs to the
AND-gate are 1; hence the output R is 1.
!
This is illustrated by annotating the diagram as shown below.

Example 1(a) – Solution

The output of the OR-gate is 1 since one of the input 
signals, P, is 1. The NOT-gate changes this 1 into a 0, so  
the two inputs to the AND-gate are 0 and R = 1.
!
Hence the output S is 0. The trace is shown below.

Example 1(b) – Solution
cont’d

The Boolean Expression
Corresponding to a Circuit

In logic, variables such as p, q and r represent statements,  
and a statement can have one of only two truth values: 
T(true) or F(false).
!
A statement form is an expression, such as p ∧ (∼q ∨ r),
composed of statement variables and logical connectives.
!
As noted earlier, one of the founders of symbolic logic was
the English mathematician George Boole. In his honor, any
variable, such as a statement variable or an input signal, that
can take one of only two values is called a Boolean
variable. An expression composed of Boolean variables and
the connectives ∼, ∧, and ∨ is called a Boolean expression.

The Boolean Expression Corresponding to a Circuit

Example 3 – Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits
shown below. A dot indicates a soldering of two  
wires; wires that cross without a dot are assumed not to
touch.

(b)(a)

Trace through the circuit from left to right, indicating the
output of each gate symbolically, as shown below.
!
!
!
!
!
!
The final expression obtained, (P ∨ Q) ∧ ∼(P ∧ Q), is the
expression for exclusive or: P or Q but not both.

Example 3(a) – Solution

The Boolean expression corresponding to the circuit is  
(P ∧ Q) ∧ ∼R, as shown below.

Example 3(b) – Solution
cont’d

Observe that the output of the circuit shown in  
Example 3(b) is 1 for exactly one combination of inputs  
(P = 1, Q = 1, and R = 0) and is 0 for all other combinations
of inputs.

The Boolean Expression Corresponding to a Circuit

For this reason, the circuit can be said to “recognize” one
particular combination of inputs. The output column of the
input/output table has a 1 in exactly one row and 0’s in all
other rows.

The Boolean Expression Corresponding to a Circuit

Input/Output Table for a Recognizer

The Circuit Corresponding to
a Boolean Expression

Example 4 – Constructing Circuits for Boolean Expressions

Construct circuits for the following Boolean expressions.
a. (∼P ∧ Q) ∨ ∼Q b. ((P ∧ Q) ∧ (R ∧ S)) ∧ T
!
Solution:
a. Write the input variables in a column on the left side of the
diagram. Then go from the right side of the diagram to the
left, working from the outermost part of the  
expression to the innermost part.

 Since the last operation executed when evaluating  
(∼P ∧ Q) ∨ ∼Q is ∨, put an OR-gate at the extreme right of
the diagram.

Example 4 – Solution
One input to this gate is ∼P ∧ Q, so draw an AND-gate to the
left of the OR-gate and show its output coming into the OR-
gate.
!
Since one input to the AND-gate is ∼P, draw a line from P to
a NOT-gate and from there to the AND-gate. Since the other
input to the AND-gate is Q, draw a line from Q directly to the
AND-gate.

cont’d

The other input to the OR-gate is ∼Q, so draw a line from Q
to a NOT-gate and from the NOT-gate to the OR-gate. The
circuit you obtain is shown below.

Example 4 – Solution
cont’d

b. To start constructing this circuit, put one AND-gate at the
extreme right for the ∧ between ((P ∧ Q) ∧ (R ∧ S)) and T.  

 To the left of that put the AND-gate corresponding to the ∧
between P ∧ Q and R ∧ S.  

 To the left of that put the AND-gates corresponding to the
∧’s between P and Q and between R and S.

Example 4 – Solution
cont’d

The circuit is shown in Figure 2.4.4.

Figure 2.4.4

Example 4 – Solution
cont’d

It follows from Theorem 2.1.1 that all the ways of adding
parentheses to P ∧ Q ∧ R ∧ S ∧ T are logically equivalent.

The Circuit Corresponding to a Boolean Expression

Thus, for example,
 ((P ∧ Q) ∧ (R ∧ S)) ∧ T ≡ (P ∧ (Q ∧ R)) ∧ (S ∧ T).
!
It also follows that the circuit in Figure 2.4.5, which
corresponds to (P ∧ (Q ∧ R)) ∧ (S ∧ T), has the same input/
output table as the circuit in Figure 2.4.4, which corresponds
to ((P ∧ Q) ∧ (R ∧ S)) ∧ T.

The Circuit Corresponding to a Boolean Expression

Figure 2.4.5 Figure 2.4.4

Each of the circuits in Figures 2.4.4 and 2.4.5 is, therefore,
an implementation of the expression P ∧ Q ∧ R ∧ S ∧ T.  
Such a circuit is called a multiple-input AND-gate and is  
represented by the diagram shown in Figure 2.4.6.

!
!
!
!
!
Multiple-input OR-gates are constructed similarly.

The Circuit Corresponding to a Boolean Expression

Figure 2.4.6

Finding a Circuit That Corresponds
to a Given Input/Output Table

Design a circuit for the following input/output table:

Example 5 – Designing a Circuit for a Given Input/Output Table

Example 5 – Solution
First construct a Boolean expression with this table as its
truth table. To do this, identify each row for which the output
is 1—in this case, the first, third, and fourth rows. 

For each such row, construct an and expression that 
produces a 1 (or true) for the exact combination of input  
values for that row and a 0 (or false) for all other  
combinations of input values.
!
For example, the expression for the first row is P ∧ Q ∧ R
because P ∧ Q ∧ R is 1 if P = 1 and Q = 1 and R = 1, and it
is 0 for all other values of P, Q, and R.

The expression for the third row is P ∧ ∼Q ∧ R because  
P ∧ ∼Q ∧ R is 1 if P = 1 and Q = 0 and R = 1, and it is 0 for
all other values of P, Q, and R. Similarly, the expression for
the fourth row is P ∧ ∼Q ∧ ∼R.
!
Now any Boolean expression with the given table as its truth
table has the value 1 in case P ∧ Q ∧ R = 1, or in case P ∧
∼Q ∧ R = 1, or in case P ∧ ∼Q ∧ ∼R = 1, and in no other
cases.
!
It follows that a Boolean expression with the given truth table
is
 (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R).

Example 5 – Solution
cont’d

2.4.5

The circuit corresponding to this expression has the diagram
shown in Figure 2.4.7.

Figure 2.4.7

Example 5 – Solution
cont’d

Observe that expression
 (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R).
!
is a disjunction of terms that are themselves conjunctions in
which one of P or ∼P, one of Q or ∼Q, and one of R or ∼R all
appear.
!
Such expressions are said to be in disjunctive normal form
or sum-of-products form.

Example 5 – Solution
cont’d

2.4.5

Simplifying Combinational Circuits

Consider the two combinational circuits shown in  
Figure 2.4.8.

Simplifying Combinational Circuits

(a)

(b)

Figure 2.4.8

If you trace through circuit (a), you will find that its input/
output table is
!
!
!
!
!
!
which is the same as the input/output table for circuit (b).
Thus these two circuits do the same job in the sense that
they transform the same combinations of input signals into
the same output signals.

Simplifying Combinational Circuits

Yet circuit (b) is simpler than circuit (a) in that it contains
many fewer logic gates. Thus, as part of an integrated circuit,
it would take less space and require less power.

Simplifying Combinational Circuits

Example 6 – Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in  
Figure 2.4.8. Use Theorem 2.1.1 to show that these
expressions are logically equivalent when regarded as
statement forms.

(a)

(b)

Figure 2.4.8

Example 6 – Showing That Two Circuits Are Equivalent
cont’d

The Boolean expressions that correspond to circuits (a) and
(b) are ((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q and P ∧ Q, respectively.

!
By Theorem 2.1.1,

Example 6 – Solution

!
!
!
!
It follows that the truth tables for ((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q
and P ∧ Q are the same.
!
Hence the input/output tables for the circuits corresponding
to these expressions are also the same, and so the circuits
are equivalent.

Example 6 – Solution
cont’d

NAND and NOR Gates

Another way to simplify a circuit is to find an equivalent
circuit that uses the least number of different kinds of logic  
gates.
!
Two gates not previously introduced are particularly 
useful for this: NAND-gates and NOR-gates. A NAND-gate  
is a single gate that acts like an AND-gate followed by a
NOT-gate. A NOR-gate acts like an OR-gate followed by a 
NOT-gate.

NAND and NOR Gates

Thus the output signal of a NAND-gate is 0 when, and only
when, both input signals are 1, and the output signal for a
NOR-gate is 1 when, and only when, both input signals  
are 0.
!
The logical symbols corresponding to these gates are | (for
NAND) and ↓ (for NOR), where | is called a Sheffer stroke
(after H. M. Sheffer, 1882–1964) and ↓ is called a Peirce
arrow (after C. S. Peirce, 1839–1914). Thus

NAND and NOR Gates

The table below summarizes the actions of NAND and NOR
gates.

NAND and NOR Gates

It can be shown that any Boolean expression is equivalent to
one written entirely with Sheffer strokes or entirely with
Peirce arrows.
!
Thus any digital logic circuit is equivalent to one that uses
only NAND-gates or only NOR-gates.

NAND and NOR Gates

Example 7 – Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to
show that
a. and b.
!
Solution:
a.
!
!
b.

Example 7 – Solution
cont’d

61

Copyright © Cengage Learning. All rights reserved.

SECTION 2.5
Application: Number Systems

and Circuits for Addition

Application: Number Systems and Circuits for Addition

In elementary school, you learned the meaning of decimal
notation: that to interpret a string of decimal digits as a
number, you mentally multiply each digit by its place value.
!
For instance, 5,049 has a 5 in the thousands place, a 0 in
the hundreds place, a 4 in the tens place, and a 9 in the
ones place. Thus
!
 5,049 = 5 ● (1,000) + 0 ● (100) + 4 ● (10) + 9 ● (1).

Application: Number Systems and Circuits for Addition

Using exponential notation, this equation can be rewritten as
 5,049 = 5 ● 103 + 0 ● 102 + 4 ● 101 + 9 ● 100.
!
!
 More generally, decimal notation is based on the fact that
any positive integer can be written uniquely as a sum of
products of the form
 d ● 10n,
!
where each n is a nonnegative integer and each d is one of
the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

Application: Number Systems and Circuits for Addition

The word decimal comes from the Latin root deci, meaning
“ten.” Decimal (or base 10) notation expresses a number as
a string of digits in which each digit’s position indicates the
power of 10 by which it is multiplied.
!
The right-most position is the ones place (or 100 place), to
the left of that is the tens place (or 101 place), to the left of
that is the hundreds place (or 102 place), and so forth, as
illustrated below.

Binary Representation of
Numbers

Binary Representation of Numbers
In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern
electronics are always in one of only two states. (The Latin
root bi means “two.”)
!
We can show that any integer can be represented uniquely
as a sum of products of the form
!
 d ● 2n,
!
where each n is an integer and each d is one of the binary
digits (or bits) 0 or 1.

Binary Representation of Numbers
For example,

 27 = 16 + 8 + 2 + 1
!
 = 1 ● 24 + 1 ● 23 + 0 ● 22 + 1 ● 21 + 1 ● 20.
!
The places in binary notation correspond to the various

powers of 2.

Binary Representation of Numbers
The right-most position is the ones place (or 20 place), to the
left of that is the twos place (or 21 place), to the left of that is
the fours place (or 22 place), and so forth, as illustrated
below.
!
!
!
!

 As in the decimal notation, leading zeros may be added or
dropped as desired. For example,

Binary Representation of Numbers
A list of powers of 2 is useful for doing binary-to-decimal and
decimal-to-binary conversions. See Table 2.5.1.

Table 2.5.1

Powers of 2

Example 2 – Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation.
!
Solution:

Example 2 – Solution
Alternatively, the schema below may be used.

cont’d

Example 3 – Converting a Decimal to a Binary Number

Represent 209 in binary notation.
!
Solution:
Use Table 2.5.1 to write 209 as a sum of powers of 2,
starting with the highest power of 2 that is less than 209 and
continuing to lower powers.

Table 2.5.1

Powers of 2

Example 3 – Solution
Since 209 is between 128 and 256, the highest power of 2
that is less than 209 is 128. Hence
!
 20910 = 128 + a smaller number.
!
Now 209 − 128 = 81, and 81 is between 64 and 128, so the
highest power of 2 that is less than 81 is 64. Hence
!
 20910 = 128 + 64 + a smaller number.

cont’d

Example 3 – Solution
Continuing in this way, you obtain
!

!
!
For each power of 2 that occurs in the sum, there is a 1 in
the corresponding position of the binary number.

cont’d

Example 3 – Solution
For each power of 2 that is missing from the sum, there is a
0 in the corresponding position of the binary number.
!
Thus

cont’d

Binary Addition and Subtraction

Example 4 – Addition in Binary Notation

Add 11012 and 1112 using binary notation.
!
Solution:
Because 210 = 102 and 110 = 12, the translation of  
110 + 110 = 210 to binary notation is
!
!
!
!
It follows that adding two 1’s together results in a carry of 1
when binary notation is used.

Example 4 – Solution
Adding three 1’s together also results in a carry of 1 since
310 = 112 (“one one base two”).
!
!
!
!
!
Thus the addition can be performed as follows:

cont’d

Example 5 – Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.
!
Solution:
In decimal subtraction the fact that 1010 − 110 = 910 is used to
borrow across several columns. For example, consider the
following:

Example 5 – Solution
In binary subtraction it may also be necessary to borrow
across more than one column. But when you borrow a 12
from 102, what remains is 12.
!
!
!
!
Thus the subtraction can be performed as follows:

cont’d

Circuits for Computer Addition

Circuits for Computer Addition
Consider the question of designing a circuit to produce the
sum of two binary digits P and Q. Both P and Q can be either
0 or 1. And the following facts are known:

Circuits for Computer Addition
It follows that the circuit to be designed must have two
outputs—one for the left binary digit (this is called the carry)
and one for the right binary digit (this is called the sum).
!
The carry output is 1 if both P and Q are 1; it is 0 otherwise.
Thus the carry can be produced using the AND-gate circuit
that corresponds to the Boolean expression P ∧ Q. The sum
output is 1 if either P or Q, but not both, is 1.

Circuits for Computer Addition
The sum can, therefore, be produced using a circuit that
corresponds to the Boolean expression for exclusive  
or : (P ∨ Q) ∧ ∼ (P ∧ Q). Hence, a circuit to add two binary
digits P and Q can be constructed as in Figure 2.5.1. This
circuit is called a half-adder.

Figure 2.5.1
Circuit to Add P + Q, Where P and Q Are Binary Digits

Circuits for Computer Addition
In order to construct a circuit that will add multidigit binary
numbers, it is necessary to incorporate a circuit that will
compute the sum of three binary digits. Such a circuit is
called a full-adder.
!
Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or
right-most digit) S.

Circuits for Computer Addition
The operation of the full-adder is based on the fact that
addition is a binary operation: Only two numbers can be
added at one time. Thus P is first added to Q and then the
result is added to R. For instance, consider the following
addition:

Circuits for Computer Addition
The process illustrated here can be broken down into steps
that use half-adder circuits.
!
Step 1: Add P and Q using a half-adder to obtain a binary  
 number with two digits.

Circuits for Computer Addition
Step 2: Add R to the sum C1S1 of P and Q.
!
!
 To do this, proceed as follows:
!
Step 2a: Add R to S1 using a half-adder to obtain the  
 two-digit number C2S.
!
!

 Then S is the right-most digit of the entire sum of  
 P, Q, and R.

Circuits for Computer Addition
Step 2b: Determine the left-most digit, C, of the entire sum  

 as follows: First note that it is impossible for both  
 C1 and C2 to be 1’s. For if C1 = 1, then P and Q  
 are both 1, and so S1 = 0. Consequently, the  
 addition of S1 and R gives a binary number C2S1  
 where C2 = 0.

!
 Next observe that C will be a 1 in the case that  

 the addition of P and Q gives a carry of 1 or in the  
 case that the addition of S1 (the right-most digit of  
 P + Q) and R gives a carry of 1.

Circuits for Computer Addition
 In other words, C = 1 if, and only if, C1 = 1 or  

 C2 = 1. It follows that the circuit shown in  
 Figure 2.5.2 will compute the sum of three binary  
 digits.

Figure 2.5.2

Circuit to Add P + Q + R, Where P, Q, and R Are Binary Digits

Circuits for Computer Addition
Two full-adders and one half-adder can be used together to
build a circuit that will add two three-digit binary numbers
PQR and STU to obtain the sum WXYZ. This is illustrated in
Figure 2.5.3. Such a circuit is called a parallel adder.
!
Parallel adders can  
be constructed to  
add binary numbers  
of any finite length.

Figure 2.5.3

A Parallel Adder to Add PQR and STU to Obtain WXYZ

Two’s Complements and the Computer
Representation of Negative Integers

Two’s Complements and the Computer Representation of Negative Integers

Typically, a fixed number of bits is used to represent integers
on a computer, and these are required to represent negative
as well as nonnegative integers.
!
Sometimes a particular bit, normally the left-most, is used as
a sign indicator, and the remaining bits are taken to be the
absolute value of the number in binary notation.
!
The problem with this approach is that the procedures for
adding the resulting numbers are somewhat complicated
and the representation of 0 is not unique.

Two’s Complements and the Computer Representation of Negative Integers

A more common approach, using two’s complements, makes
it possible to add integers quite easily and results in a unique
representation for 0. The two’s complement of an integer
relative to a fixed bit length is defined as follows:

Two’s Complements and the Computer Representation of Negative Integers

There is a convenient way to compute two’s complements
that involves less arithmetic than direct application of the
definition. For an 8-bit representation, it is based on three
facts:
!
1.
!
2. The binary representation of
!
3. Subtracting an 8-bit binary number a from 111111112 just
switches all the 0’s in a to 1’s and all the 1’s to 0’s. (The
resulting number is called the one’s complement of the
given number.)

Two’s Complements and the Computer Representation of Negative Integers

In general,

Example 6 – Finding a Two’s Complement

Find the 8-bit two’s complement of 19.
!
Solution:
Write the 8-bit binary representation for 19, switch all the 0’s
to 1’s and all the 1’s to 0’s, and add 1.

Example 6 – Solution
To check this result, note that
!
!
!
!
!
!
!
which is the two’s complement of 19.

cont’d

Two’s Complements and the Computer Representation of Negative Integers

Observe that because
!
!
the two’s complement of the two’s complement of a number
is the number itself, and therefore,

Example 7 – Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with two’s
complement 10101001?
!
Solution:

Example 7 – Solution
To check this result, note that the given number is
!
!
!
!
!
!
!
!
which is the two’s complement of 87.

cont’d

8-Bit Representation of a Number

8-Bit Representation of a Number
Now consider the two’s complement of an integer n that
satisfies the inequality 1 ≤ n ≤ 128. Then
!
!
!
and

8-Bit Representation of a Number
It follows that the 8-bit two’s complement of an integer from 1

through 128 has a leading bit of 1. Note also that the
ordinary 8-bit representation of an integer from 0 through
127 has a leading bit of 0.

!
Consequently, eight bits can be used to represent both

nonnegative and negative integers by representing each
nonnegative integer up through 127 using ordinary 8-bit
binary notation and representing each negative integer
from −1 through −128 as the two’s complement of its
absolute value.

8-Bit Representation of a Number
That is, for any integer a from −128 through 127,

8-Bit Representation of a Number
The representations are illustrated in Table 2.5.2.

Table 2.5.2

Computer Addition with
Negative Integers

Computer Addition with Negative Integers

Computer Addition with Negative Integers

Case 1, (both integers are nonnegative): This case is
easy because if two nonnegative integers from 0 through
127 are written in their 8-bit representations and if their sum
is also in the range 0 through 127, then the 8-bit
representation of their sum has a leading 0 and is therefore
interpreted correctly as a nonnegative integer.
!
The example below illustrates what happens when 38 and
69 are added.

Computer Addition with Negative Integers

To be concrete, let the nonnegative integer be a and the
negative integer be −b and suppose both a and −b are in the
range −128 through 127. The crucial observation is that
adding the 8-bit representations of a and −b is equivalent to
computing
!
!
because the 8-bit representation of −b is the binary
representation of 28 − b.

Computer Addition with Negative Integers

Case 2 (a is nonnegative and −b is negative and  
|a| < |b|): In this case, observe that a = |a| < |b| = b and
!
!
and the binary representation of this number is the 8-bit
representation of −(b − a) = a + (−b). We must be careful to
check that 28 − (b − a) is between 27 and 28. But it is
because
!
!
Hence in case |a| < |b|, adding the 8-bit representations of a
and −b gives the 8-bit representation of a + (−b).

Example 8 – Computing a + (−b) Where 0 ≤ a < b ≤ 128

Use 8-bit representations to compute 39 + (−89).
!
Solution:
Step 1: Change from decimal to 8-bit representations using  
 the two’s complement to represent −89.
!
 Since 3910 = (32 + 4 + 2 + 1)10 = 1001112, the  
 8-bit representation of 39 is 00100111.

 Now the 8-bit representation of −89 is the two’s  
 complement of 89.

Example 8 – Solution
This is obtained as follows:
!
!
!

 So the 8-bit representation of −89 is 10100111.

cont’d

Example 8 – Solution
Step 2: Add the 8-bit representations in binary notation and  

 truncate the 1 in the 28th position if there is one:

cont’d

Example 8 – Solution
Step 3: Find the decimal equivalent of the result. Since its 

 leading bit is 1, this number is the 8-bit  
 representation of a negative integer.

 

!
 

 Note that since 39 − 89 = −50, this procedure gives  
 the correct answer.

cont’d

Computer Addition with Negative Integers

Case 3 (a is nonnegative and −b is negative and  
|b| ≤ |a|): In this case, observe that b = |b| ≤ |a| = a and
!
!
Also
!
!
!
 So the binary representation of has
a leading 1 in the ninth (28th) position. This leading 1 is often
called “overflow” because it does not fit in the  
8-bit integer format.

Computer Addition with Negative Integers

Now subtracting 28 from 28 + (a − b) is equivalent to
truncating the leading 1 in the 28th position of the binary
representation of the number. But
!
!
!
Hence in case |a| ≥ |b|, adding the 8-bit representations of a
and −b and truncating the leading 1 (which is sure to be
present) gives the 8-bit representation of a + (−b).

Example 9 – Computing a + (−b) Where 1 ≤ b < a ≤ 127

Use 8-bit representations to compute 39 + (−25).
!
Solution:
Step 1: Change from decimal to 8-bit representations using  

 the two’s complement to represent −25.
!
 As in Example 8, the 8-bit representation of 39  

 is 00100111. Now the 8-bit representation of −25 is  
 the two’s complement of 25, which is obtained as  
 follows:

Example 9 – Solution
 So the 8-bit representation of −25 obtained as  

 11100111.
!
Step 2: Add the 8-bit representations in binary notation and  

 truncate the 1 in the 28th position if there is one:

cont’d

Example 9 – Solution
Step 3: Find the decimal equivalent of the result:
!
!
!
!
Since 39 − 25 = 14, this is the correct answer.

cont’d

Computer Addition with Negative Integers

Case 4 (both integers are negative): This case involves
adding two negative integers in the range −1 through −128
whose sum is also in this range.
!
To be specific, consider the sum (−a) + (−b) where a, b, and
a + b are all in the range 1 through 128. In this case, the 8-
bit representations of −a and −b are the 8-bit representations
of 28 − a and 28 − b.
!
So if the 8-bit representations of −a and −b are added, the
result is

Computer Addition with Negative Integers

We know that truncating a leading 1 in the ninth (28th)
position of a binary number is equivalent to subtracting 28.

So when the leading 1 is truncated from the 8-bit
representation of (28 − a) + (28 − b), the result is 28
− (a + b), which is the 8-bit representation of −
(a + b) = (−a) + (−b).

Example 10 – Computing (−a) + (−b) Where 1 ≤ a, b ≤ 128, and 1 ≤ a + b ≤ 128

Use 8-bit representations to compute (−89) + (−25).
!
Solution:
Step 1: Change from decimal to 8-bit representations using  
 the two’s complements to represent −89 and −25.
  
 The 8-bit representations of −89 and −25 were  
 shown in Examples 2.5.8 and 2.5.9 to be  
 10100111 and 11100111, respectively.

Example 10 – Solution
Step 2: Add the 8-bit representations in binary notation and  

 truncate the 1 in the 28th position if there is one:

cont’d

Example 10 – Solution
Step 3: Find the decimal equivalent of the result. Because  

 its leading bit is 1, this number is the 8-bit  
 representation of a negative integer.

!
!
!
!
Since (−89) + (−25) = −114, that is the correct answer.

cont’d

Hexadecimal Notation

Hexadecimal Notation
Hexadecimal notation is even more compact than decimal
notation, and it is much easier to convert back and forth
between hexadecimal and binary notation than it is between
binary and decimal notation.
!
The word hexadecimal comes from the Greek root hex-,
meaning “six,” and the Latin root deci-, meaning “ten.” Hence
hexadecimal refers to “sixteen,” and hexadecimal notation is
also called base 16 notation.

Hexadecimal Notation
Hexadecimal notation is based on the fact that any integer
can be uniquely expressed as a sum of numbers of the form
!
!
where each n is a nonnegative integer and each d is one of
the integers from 0 to 15. In order to avoid ambiguity, each
hexadecimal digit must be represented by a single symbol.
The integers 10 through 15 are represented by the symbols
A, B, C, D, E, and F.

Hexadecimal Notation
The sixteen hexadecimal digits are shown in Table 2.5.3,
together with their decimal equivalents and, for future
reference, their 4-bit binary equivalents.

Table 2.5.3

Example 11 – Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.
!
Solution:
Consider the following schema.
!
!
!
!
!
!
So 3CF16 = 97510.

Hexadecimal Notation
Now consider how to convert from hexadecimal to binary
notation.
!
The following sequence of steps will give the required
conversion from hexadecimal to binary notation.

Example 12 – Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation.
!
Solution:

!
!

!
 and

Example 12 – Solution
Consequently,
!
!
!
!
and the answer is 10110000100111112.

cont’d

Hexadecimal Notation
To convert integers written in binary notation into
hexadecimal notation, reverse the steps of the previous
procedure.

Example 13 – Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.
!
Solution:
First group the binary digits in sets of four, working from right
to left and adding leading 0’s if necessary.
!
 0100 1101 1010 1001.

Example 13 – Solution
Convert each group of four binary digits into a hexadecimal
digit.
!
!
!
!
Then juxtapose the hexadecimal digits.
 4DA916

cont’d

