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Application: Digital Logic 
Circuits

SECTION 2.4



Application: Digital Logic Circuits
The drawing in Figure 2.4.1(a) shows the appearance of 
the two positions of a simple switch. When the switch is  
closed, current can flow from one terminal to the other;  
when it is open, current cannot flow.  
!
Imagine that such a switch is part of the circuit shown in  
figure 2.4.1(b). The light bulb turns on if, and only if, current  
flows through it. And this happens if, and only if, the switch  
is closed.

(a) (b)
Figure 2.4.1



Application: Digital Logic Circuits
Now consider the more complicated circuits of Figures 
2.4.2(a) and 2.4.2(b). 
!
!
!
!
!
!
In the circuit of Figure 2.4.2(a) current flows and the light 
bulb turns on if, and only if, both switches P and Q are  
closed. The switches in this circuit are said to be in series.

Figure 2.4.2

 (a) Switches “in series” (b) Switches “in parallel”



Application: Digital Logic Circuits
In the circuit of Figure 2.4.2(b) current flows and the light 
bulb turns on if, and only if, at least one of the switches      P 
or Q is closed. The switches in this circuit are said to be in 
parallel. All possible behaviors of these circuits are 
described by Table 2.4.1.

Table 2.4.1

(a) Switches in Series (b) Switches in Parallel



Application: Digital Logic Circuits
Observe that if the words closed and on are replaced by T 
and open and off are replaced by F, Table 2.4.1(a)  
becomes the truth table for and and Table 2.4.1(b)  
becomes the truth table for or. 
!
Consequently, the switching circuit of Figure 2.4.2(a) is said 
to correspond to the logical expression P ∧ Q, and that  
of Figure 2.4.2(b) is said to correspond to P ∨ Q.

Figure 2.4.2

 (a) Switches “in series” (b) Switches “in parallel”



More complicated circuits correspond to more complicated  
logical expressions. This correspondence has been used  
extensively in the design and study of circuits.  
!
Electrical engineers continue to use the language of logic  
when they refer to values of signals produced by an 
electronic switch as being “true” or “false.” But they  
generally use the symbols 1 and 0 rather than T and F to  
denote these values. 
!
The symbols 0 and 1 are called bits, short for binary digits.  
This terminology was introduced in 1946 by the statistician 
John Tukey.

Application: Digital Logic Circuits



Black Boxes and Gates



Black Boxes and Gates
Combinations of signal bits (1’s and 0’s) can be  
transformed into other combinations of signal bits           (1’s 
and 0’s) by means of various circuits.  
!
Because a variety of different technologies are used in circuit 
construction, computer engineers and digital system 
designers find it useful to think of certain basic circuits as 
black boxes. 



The inside of a black box contains the detailed  
implementation of the circuit and is often ignored while  
attention is focused on the relation between the input and  
the output signals. 
!
!
!
!
The operation of a black box is completely specified by 
constructing an input/output table that lists all its  
possible input signals together with their corresponding  
output signals. 

Black Boxes and Gates



Black Boxes and Gates
For example, the black box picture has three input signals. 
Since each of these signals can take the value 1 or 0, there 
are eight possible combinations of input signals.



Black Boxes and Gates
One possible correspondence of input to output signals is as 
follows:

An Input/Output Table



Black Boxes and Gates
An efficient method for designing more complicated circuits 
is to build them by connecting less complicated black box  
circuits. Three such circuits are known as NOT-, AND-, and 
OR-gates. 
!
A NOT-gate (or inverter) is a circuit with one input signal 
and one output signal. If the input signal is 1, the  
output signal is 0.  
!
Conversely, if the input signal is 0, then the output signal  
is 1. An AND-gate is a circuit with two input signals and one 
output signal. If both input signals are 1, then the output 
signal is 1. 



Otherwise, the output signal is 0. An OR-gate also has two 
input signals and one output signal. If both input signals are 
0, then the output signal is 0. Otherwise, the output signal is 
1. 
!
The actions of NOT-, AND-, and OR-gates are summarized 
in Figure 2.4.3, where P and Q represent input signals and  
R represents the output signal. 

Black Boxes and Gates

Figure 2.4.3



Black Boxes and Gates

Figure 2.4.3 (continued)



It should be clear from Figure 2.4.3 that the actions of the 
NOT-, AND-, and OR-gates on signals correspond exactly to 
those of the logical connectives ∼, ∧, and ∨ on statements, if 
the symbol 1 is identified with T and the symbol 0 is 
identified with F. 
!
Gates can be combined into circuits in a variety of ways. If  
the rules shown on the next page are obeyed, the result is 
a combinational circuit, one whose output at any time 
is determined entirely by its input at that time without regard 
to previous inputs.

Black Boxes and Gates



Rules for a Combinational Circuit



 Never combine two input wires.                      
!
           A single input wire can be split partway  
           and used as input for two separate gates.      
!
           An output wire can be used as input.              
!
           No output of a gate can eventually feed  
           back into that gate.     
!
Rule (2.4.4) is violated in more complex circuits, called 
sequential circuits, whose output at any given time 
depends both on the input at that time and also on previous 
inputs.

Rules for a Combinational Circuit

2.4.1

2.4.2

2.4.3

2.4.4



The Input/Output Table for a 
Circuit



If you are given a set of input signals for a circuit, you can 
find its output by tracing through the circuit gate by gate.

The Input/Output Table for a Circuit



Example 1 – Determining Output for a Given Input

Indicate the output of the circuits shown below for the given 
input signals. 
!
a. 
!
!
!
b.



Move from left to right through the diagram, tracing the 
action of each gate on the input signals.  
!
The NOT-gate changes P = 0 to a 1, so both inputs to the 
AND-gate are 1; hence the output R is 1.  
!
This is illustrated by annotating the diagram as shown below.

Example 1(a) – Solution



The output of the OR-gate is 1 since one of the input 
signals, P, is 1. The NOT-gate changes this 1 into a 0, so  
the two inputs to the AND-gate are 0 and R = 1.  
!
Hence the output S is 0. The trace is shown below.

Example 1(b) – Solution
cont’d



The Boolean Expression  
Corresponding to a Circuit



In logic, variables such as p, q and r represent statements,  
and a statement can have one of only two truth values: 
T(true) or F(false).  
!
A statement form is an expression, such as p ∧ (∼q ∨ r), 
composed of statement variables and logical connectives. 
!
As noted earlier, one of the founders of symbolic logic was 
the English mathematician George Boole. In his honor, any 
variable, such as a statement variable or an input signal, that 
can take one of only two values is called a Boolean 
variable. An expression composed of Boolean variables and 
the connectives ∼, ∧, and ∨ is called a Boolean expression.

The Boolean Expression Corresponding to a Circuit



Example 3 – Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits 
shown below. A dot indicates a soldering of two  
wires; wires that cross without a dot are assumed not to 
touch.

(b)(a)



Trace through the circuit from left to right, indicating the 
output of each gate symbolically, as shown below. 
!
!
!
!
!
!
The final expression obtained, (P ∨ Q) ∧ ∼(P ∧ Q), is the 
expression for exclusive or: P or Q but not both.

Example 3(a) – Solution



The Boolean expression corresponding to the circuit is  
(P ∧ Q) ∧ ∼R, as shown below.

Example 3(b) – Solution
cont’d



Observe that the output of the circuit shown in  
Example 3(b) is 1 for exactly one combination of inputs  
(P = 1, Q = 1, and R = 0) and is 0 for all other combinations 
of inputs.

The Boolean Expression Corresponding to a Circuit



For this reason, the circuit can be said to “recognize” one 
particular combination of inputs. The output column of the 
input/output table has a 1 in exactly one row and 0’s in all 
other rows.

The Boolean Expression Corresponding to a Circuit

Input/Output Table for a Recognizer



The Circuit Corresponding to  
a Boolean Expression



Example 4 – Constructing Circuits for Boolean Expressions

Construct circuits for the following Boolean expressions. 
a. (∼P ∧ Q) ∨ ∼Q            b. ((P ∧ Q) ∧ (R ∧ S)) ∧ T 
!
Solution: 
a. Write the input variables in a column on the left side of the 
diagram. Then go from the right side of the diagram to the 
left, working from the outermost part of the  
expression to the innermost part.  
     
    Since the last operation executed when evaluating  
(∼P ∧ Q) ∨ ∼Q is ∨, put an OR-gate at the extreme right of 
the diagram.



Example 4 – Solution
One input to this gate is ∼P ∧ Q, so draw an AND-gate to the 
left of the OR-gate and show its output coming into the OR-
gate.  
!
Since one input to the AND-gate is ∼P, draw a line from P to 
a NOT-gate and from there to the AND-gate. Since the other 
input to the AND-gate is Q, draw a line from Q directly to the 
AND-gate. 

cont’d



The other input to the OR-gate is ∼Q, so draw a line from Q 
to a NOT-gate and from the NOT-gate to the OR-gate. The 
circuit you obtain is shown below.  

Example 4 – Solution
cont’d



b. To start constructing this circuit, put one AND-gate at the 
extreme right for the ∧ between ((P ∧ Q) ∧ (R ∧ S)) and T.  

    To the left of that put the AND-gate corresponding to the ∧ 
between P ∧ Q and R ∧ S.  

    To the left of that put the AND-gates corresponding to the 
∧’s between P and Q and between R and S.

Example 4 – Solution
cont’d



The circuit is shown in Figure 2.4.4.

Figure 2.4.4

Example 4 – Solution
cont’d



It follows from Theorem 2.1.1 that all the ways of adding 
parentheses to P ∧ Q ∧ R ∧ S ∧ T are logically equivalent. 

The Circuit Corresponding to a Boolean Expression



Thus, for example, 
        ((P ∧ Q) ∧ (R ∧ S)) ∧ T ≡ (P ∧ (Q ∧ R)) ∧ (S ∧ T). 
!
It also follows that the circuit in Figure 2.4.5, which 
corresponds to (P ∧ (Q ∧ R)) ∧ (S ∧ T), has the same input/
output table as the circuit in Figure 2.4.4, which corresponds 
to ((P ∧ Q) ∧ (R ∧ S)) ∧ T.

The Circuit Corresponding to a Boolean Expression

Figure 2.4.5 Figure 2.4.4



Each of the circuits in Figures 2.4.4 and 2.4.5 is, therefore, 
an implementation of the expression P ∧ Q ∧ R ∧ S ∧ T.  
Such a circuit is called a multiple-input AND-gate and is  
represented by the diagram shown in Figure 2.4.6. 
   
!
!
!
!
!
Multiple-input OR-gates are constructed similarly.

The Circuit Corresponding to a Boolean Expression

Figure 2.4.6



Finding a Circuit That Corresponds  
to a Given Input/Output Table



Design a circuit for the following input/output table:

Example 5 – Designing a Circuit for a Given Input/Output Table



Example 5 – Solution
First construct a Boolean expression with this table as its 
truth table. To do this, identify each row for which the output 
is 1—in this case, the first, third, and fourth rows. 

For each such row, construct an and expression that 
produces a 1 (or true) for the exact combination of input  
values for that row and a 0 (or false) for all other  
combinations of input values. 
!
For example, the expression for the first row is P ∧ Q ∧ R 
because P ∧ Q ∧ R is 1 if P = 1 and Q = 1 and R = 1, and it 
is 0 for all other values of P, Q, and R. 



The expression for the third row is P ∧ ∼Q ∧ R because  
P ∧ ∼Q ∧ R is 1 if P = 1 and Q = 0 and R = 1, and it is 0 for 
all other values of P, Q, and R. Similarly, the expression for 
the fourth row is P ∧ ∼Q ∧ ∼R. 
!
Now any Boolean expression with the given table as its truth 
table has the value 1 in case P ∧ Q ∧ R = 1, or in case P ∧ 
∼Q ∧ R = 1, or in case P ∧ ∼Q ∧ ∼R = 1, and in no other 
cases.  
!
It follows that a Boolean expression with the given truth table 
is 
    (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R).          

Example 5 – Solution
cont’d

2.4.5



The circuit corresponding to this expression has the diagram 
shown in Figure 2.4.7. 

Figure 2.4.7

Example 5 – Solution
cont’d



Observe that expression  
    (P ∧ Q ∧ R) ∨ (P ∧ ∼Q ∧ R) ∨ (P ∧ ∼Q ∧ ∼R).         
!
is a disjunction of terms that are themselves conjunctions in 
which one of P or ∼P, one of Q or ∼Q, and one of R or ∼R all 
appear.  
!
Such expressions are said to be in disjunctive normal form 
or sum-of-products form.

Example 5 – Solution
cont’d

2.4.5



Simplifying Combinational Circuits



Consider the two combinational circuits shown in  
Figure 2.4.8.

Simplifying Combinational Circuits

(a)

(b)

Figure 2.4.8



If you trace through circuit (a), you will find that its input/
output table is 
!
!
!
!
!
!
which is the same as the input/output table for circuit (b). 
Thus these two circuits do the same job in the sense that 
they transform the same combinations of input signals into 
the same output signals. 

Simplifying Combinational Circuits



Yet circuit (b) is simpler than circuit (a) in that it contains 
many fewer logic gates. Thus, as part of an integrated circuit, 
it would take less space and require less power.

Simplifying Combinational Circuits



Example 6 – Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in  
Figure 2.4.8. Use Theorem 2.1.1 to show that these 
expressions are logically equivalent when regarded as 
statement forms.

(a)

(b)

Figure 2.4.8



Example 6 – Showing That Two Circuits Are Equivalent
cont’d



The Boolean expressions that correspond to circuits (a) and 
(b) are ((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q and P ∧ Q, respectively.  

!
By Theorem 2.1.1,

Example 6 – Solution



!
!
!
!
It follows that the truth tables for ((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q 
and P ∧ Q are the same. 
!
Hence the input/output tables for the circuits corresponding 
to these expressions are also the same, and so the circuits 
are equivalent.

Example 6 – Solution
cont’d



NAND and NOR Gates



Another way to simplify a circuit is to find an equivalent 
circuit that uses the least number of different kinds of logic  
gates.  
!
Two gates not previously introduced are particularly 
useful for this: NAND-gates and NOR-gates. A NAND-gate  
is a single gate that acts like an AND-gate followed by a 
NOT-gate. A NOR-gate acts like an OR-gate followed by a 
NOT-gate. 

NAND and NOR Gates



Thus the output signal of a NAND-gate is 0 when, and only 
when, both input signals are 1, and the output signal for a 
NOR-gate is 1 when, and only when, both input signals  
are 0. 
!
The logical symbols corresponding to these gates are | (for 
NAND) and ↓ (for NOR), where | is called a Sheffer stroke 
(after H. M. Sheffer, 1882–1964) and ↓ is called a Peirce 
arrow (after C. S. Peirce, 1839–1914). Thus

NAND and NOR Gates



The table below summarizes the actions of NAND and NOR 
gates.

NAND and NOR Gates



It can be shown that any Boolean expression is equivalent to 
one written entirely with Sheffer strokes or entirely with 
Peirce arrows.  
!
Thus any digital logic circuit is equivalent to one that uses 
only NAND-gates or only NOR-gates.

NAND and NOR Gates



Example 7 – Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to 
show that 
a.                            and        b. 
!
Solution: 
a. 
!
!
b. 



Example 7 – Solution
cont’d
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SECTION 2.5
Application: Number Systems 

and Circuits for Addition



Application: Number Systems and Circuits for Addition

In elementary school, you learned the meaning of decimal 
notation: that to interpret a string of decimal digits as a 
number, you mentally multiply each digit by its place value.  
!
For instance, 5,049 has a 5 in the thousands place, a 0 in 
the hundreds place, a 4 in the tens place, and a 9 in the 
ones place. Thus  
!
 5,049 = 5 ● (1,000) + 0 ● (100) + 4 ● (10) + 9 ● (1).



Application: Number Systems and Circuits for Addition

Using exponential notation, this equation can be rewritten as 
             5,049 = 5 ● 103 + 0 ● 102 + 4 ● 101 + 9 ● 100. 
!
!
 More generally, decimal notation is based on the fact that 
any positive integer can be written uniquely as a sum of 
products of the form 
                                        d ● 10n,  
!
where each n is a nonnegative integer and each d is one of 
the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.                                                                                                           



Application: Number Systems and Circuits for Addition

The word decimal comes from the Latin root deci, meaning 
“ten.” Decimal (or base 10) notation expresses a number as 
a string of digits in which each digit’s position indicates the 
power of 10 by which it is multiplied. 
!
The right-most position is the ones place (or 100 place), to 
the left of that is the tens place (or 101 place), to the left of 
that is the hundreds place (or 102 place), and so forth, as 
illustrated below.



Binary Representation of 
Numbers



Binary Representation of Numbers
In computer science, base 2 notation, or binary notation, 
is of special importance because the signals used in modern 
electronics are always in one of only two states. (The Latin 
root bi means “two.”) 
!
We can show that any integer can be represented uniquely 
as a sum of products of the form 
!
                                            d ● 2n, 
!
where each n is an integer and each d is one of the binary 
digits (or bits) 0 or 1.



Binary Representation of Numbers
For example, 
    
                          27 = 16 + 8 + 2 + 1 
!
                                              = 1 ● 24 + 1 ● 23 + 0 ● 22 + 1 ● 21 + 1 ● 20. 
!
The places in binary notation correspond to the various 

powers of 2.  

                                                                                



Binary Representation of Numbers
The right-most position is the ones place (or 20 place), to the 
left of that is the twos place (or 21 place), to the left of that is 
the fours place (or 22 place), and so forth, as illustrated 
below.     
!
!
!
!
   
 As in the decimal notation, leading zeros may be added or 
dropped as desired. For example,



Binary Representation of Numbers
A list of powers of 2 is useful for doing binary-to-decimal and 
decimal-to-binary conversions. See Table 2.5.1.

Table 2.5.1

Powers of 2



Example 2 – Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation. 
!
Solution:



Example 2 – Solution
Alternatively, the schema below may be used.  

cont’d



Example 3 – Converting a Decimal to a Binary Number

Represent 209 in binary notation. 
!
Solution: 
Use Table 2.5.1 to write 209 as a sum of powers of 2, 
starting with the highest power of 2 that is less than 209 and 
continuing to lower powers.  

Table 2.5.1

Powers of 2



Example 3 – Solution
Since 209 is between 128 and 256, the highest power of 2 
that is less than 209 is 128. Hence 
!
                        20910 = 128 + a smaller number.  
!
Now 209 − 128 = 81, and 81 is between 64 and 128, so the 
highest power of 2 that is less than 81 is 64. Hence 
!
                        20910 = 128 + 64 + a smaller number. 

cont’d



Example 3 – Solution
Continuing in this way, you obtain 
!
              
!
!
For each power of 2 that occurs in the sum, there is a 1 in 
the corresponding position of the binary number. 

cont’d



Example 3 – Solution
For each power of 2 that is missing from the sum, there is a 
0 in the corresponding position of the binary number.  
!
Thus

cont’d



Binary Addition and Subtraction



Example 4 – Addition in Binary Notation

Add 11012 and 1112 using binary notation. 
!
Solution: 
Because 210 = 102 and 110 = 12, the translation of  
110 + 110 = 210 to binary notation is  
!
!
!
!
It follows that adding two 1’s together results in a carry of 1 
when binary notation is used.   



Example 4 – Solution
Adding three 1’s together also results in a carry of 1 since 
310 = 112 (“one one base two”). 
!
!
!
!
!
Thus the addition can be performed as follows:   

cont’d



Example 5 – Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation. 
!
Solution: 
In decimal subtraction the fact that 1010 − 110 = 910 is used to 
borrow across several columns. For example, consider the 
following:



Example 5 – Solution
In binary subtraction it may also be necessary to borrow 
across more than one column. But when you borrow a 12 
from 102, what remains is 12. 
!
!
!
!
Thus the subtraction can be performed as follows:

cont’d



Circuits for Computer Addition



Circuits for Computer Addition
Consider the question of designing a circuit to produce the 
sum of two binary digits P and Q. Both P and Q can be either 
0 or 1. And the following facts are known:



Circuits for Computer Addition
It follows that the circuit to be designed must have two 
outputs—one for the left binary digit (this is called the carry) 
and one for the right binary digit (this is called the sum).  
!
The carry output is 1 if both P and Q are 1; it is 0 otherwise. 
Thus the carry can be produced using the AND-gate circuit 
that corresponds to the Boolean expression P ∧ Q. The sum 
output is 1 if either P or Q, but not both, is 1.



Circuits for Computer Addition
The sum can, therefore, be produced using a circuit that 
corresponds to the Boolean expression for exclusive  
or : (P ∨ Q) ∧ ∼ (P ∧ Q). Hence, a circuit to add two binary 
digits P and Q can be constructed as in Figure 2.5.1. This 
circuit is called a half-adder.

Figure 2.5.1
Circuit to Add P + Q, Where P and Q Are Binary Digits



Circuits for Computer Addition
In order to construct a circuit that will add multidigit binary 
numbers, it is necessary to incorporate a circuit that will 
compute the sum of three binary digits. Such a circuit is 
called a full-adder.  
!
Consider a general addition of three binary digits P, Q, and 
R that results in a carry (or left-most digit) C and a sum (or 
right-most digit) S.



Circuits for Computer Addition
The operation of the full-adder is based on the fact that 
addition is a binary operation: Only two numbers can be 
added at one time. Thus P is first added to Q and then the 
result is added to R. For instance, consider the following 
addition:



Circuits for Computer Addition
The process illustrated here can be broken down into steps 
that use half-adder circuits. 
!
Step 1: Add P and Q using a half-adder to obtain a binary   
             number with two digits.



Circuits for Computer Addition
Step 2: Add R to the sum C1S1 of P and Q. 
!
!
             To do this, proceed as follows: 
!
Step 2a: Add R to S1 using a half-adder to obtain the  
               two-digit number C2S. 
!
!
                
              Then S is the right-most digit of the entire sum of          
               P, Q, and R.



Circuits for Computer Addition
Step 2b: Determine the left-most digit, C, of the entire sum    

           as follows: First note that it is impossible for both  
           C1 and C2 to be 1’s. For if C1 = 1, then P and Q  
           are both 1, and so S1 = 0. Consequently, the  
           addition of S1 and R gives a binary number C2S1  
           where C2 = 0. 

!
               Next observe that C will be a 1 in the case that   

           the addition of P and Q gives a carry of 1 or in the  
           case that the addition of S1 (the right-most digit of   
           P + Q) and R gives a carry of 1.



Circuits for Computer Addition
              In other words, C = 1 if, and only if, C1 = 1 or  

          C2 = 1. It follows that the circuit shown in           
          Figure 2.5.2 will compute the sum of three binary  
          digits.

Figure 2.5.2

Circuit to Add P + Q + R, Where P, Q, and R Are Binary Digits



Circuits for Computer Addition
Two full-adders and one half-adder can be used together to 
build a circuit that will add two three-digit binary numbers 
PQR and STU to obtain the sum WXYZ. This is illustrated in 
Figure 2.5.3. Such a circuit is called a parallel adder.  
!
Parallel adders can  
be constructed to  
add binary numbers  
of any finite length.

Figure 2.5.3

A Parallel Adder to Add PQR and STU to Obtain WXYZ



Two’s Complements and the Computer 
Representation of Negative Integers



Two’s Complements and the Computer Representation of Negative Integers

Typically, a fixed number of bits is used to represent integers 
on a computer, and these are required to represent negative 
as well as nonnegative integers.  
!
Sometimes a particular bit, normally the left-most, is used as 
a sign indicator, and the remaining bits are taken to be the 
absolute value of the number in binary notation.  
!
The problem with this approach is that the procedures for 
adding the resulting numbers are somewhat complicated 
and the representation of 0 is not unique.



Two’s Complements and the Computer Representation of Negative Integers

A more common approach, using two’s complements, makes 
it possible to add integers quite easily and results in a unique 
representation for 0. The two’s complement of an integer 
relative to a fixed bit length is defined as follows:



Two’s Complements and the Computer Representation of Negative Integers

There is a convenient way to compute two’s complements 
that involves less arithmetic than direct application of the 
definition. For an 8-bit representation, it is based on three 
facts: 
!
1. 
!
2. The binary representation of  
!
3. Subtracting an 8-bit binary number a from 111111112 just 
switches all the 0’s in a to 1’s and all the 1’s to 0’s. (The 
resulting number is called the one’s complement of the 
given number.)



Two’s Complements and the Computer Representation of Negative Integers

In general,



Example 6 – Finding a Two’s Complement

Find the 8-bit two’s complement of 19. 
!
Solution: 
Write the 8-bit binary representation for 19, switch all the 0’s 
to 1’s and all the 1’s to 0’s, and add 1.



Example 6 – Solution
To check this result, note that 
!
!
!
!
!
!
!
which is the two’s complement of 19.

cont’d



Two’s Complements and the Computer Representation of Negative Integers

Observe that because 
!
!
the two’s complement of the two’s complement of a number 
is the number itself, and therefore,



Example 7 – Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with two’s 
complement 10101001? 
!
Solution: 
  



Example 7 – Solution
To check this result, note that the given number is 
!
!
!
!
!
!
!
!
which is the two’s complement of 87.

cont’d



8-Bit Representation of a Number



8-Bit Representation of a Number
Now consider the two’s complement of an integer n that 
satisfies the inequality 1 ≤ n ≤ 128. Then 
!
!
!
and



8-Bit Representation of a Number
It follows that the 8-bit two’s complement of an integer from 1 

through 128 has a leading bit of 1. Note also that the 
ordinary 8-bit representation of an integer from 0 through 
127 has a leading bit of 0.  

!
Consequently, eight bits can be used to represent both 

nonnegative and negative integers by representing each 
nonnegative integer up through 127 using ordinary 8-bit 
binary notation and representing each negative integer 
from −1 through −128 as the two’s complement of its 
absolute value.



8-Bit Representation of a Number
That is, for any integer a from −128 through 127,



8-Bit Representation of a Number
The representations are illustrated in Table 2.5.2.

Table 2.5.2



Computer Addition with  
Negative Integers



Computer Addition with Negative Integers



Computer Addition with Negative Integers

Case 1, (both integers are nonnegative): This case is 
easy because if two nonnegative integers from 0 through 
127 are written in their 8-bit representations and if their sum 
is also in the range 0 through 127, then the 8-bit 
representation of their sum has a leading 0 and is therefore 
interpreted correctly as a nonnegative integer.  
!
The example below illustrates what happens when 38 and 
69 are added.



Computer Addition with Negative Integers

To be concrete, let the nonnegative integer be a and the 
negative integer be −b and suppose both a and −b are in the 
range −128 through 127. The crucial observation is that 
adding the 8-bit representations of a and −b is equivalent to 
computing 
!
!
because the 8-bit representation of −b is the binary 
representation of 28 − b.



Computer Addition with Negative Integers

Case 2 (a is nonnegative and −b is negative and  
|a| < |b|): In this case, observe that a = |a| < |b| = b and 
!
!
and the binary representation of this number is the 8-bit 
representation of −(b − a) = a + (−b). We must be careful to 
check that 28 − (b − a) is between 27 and 28. But it is 
because 
!
!
Hence in case |a| < |b|, adding the 8-bit representations of a 
and −b gives the 8-bit representation of a + (−b).



Example 8 – Computing a + (−b) Where 0 ≤ a < b ≤ 128

Use 8-bit representations to compute 39 + (−89). 
!
Solution: 
Step 1: Change from decimal to 8-bit representations using    
         the two’s complement to represent −89. 
!
             Since 3910 = (32 + 4 + 2 + 1)10 = 1001112, the           
         8-bit representation of 39 is 00100111. 
  
             Now the 8-bit representation of −89 is the two’s        
         complement of 89.



Example 8 – Solution
This is obtained as follows: 
!
!
!
  
            So the 8-bit representation of −89 is 10100111.

cont’d



Example 8 – Solution
Step 2: Add the 8-bit representations in binary notation and   

         truncate the 1 in the 28th position if there is one:

cont’d



Example 8 – Solution
Step 3: Find the decimal equivalent of the result. Since its 

         leading bit is 1, this number is the 8-bit  
         representation of a negative integer. 

 

!
 

        Note that since 39 − 89 = −50, this procedure gives  
        the correct answer.

cont’d



Computer Addition with Negative Integers

Case 3 (a is nonnegative and −b is negative and  
|b| ≤ |a|): In this case, observe that b = |b| ≤ |a| = a and 
!
!
Also 
!
!
!
    So the binary representation of                                      has 
a leading 1 in the ninth (28th) position. This leading 1 is often 
called “overflow” because it does not fit in the  
8-bit integer format.



Computer Addition with Negative Integers

Now subtracting 28 from 28 + (a − b) is equivalent to 
truncating the leading 1 in the 28th position of the binary 
representation of the number. But 
!
!
!
Hence in case |a| ≥ |b|, adding the 8-bit representations of a 
and −b and truncating the leading 1 (which is sure to be 
present) gives the 8-bit representation of a + (−b).



Example 9 – Computing a + (−b) Where 1 ≤ b < a ≤ 127

Use 8-bit representations to compute 39 + (−25). 
!
Solution: 
Step 1: Change from decimal to 8-bit representations using   

         the two’s complement to represent −25. 
!
             As in Example 8, the 8-bit representation of 39  

         is 00100111. Now the 8-bit representation of −25 is  
         the two’s complement of 25, which is obtained as  
         follows:



Example 9 – Solution
              So the 8-bit representation of −25 obtained as   

          11100111.  
!
Step 2: Add the 8-bit representations in binary notation and   

         truncate the 1 in the 28th position if there is one:

cont’d



Example 9 – Solution
Step 3: Find the decimal equivalent of the result: 
!
!
!
!
Since 39 − 25 = 14, this is the correct answer.

cont’d



Computer Addition with Negative Integers

Case 4 (both integers are negative): This case involves 
adding two negative integers in the range −1 through −128 
whose sum is also in this range. 
!
To be specific, consider the sum (−a) + (−b) where a, b, and 
a + b are all in the range 1 through 128. In this case, the 8-
bit representations of −a and −b are the 8-bit representations 
of 28 − a and 28 − b.  
!
So if the 8-bit representations of −a and −b are added, the 
result is



Computer Addition with Negative Integers

We know that truncating a leading 1 in the ninth (28th) 
position of a binary number is equivalent to subtracting 28. 
  
So when the leading 1 is truncated from the 8-bit 
representation of (28 − a) + (28 − b), the result is                 28 
− (a + b),  which is the 8-bit representation of                     −
(a + b) = (−a) + (−b).



Example 10 – Computing (−a) + (−b) Where 1 ≤ a, b ≤ 128, and 1 ≤ a + b ≤ 128

Use 8-bit representations to compute (−89) + (−25).  
!
Solution: 
Step 1: Change from decimal to 8-bit representations using  
         the two’s complements to represent −89 and −25. 
   
         The 8-bit representations of −89 and −25 were  
         shown in Examples 2.5.8 and 2.5.9 to be  
         10100111 and 11100111, respectively. 
  



Example 10 – Solution
Step 2: Add the 8-bit representations in binary notation and  

         truncate the 1 in the 28th position if there is one: 
 

cont’d



Example 10 – Solution
Step 3: Find the decimal equivalent of the result. Because  

         its leading bit is 1, this number is the 8-bit  
         representation of a negative integer. 

!
!
!
!
Since (−89) + (−25) = −114, that is the correct answer. 
 

cont’d



Hexadecimal Notation



Hexadecimal Notation
Hexadecimal notation is even more compact than decimal 
notation, and it is much easier to convert back and forth 
between hexadecimal and binary notation than it is between 
binary and decimal notation.  
!
The word hexadecimal comes from the Greek root hex-, 
meaning “six,” and the Latin root deci-, meaning “ten.” Hence 
hexadecimal refers to “sixteen,” and hexadecimal notation is 
also called base 16 notation.



Hexadecimal Notation
Hexadecimal notation is based on the fact that any integer 
can be uniquely expressed as a sum of numbers of the form 
!
!
where each n is a nonnegative integer and each d is one of 
the integers from 0 to 15. In order to avoid ambiguity, each 
hexadecimal digit must be represented by a single symbol. 
The integers 10 through 15 are represented by the symbols 
A, B, C, D, E, and F.



Hexadecimal Notation
The sixteen hexadecimal digits are shown in Table 2.5.3, 
together with their decimal equivalents and, for future 
reference, their 4-bit binary equivalents.

Table 2.5.3



Example 11 – Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation. 
!
Solution: 
Consider the following schema.   
!
!
!
!
!
!
So 3CF16 = 97510.



Hexadecimal Notation
Now consider how to convert from hexadecimal to binary 
notation. 
!
The following sequence of steps will give the required 
conversion from hexadecimal to binary notation.



Example 12 – Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation. 
!
Solution: 
    
!
!
              
!
 and    



Example 12 – Solution
Consequently,  
!
!
!
!
and the answer is 10110000100111112.  

cont’d



Hexadecimal Notation
To convert integers written in binary notation into 
hexadecimal notation, reverse the steps of the previous 
procedure.



Example 13 – Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation. 
!
Solution: 
First group the binary digits in sets of four, working from right 
to left and adding leading 0’s if necessary. 
!
                      0100   1101    1010     1001. 



Example 13 – Solution
Convert each group of four binary digits into a hexadecimal 
digit. 
!
!
!
!
Then juxtapose the hexadecimal digits. 
                                            4DA916

cont’d


