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Predicates and Quantified Statements I

In logic, predicates can be obtained by removing some or all of the nouns 
from a statement.  
!
  Alice is a student at Bedford College.  
!
P stand for “is a student at Bedford College”  
Q stand for “is a student at.”  
!
Both are predicate symbols. 
!
The sentences “x is a student at Bedford College” and “x is a student at y” 
are symbolized as P(x) and as Q(x, y) respectively, where x and y are 
predicate variables that take values in appropriate sets.  
!
When concrete values are substituted in place of predicate variables, a 
statement results.



Predicates and Quantified Statements I

For simplicity, we define a predicate to be a predicate 
symbol together with suitable predicate variables. In some 
other treatments of logic, such objects are referred to as 
propositional functions or open sentences.



Predicates and Quantified Statements I



Example 2 – Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.” Find the truth 
set of Q(n) if 
a. the domain of n is the set Z+ of all positive integers 
b. the domain of n is the set Z of all integers. 
!
Solution: 
a. The truth set is {1, 2, 4, 8} because these are exactly the 
positive integers that divide 8 evenly. 
!
b. The truth set is {1, 2, 4, 8,−1,−2,−4,−8} because the 
negative integers −1,−2,−4, and −8 also divide into 8 without 
leaving a remainder.



The Universal Quantifier: ∀



The Universal Quantifier: ∀

One sure way to change predicates into statements is to 
assign specific values to all their variables.  
!
For example, if x represents the number 35, the sentence “x 
is (evenly) divisible by 5” is a true statement since        35 = 
5 ● 7. Another way to obtain statements from predicates is 
to add quantifiers.  
!
Quantifiers are words that refer to quantities such as “some” 
or “all” and tell for how many elements a given predicate is 
true.



The Universal Quantifier: ∀

The symbol ∀ denotes “for all” and is called the universal 
quantifier. 
!
The domain of the predicate variable is generally indicated 
between the ∀ symbol and the variable name or 
immediately following the variable name. Some other 
expressions that can be used instead of for all are for every, 
for arbitrary, for any, for each, and given any.



The Universal Quantifier: ∀

Sentences that are quantified universally are defined as 
statements by giving them the truth values specified in the 
following definition:



Example 3 – Truth and Falsity of Universal Statements

a. Let D = {1, 2, 3, 4, 5}, and consider the statement 
!
    Show that this statement is true. 

!
b. Consider the statement 
!
    Find a counterexample to show that this statement is     

    false.



Example 3 – Solution
a. Check that “x2 ≥ x” is true for each individual x in D. 
!
!
Hence “∀x ∈ D, x2 ≥ x” is true. 
!
b. Counterexample: Take x =   . Then x is in R (since    is   a 

real number) and 
!
!
!
Hence “∀x ∈ R, x2 ≥ x” is false.



The Universal Quantifier: ∀

The technique used to show the truth of the universal 
statement in Example 3(a) is called the method of 
exhaustion.  
!
It consists of showing the truth of the predicate separately 
for each individual element of the domain. 
!
This method can, in theory, be used whenever the domain 
of the predicate variable is finite.



The Existential Quantifier: ∃



The Existential Quantifier: ∃

The symbol ∃ denotes “there exists” and is called the 
existential quantifier. For example, the sentence “There is 
a student in Math 140” can be written as 
!

∃ a person p such that p is a student in Math 140, 
!

or, more formally, 
!
        ∃p ∈ P such that p is a student in Math 140, 
!
where P is the set of all people. The domain of the predicate 
variable is generally indicated either between the ∃ symbol 
and the variable name or immediately following the variable 
name.



The Existential Quantifier: ∃

The words such that are inserted just before the predicate. 
Some other expressions that can be used in place of there 
exists are there is a, we can find a, there is at least one, for 
some, and for at least one.  
!
In a sentence such as “∃ integers m and n such that          m 
+ n = m ● n,” the ∃ symbol is understood to refer to both m 
and n.



The Existential Quantifier: ∃

Sentences that are quantified existentially are defined as 
statements by giving them the truth values specified in the 
following definition.



Example 4 – Truth and Falsity of Existential Statements

a. Consider the statement 
!

∃m ∈ Z+ such that m2 = m. 
!

    Show that this statement is true. 
!
b. Let E = {5, 6, 7, 8} and consider the statement 
!

∃m ∈ E such that m2 = m. 
!

    Show that this statement is false.



Example 4 – Solution
a. Observe that 12 = 1. Thus “m2 = m” is true for at least 
    one integer m. Hence “∃m ∈ Z such that m2 = m” is true. 
!
b. Note that m2 = m is not true for any integers m from 5 
through 8: 
!
!
   Thus “∃m ∈ E such that m2 = m” is false.



Formal Versus Informal Language



Formal Versus Informal Language
It is important to be able to translate from formal to informal 
language when trying to make sense of mathematical 
concepts that are new to you.  
!
It is equally important to be able to translate from informal to 
formal language when thinking out a complicated problem.



Example 5 – Translating from Formal to Informal Language

Rewrite the following formal statements in a variety of 
equivalent but more informal ways. Do not use the symbol ∀ 
or ∃.  
a. 
!
b. 
!
c. 
  



Example 5 – Solution
a. All real numbers have nonnegative squares. 
   Or: Every real number has a nonnegative square. 
   Or: Any real number has a nonnegative square. 
   Or: The square of each real number is nonnegative. 
!
b. All real numbers have squares that are not equal to −1. 
   Or: No real numbers have squares equal to −1.  

(The words none are or no . . . are are equivalent to the 
words all are not.)



Example 5 – Solution
c. There is a positive integer whose square is equal to itself.  
 Or: We can find at least one positive integer equal to its      

own square.  
 Or: Some positive integer equals its own square.     
 Or: Some positive integers equal their own squares.    

cont’d



Universal Conditional Statements



Universal Conditional Statements
A reasonable argument can be made that the most 
important form of statement in mathematics is the universal 
conditional statement: 
!

∀x, if P(x) then Q(x). 
!

Familiarity with statements of this form is essential if you are 
to learn to speak mathematics.



Example 8 – Writing Universal Conditional Statements Informally

Rewrite the following statement informally, without 
quantifiers or variables. 
!

∀x ∈ R, if x > 2 then x2 > 4. 
!
Solution: 
If a real number is greater than 2 then its square is greater 
than 4. 
!
Or: Whenever a real number is greater than 2, its square is 
      greater than 4.



Example 8 – Solution
Or: The square of any real number greater than 2 is greater  
      than 4. 
!
Or: The squares of all real numbers greater than 2 are  
      greater than 4.

cont’d



Equivalent Forms of Universal  
and Existential Statements



Equivalent Forms of Universal and Existential Statements

Observe that the two statements “∀ real numbers x, if x is 
an integer then x is rational” and “∀ integers x, x is rational” 
mean the same thing.  
!
Both have informal translations “All integers are rational.” In 
fact, a statement of the form 
!
!
can always be rewritten in the form 
!
!
by narrowing U to be the domain D consisting of all values 
of the variable x that make P(x) true.



Equivalent Forms of Universal and Existential Statements

Conversely, a statement of the form 
!
!
can be rewritten as



Example 10 – Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms “∀x,          if 
______ then ______” and “∀ ______x, _______”:             All 
squares are rectangles. 
!
Solution: 
  ∀x, if x is a square then x is a rectangle.                

  ∀ squares x, x is a rectangle.                 



Equivalent Forms of Universal and Existential Statements

Similarly, a statement of the form  
!
  “∃x such that p(x) and Q(x)”  
!
can be rewritten as  
!
  “∃x εD such that Q(x),”  
!
where D is the set of all x for which P(x) is true.



Example 11 – Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only 
positive integer factors are itself and 1. Consider the 
statement “There is an integer that is both prime and even.”  
!
Let Prime(n) be “n is prime” and Even(n) be “n is even.” Use 
the notation Prime(n) and Even(n) to rewrite this statement 
in the following two forms: 
!
a. ∃n such that ______ ∧ ______ . 
!
b. ∃ ______ n such that ______.



Example 11 – Solution
a. ∃n such that Prime(n) ∧ Even(n). 
!
b. Two answers: ∃ a prime number n such that Even(n). 

             ∃ an even number n such that Prime(n).          



Implicit Quantification



Implicit Quantification
Mathematical writing contains many examples of implicitly 
quantified statements. Some occur, through the presence of 
the word a or an. Others occur in cases where the general 
context of a sentence supplies part of its meaning. 
!
For example, in an algebra course in which the letter x is 
always used to indicate a real number, the predicate 

!
If x > 2 then x2 > 4 

!
is interpreted to mean the same as the statement 

!
∀ real numbers x, if x > 2 then x2 > 4.



Implicit Quantification
Mathematicians often use a double arrow to indicate implicit 
quantification symbolically. 
!
For instance, they might express the above statement as 
!

x > 2 ⇒ x2 > 4.



Example 12 – Using ⇒ and ⇔
Let 
   Q(n) be “n is a factor of 8,”                 
   R(n) be “n is a factor of 4,”                 
   S(n) be “n < 5 and n ≠ 3,”                 
!
and suppose the domain of n is Z+, the set of positive 

integers. Use the ⇒ and ⇔ symbols to indicate true 

relationships among Q(n), R(n), and S(n).



Example 12 – Solution
1. As noted in Example 2, the truth set of Q(n) is {1, 2, 4, 8}    
    when the domain of n is Z+. By similar reasoning the    
    truth set of R(n) is {1, 2, 4}.  
!
    Thus it is true that every element in the truth set of R(n)    
    is in the truth set of Q(n), or, equivalently,  
!
 ∀n in Z+, R(n) → Q(n).       
!
    So R(n) ⇒ Q(n), or, equivalently 
!
 n is a factor of 4 ⇒ n is a factor of 8.     



Example 12 – Solution
2. The truth set of S(n) is {1, 2, 4}, which is identical to the   
    truth set of R(n), or, equivalently,  
!
  ∀n in Z+, R(n) ↔ S(n).       
 
    So R(n) ⇔ S(n), or, equivalently,  
!
  n is a factor of 4 ⇔ n < 5 and n ≠ 3.  
!
    Moreover, since every element in the truth set of S(n) is    
    in the truth set of Q(n), or, equivalently,  
    ∀n in Z+, S(n) → Q(n), then S(n) ⇒ Q(n), or, equivalently, 
   

  n < 5 and n ≠ 3 ⇒ n is a factor of 8.

cont’d



Tarski’s World



Tarski’s World
Tarski’s World is a computer program developed by 
information scientists Jon Barwise and John Etchemendy to 
help teach the principles of logic.  
!
It is described in their book The Language of First-Order 
Logic, which is accompanied by a CD-Rom containing the 
program Tarski’s World, named after the great logician 
Alfred Tarski.



Example 13 – Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks 
of various sizes, shapes, and colors, which are located on a 
grid. Shown in Figure 3.1.1 is a picture of an arrangement of 
objects in a two-dimensional Tarski world.

Figure 3.1.1



Example 13 – Investigating Tarski’s World

The configuration can be described using logical operators 
and—for the two-dimensional version—notation such as 
Triangle(x), meaning “x is a triangle,” Blue(y), meaning “y is 
blue,” and RightOf(x, y), meaning “x is to the right of y (but 
possibly in a different row).” Individual objects can be given 
names such as a, b, or c.

cont’d



Example 13 – Investigating Tarski’s World

Determine the truth or falsity of each of the following 
statements. The domain for all variables is the set of objects 
in the Tarski world shown above. 
!
a. ∀t, Triangle(t) → Blue(t). 
b. ∀x, Blue(x) → Triangle(x). 
c. ∃y such that Square(y) ∧ RightOf(d, y). 
d. ∃z such that Square(z) ∧ Gray(z).

cont’d



Example 13 – Solution
a. This statement is true: All the triangles are blue. 

!
b. This statement is false. As a counterexample, note that e   

is blue and it is not a triangle. 
!
c. This statement is true because e and h are both square   

and d is to their right. 
!
d. This statement is false: All the squares are either blue or 

black.



48
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Negations of Quantified 
Statements



Negations of Quantified Statements
The general form of the negation of a universal statement 
follows immediately from the definitions of negation and of 
the truth values for universal and existential statements.



Negations of Quantified Statements
Thus 
!
The negation of a universal statement (“all are”) is 
logically equivalent to an existential statement (“some 
are not” or “there is at least one that is not”). 
!
Note that when we speak of logical equivalence for 
quantified statements, we mean that the statements 
always have identical truth values no matter what predicates 
are substituted for the predicate symbols and no matter 
what sets are used for the domains of the predicate 
variables.



Negations of Quantified Statements
The general form for the negation of an existential 
statement follows immediately from the definitions of 
negation and of the truth values for existential and universal 
statements.



Negations of Quantified Statements
Thus 
!
The negation of an existential statement (“some are”) is 
logically equivalent to a universal statement (“none 
are” or “all are not”).



Example 1 – Negating Quantified Statements

Write formal negations for the following statements: 
a. ∀ primes p, p is odd. 

b. ∃ a triangle T such that the sum of the angles of T 
     equals 200°. 
!
Solution: 
a. By applying the rule for the negation of a ∀ statement, 
    you can see that the answer is 

  ∃a prime p such that p is not odd.               



Example 1 – Solution
b. By applying the rule for the negation of a ∃ statement, 
    you can see that the answer is  
!

∀ triangles T, the sum of the angles of T does not equal 
200°.

cont’d



Negations of Universal 
Conditional Statements



Negations of Universal Conditional Statements

Negations of universal conditional statements are of special 
importance in mathematics.  
!
The form of such negations can be derived from facts that 
have already been established.  
!
By definition of the negation of a for all statement, 
!
!
But the negation of an if-then statement is logically 
equivalent to an and statement. More precisely,



Negations of Universal Conditional Statements

Substituting (3.2.2) into (3.2.1) gives 
!
!
Written less symbolically, this becomes



Example 4 – Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal 
negation for statement (b). 
!
a. ∀ people p, if p is blond then p has blue eyes. 

b. If a computer program has more than 100,000 lines, 
    then it contains a bug. 
!
Solution: 
a. ∃ a person p such that p is blond and p does not have 
     blue eyes.



Example 4 – Solution
b. There is at least one computer program that has more 
     than 100,000 lines and does not contain a bug.

cont’d



The Relation among ∀, ∃, ∧, and ∨



The Relation among ∀, ∃, ∧, and ∨

The negation of a for all statement is a there exists 
statement, and the negation of a there exists statement is a 
for all statement.  
!
These facts are analogous to De Morgan’s laws, which state 
that the negation of an and statement is an or statement 
and that the negation of an or statement is an and 
statement.  
!
This similarity is not accidental. In a sense, universal 
statements are generalizations of and statements, and 
existential statements are generalizations of or statements.



The Relation among ∀, ∃, ∧, and ∨

If Q(x) is a predicate and the domain D of x is the  
set {x1, x2, . . . , xn}, then the statements 
!
!
and 
!
are logically equivalent. 



The Relation among ∀, ∃, ∧, and ∨

Similarly, if Q(x) is a predicate and D = {x1, x2, . . . , xn}, then 
the statements 
!
!
and  
!
are logically equivalent.



Vacuous Truth of Universal 
Statements



Vacuous Truth of Universal Statements

The statement “All the balls in the bowl are blue” would be 
false (since one of the balls in the bowl is gray).



Vacuous Truth of Universal Statements

Consider the statement  
 All the balls in the bowl are blue.

Figure 3.2.1(b)



Vacuous Truth of Universal Statements

Is this statement true or false?  
           
 All the balls in the bowl are blue.  
!
The statement is false if, and only if, its negation is true. 
Its negation is:  
!
 There exists a ball in the bowl that is not blue. 
!
But the only way this negation can be true is for there actually 
to be a nonblue ball in the bowl.  
And there is not! Hence the negation is false, and so the 
statement is true “by default.”



Vacuous Truth of Universal Statements

In general, a statement of the form 
!
!
is called vacuously true or true by default if, and only if, 
P(x) is false for every x in D.



Variants of Universal Conditional 
Statements



Variants of Universal Conditional Statements

A conditional statement has a contrapositive, a converse, 
and an inverse.  
!
The definitions of these terms can be extended to universal 
conditional statements.



Example 5 – Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and 
inverse for the following statement: 

If a real number is greater than 2, then its square is greater 
than 4. 
!
Solution: 
The formal version of this statement is  

∀x ∈ R, if x > 2 then x2 > 4.



Example 5 – Solution
Contrapositive: ∀x ∈ R, if x2 ≤ 4 then x ≤ 2. 
Or: If the square of a real number is less  
than or equal to 4, then the number is less  
than or equal to 2. 
!
   Converse: ∀x ∈ R, if x2 > 4 then x > 2.      
Or: If the square of a real number is greater  
than 4, then the number is greater than 2. 
!
       Inverse: ∀x ∈ R, if x ≤ 2 then x2 ≤ 4.       
Or: If a real number is less than or equal to  
2, then the square of the number is less  
than or equal to 4.

cont’d



Variants of Universal Conditional Statements

Let P(x) and Q(x) be any predicates, let D be the domain of 
x, and consider 
!
!
and its contrapositive 
!
!
Any particular x in D that makes “if P(x) then Q(x)” true also 
makes “if ~Q(x) then ~P(x)” true (by the logical equivalence 
between p → q and ~q → ~p).



Variants of Universal Conditional Statements

It follows that the sentence “If P(x) then Q(x)” is true for all x 
in D if, and only if, the sentence “If ~Q(x) then ~P(x)” is true 
for all x in D. 
!



Variants of Universal Conditional Statements

In Example 3.2.5 we noted that the statement 
  
       ∀x ∈ R, if x > 2 then x2 > 4 
!
has the converse 
 ∀x ∈ R, if x2 > 4 then x > 2. 
!
Observe that the statement is true whereas its converse is 
false (since, for instance, (−3)2 = 9 > 4 but −3    2).



Variants of Universal Conditional Statements

This shows that a universal conditional statement may have 
a different truth value from its converse. 
!
This is written in symbols as follows:



Necessary and Sufficient 
Conditions, Only If



Necessary and Sufficient Conditions, Only If

The definitions of necessary, sufficient, and only if can also 
be extended to apply to universal conditional statements.



Example 6 – Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional 
statements. 
!
a. Squareness is a sufficient condition for rectangularity. 

b. Being at least 35 years old is a necessary condition for 
    being President of the United States. 
!
Solution: 
a. A formal version of the statement is 
!
  ∀x, if x is a square, then x is a rectangle.                



Example 6 – Solution
Or, in informal language: 

 If a figure is a square, then it is a rectangle.  
!
b. Using formal language, you could write the answer as 
  ∀ people x, if x is younger than 35, then x            
   cannot be President of the United States.            
!
Or, by the equivalence between a statement and its 
contrapositive: 
  ∀ people x, if x is President of the United States,            
   then x is at least 35 years old.           

cont’d
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Statements with Multiple Quantifiers

When a statement contains more than one quantifier, we 
imagine the actions suggested by the quantifiers as being 
performed in the order in which the quantifiers occur.  
!
∀x in set D, ∃y in set E such that x and y satisfy property P(x, y). 
!
To show this is true, you must be able to meet the following 
challenge: 
!
• Imagine that someone is allowed to choose any element 
whatsoever from D, and imagine that the person gives you that 
element. Call it x. 
!
• The challenge for you is to find an element y in E so that the 
person’s x and your y, taken together, satisfy property P(x, y).



Example 1 – Truth of a ∀∃ Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1. 
!
!
!
!
!
!
!
!
!

For all triangles x, there is a square 
y such that x and y have the same 
color.



Statements with Multiple Quantifiers

Now consider a statement containing both ∀ and ∃, where 
the ∃ comes before the ∀: 
!
∃ an x in D such that ∀y in E, x and y satisfy property     P(x, 
y). !
To show that a statement of this form is true:  
You must find one single element (call it x) in D with the 
following property: !
•After you have found your x, someone is allowed to choose 
any element whatsoever from E. The person challenges you 
by giving you that element. Call it y. !
•Your job is to show that your x together with the person’s y 
satisfy property P(x, y).



Interpreting Statements with Two Different Quantifiers

To establish the truth of a statement of the form 
!

∀x in D, ∃y in E such that P(x, y) 
!

your challenge is to allow someone else to pick whatever 
element x in D they wish and then you must find an element 
y in E that “works” for that particular x.



Statements with Multiple Quantifiers

If you want to establish the truth of a statement of the form 
!

∃x in D such that ∀y in E, P(x, y) 
!
your job is to find one particular x in D that will “work” no 
matter what y in E anyone might choose to challenge you 
with.



Example 3 – Interpreting Multiply-Quantified Statements

A college cafeteria line has four stations: salads, main 
courses, desserts, and beverages. 
!
The salad station offers a choice of green salad or fruit 
salad; the main course station offers spaghetti or fish; the 
dessert station offers pie or cake; and the beverage station 
offers milk, soda, or coffee. Three students, Uta, Tim, and 
Yuen, go through the line and make the following choices: 
!
Uta: green salad, spaghetti, pie, milk 
!
Tim: fruit salad, fish, pie, cake, milk, coffee 
!
Yuen: spaghetti, fish, pie, soda



Example 3 – Interpreting Multiply-Quantified Statements

These choices are illustrated in Figure 3.3.2.

Figure 3.3.2

cont’d



Example 3 – Interpreting Multiply-Quantified Statements

Write each of following statements informally and find its 
truth value. 
!
a. ∃ an item I such that ∀ students S, S chose I. 
!
b. ∃ a student S such that ∀ items I, S chose I. 
!
c. ∃ a student S such that ∀ stations Z, ∃ an item I in Z  
    such that S chose I. 
!
d. ∀ students S and ∀ stations Z, ∃ an item I in Z such that  
    S chose I.

cont’d



Example 3 – Solution
a. There is an item that was chosen by every student. This 

is true; every student chose pie. 
!
b. There is a student who chose every available item. This 

is false; no student chose all nine items. 
!
c. There is a student who chose at least one item from 

every station. This is true; both Uta and Tim chose at 
least one item from every station. 

!
d. Every student chose at least one item from every station. 

This is false; Yuen did not choose a salad.



Translating from Informal  
to Formal Language



Most problems are stated in informal language, but solving 
them often requires translating them into more formal terms.

Translating from Informal to Formal Language



Example 4 – Translating Multiply-Quantified Statements from Informal to 
Formal Language

The reciprocal of a real number a is a real number b such 
that ab = 1. The following two statements are true. 
Rewrite them formally using quantifiers and variables: 
!
a. Every nonzero real number has a reciprocal. 
!
b. There is a real number with no reciprocal. 
!
Solution: 
a. ∀ nonzero real numbers u, ∃ a real number v such that uv 
= 1. 
!
b. ∃ a real number c such that ∀ real numbers d, cd ≠ 1.

The number 0 has no 
reciprocal.



Ambiguous Language



Imagine you are visiting a factory that manufactures computer 
microchips. The factory guide tells you,  
 
	
 There is a person supervising every detail of the 	

production process.	

!
Note that this statement contains informal versions of both 
the existential quantifier there is and the universal quantifier 
every. 

Ambiguous Language



Which of the following best describes its meaning? 
!
•There is one single person who supervises all the details of 
the production process. 
!
•For any particular production detail, there is a person who 
supervises that detail, but there might be different 
supervisors for different details.

Ambiguous Language



Once you interpreted the sentence in one way, it may have 
been hard for you to see that it could be understood in the 
other way. 
!
Perhaps you had difficulty even though the two possible 
meanings were explained. 
!
Although statements written informally may be open to 
multiple interpretations, we cannot determine their truth or 
falsity without interpreting them one way or another.  
!
Therefore, we have to use context to try to ascertain their 
meaning as best we can.

Ambiguous Language



Negations of  
Multiply-Quantified Statements



You can use the same rules to negate multiply-quantified 
statements that you used to negate simpler quantified 
statements.  
!
We have known that 
!

∼(∀x in D, P(x)) ≡ ∃x in D such that ∼P(x). 
!
and 
!

∼(∃x in D such that P(x)) ≡ ∀x in D,∼P(x).

Negations of Multiply-Quantified Statements



We apply these laws to find 
!

∼(∀x in D, ∃y in E such that P(x, y)) 
!
!
!
First version of negation: ∃x in D such that ∼(∃y in E such 
           that P(x, y)). 
!
Final version of negation: ∃x in D such that ∀y in E, 
                                         ∼P(x, y).

Negations of Multiply-Quantified Statements



Similarly, to find 
!

∼(∃x in D such that ∀y in E, P(x, y)), 
!

we have 
!
First version of negation:  ∀x in D,∼(∀y in E, P(x, y)). 
!
Final version of negation: ∀x in D, ∃y in E such that  
            ∼P(x, y).

Negations of Multiply-Quantified Statements



These facts can be summarized as follows:

Negations of Multiply-Quantified Statements



Refer to the Tarski world of Figure 3.3.1. 
!
Write a negation for each of the  
following statements, and determine  
which is true, the given statement or  
its negation. 
!
a. For all squares x, there is a circle y  
such that x and y have the same  
color. 
!
b. There is a triangle x such that for all  
squares y, x is to the right of y.

Example 8 – Negating Statements in a Tarski World

Figure 3.3.1



First version of negation: ∃ a square x such that  
                                        ∼(∃ a circle y such that x and y  
                                        have the same color). 
!
Final version of negation: ∃ a square x such that  
∀ circles y, x and y do not have                                                                                                                
the same color. 
!
The negation is true. Square e is black and no circle is 
black, so there is a square that does not have the same 
color as any circle.

Example 8(a) – Solution



First version of negation: ∀ triangles x,∼ (∀ squares y, x is 
           to the right of y). 

!
Final version of negation: ∀ triangles x, ∃ a square y such 

            that x is not to the right of y. 
!
The negation is true because no matter what triangle is 

chosen, it is not to the right of square g (or square j ).

Example 8(b) – Solution cont’d



Order of Quantifiers



Consider the following two statements: 
!
∀ people x, ∃ a person y such that x loves y. 
!
∃ a person y such that ∀ people x, x loves y. 
!
Note that except for the order of the quantifiers, these 
statements are identical.  
!
However, the first means that given any person, it is 
possible to find someone whom that person loves, whereas 
the second means that there is one amazing individual who 
is loved by all people.

Order of Quantifiers



The two sentences illustrate an extremely important 
property about multiply-quantified statements: 
!
!
!
!
!
Interestingly, however, if one quantifier immediately follows 
another quantifier of the same type, then the order of the 
quantifiers does not affect the meaning.

Order of Quantifiers



Example 9 – Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the 
following two statements have the same truth value? 
!
a. For every square x there is a  
triangle y such that x and y  
have different colors. 
!
b. There exists a triangle y such  
that for every square x, x and y  
have different colors.

Figure 3.3.1



Statement (a) says that if someone gives you one of the 
squares from the Tarski world, you can find a triangle that 
has a different color. This is true. 
!
If someone gives you square g or h (which are gray), you 
can use triangle d (which is black); if someone gives you 
square e (which is black), you can use either triangle f or 
triangle i (which are both gray); and if someone gives you 
square j (which is blue), you can use triangle d (which is 
black) or triangle f or i (which are both gray).

Example 9 – Solution



Example 9 – Solution
Statement (b) says that there is one particular triangle in the 
Tarski world that has a different color from every one of the 
squares in the world. This is false.  
!
Two of the triangles are gray, but they cannot be used to 
show the truth of the statement because the Tarski world 
contains gray squares.  
!
The only other triangle is black, but it cannot be used either 
because there is a black square in the Tarski world. 
!
Thus one of the statements is true and the other is false, 
and so they have opposite truth values.

cont’d



Formal Logical Notation



In some areas of computer science, logical statements are 
expressed in purely symbolic notation. 
!
The notation involves using predicates to describe all 
properties of variables and omitting the words such that in 
existential statements.  
!
The formalism also depends on the following facts: 
!
“∀x in D, P(x)” can be written as “∀x(x in D → P(x)),” and 

“∃x in D such that P(x)” can be written as                        
“∃x(x in D ∧ P(x)).” 
!
We illustrate the use of these facts in Example 10.

Formal Logical Notation



Example 10 – Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

Figure 3.3.1



Example 10 – Formalizing Statements in a Tarski World

Let Triangle(x), Circle(x), and Square(x) mean “x is a 
triangle,” “x is a circle,” and “x is a square”; let Blue(x), 
Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is 
black”;  
!
let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean 
“x is to the right of y,” “x is above y,” and “x has the same 
color as y”; and use the notation x = y to denote the 
predicate “x is equal to y”.  
!
Let the common domain D of all variables be the set of all 
the objects in the Tarski world.

cont’d



Example 10 – Formalizing Statements in a Tarski World

Use formal, logical notation to write each of the following 
statements, and write a formal negation for each statement. 
!
a. For all circles x, x is above f. 
!
b. There is a square x such that x is black. 
!
c. For all circles x, there is a square y such that x and y 
have the same color. 
!
d. There is a square x such that for all triangles y, x is to 
right of y.

cont’d



Example 10(a) – Solution
Statement:  

            ∀x(Circle(x) →Above(x, f )). 
!
Negation:  

            ∼(∀x(Circle(x) → Above(x, f )) 
!
            ≡ ∃x ∼ (Circle(x) → Above(x, f )) 
!
            ≡ ∃x(Circle(x) ∧ ∼Above(x, f ))

by the law for negating a ∀ statement

by the law of negating an if-then statement



Example 10(b) – Solution
Statement:  

           ∃x(Square(x) ∧ Black(x)). 
!
Negation:  

            ∼(∃x(Square(x) ∧ Black(x)) 
!
              ≡ ∀x ∼ (Square(x) ∧ Black(x)) 
!
              ≡ ∀x(∼Square(x) ∨ ∼Black(x))

by the law for negating a ∃ statement

by De Morgan’s law

cont’d



Example 10(c) – Solution
Statement:  

    ∀x(Circle(x) → ∃y(Square(y) ∧ SameColor(x, y))). 
!
Negation:  

  ∼(∀x(Circle(x) → ∃y(Square(y) ∧ SameColor(x, y)))) 
!
  ≡ ∃x ∼ (Circle(x) → ∃y(Square(y) ∧ SameColor(x, y))) 
!
  ≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y)))) 
!
     ≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y)))) 
!
     ≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))

by the law for negating a ∀ statement

by the law for negating an if-then statement

cont’d

by the law for negating a ∃ statement

by De Morgan’s law



Example 10(d) – Solution
Statement: 

  ∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))). 
!
Negation: 

∼(∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y)))) 
!
    ≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x) → RightOf(x, y))) 
!
 ≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y) → RightOf(x, y)))) 
!
 ≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y) → RightOf(x, y)))) 
!
 ≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y) ∧ ∼RightOf(x, y)))

by the law for negating a ∃ statement

by De Morgan’s law

cont’d

by the law for negating a ∀ statement

by the law for negating an if-then statement



The disadvantage of the fully formal notation is that because 
it is complex and somewhat remote from intuitive 
understanding, when we use it, we may make errors that go 
unrecognized.  
!
The advantage, however, is that operations, such as taking 
negations, can be made completely mechanical and 
programmed on a computer. 
!
Also, when we become comfortable with formal 
manipulations, we can use them to check our intuition, and 
then we can use our intuition to check our formal 
manipulations.

Formal Logical Notation



Formal logical notation is used in branches of computer 
science such as artificial intelligence, program verification, 
and automata theory and formal languages. 
!
Taken together, the symbols for quantifiers, variables, 
predicates, and logical connectives make up what is known 
as the language of first-order logic. 
!
Even though this language is simpler in many respects than 
the language we use every day, learning it requires the 
same kind of practice needed to acquire any foreign 
language.

Formal Logical Notation



Prolog



The programming language Prolog (short for programming 
in logic) was developed in France in the 1970s by             A. 
Colmerauer and P. Roussel to help programmers working in 
the field of artificial intelligence.  
!
A simple Prolog program consists of a set of statements 
describing some situation together with questions about the 
situation. Built into the language are search and inference 
techniques needed to answer the questions by deriving the 
answers from the given statements.  
!
This frees the programmer from the necessity of having to 
write separate programs to answer each type of question. 
Example 11 gives a very simple example of a Prolog 
program.

Prolog



Example 11 – A Prolog Program
Consider the following picture, which shows colored blocks 
stacked on a table. 
!
!
!
!
!
!
The following are statements in Prolog that describe this 
picture and ask two questions about it. 
!
isabove(g, b1) color(g, gray)  color(b3, blue)



Example 11 – A Prolog Program
isabove(b1, w1) color(b1, blue) color(w1, white) 
!
isabove(w2, b2) color(b2, blue) color(w2, white) 
!
isabove(b2, b3) isabove(X, Z ) if isabove(X, Y ) and 
isabove(Y, Z) 
!
?color(b1, blue) ?isabove(X, w1) 
!
The statements “isabove(g, b1)” and “color(g, gray)” are to be 
interpreted as “g is above b1” and “g is colored gray”. The 
statement “isabove(X, Z ) if isabove(X, Y ) and isabove(Y, Z )” is 
to be interpreted as “For all X, Y, and Z, if X is above Y and Y 
is above Z, then X is above Z.”

cont’d



Example 11 – A Prolog Program
The program statement !

?color(b1, blue) 
!

is a question asking whether block b1 is colored blue. Prolog 
answers this by writing 
!

Yes. 
The statement 
!

?isabove(X, w1) 
!
is a question asking for which blocks X the predicate “X is 
above w1” is true.

cont’d



Example 11 – A Prolog Program
Prolog answers by giving a list of all such blocks. In this 
case, the answer is 
!

X = b1, X = g. 
!

Note that Prolog can find the solution X = b1 by merely 
searching the original set of given facts. However, Prolog 
must infer the solution X = g from the following statements: 
!

isabove(g, b1), 
!
isabove(b1,w1), 
!

  isabove(X, Z ) if isabove(X, Y ) and isabove(Y, Z ).

cont’d



Example 11 – A Prolog Program
Write the answers Prolog would give if the following 
questions were added to the program above. 
!
a. ?isabove(b2, w1)  b. ?color(w1, X )    c. ?color(X, blue) 
!
Solution: 
a. The question means “Is b2 above w1?”; so the answer is 
“No.” 
!
b. The question means “For what colors X is the predicate 
‘w1 is colored X ’ true?”; so the answer is “X = white.”

cont’d



Example 11 – Solution
c. The question means “For what blocks is the predicate ‘X 

is colored blue’ true?”; so the answer is “X = b1,” “X = b2,” 
and “X = b3.”

cont’d
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Arguments with Quantified Statements

The rule of universal instantiation (in-stan-she-AY-shun): 
!
!
!
    the fundamental tool of deductive reasoning.  
!
Mathematical formulas, definitions, and theorems are like 
general templates that are used over and over in a wide 
variety of particular situations.



Arguments with Quantified Statements

A given theorem says that such and such is true for all 
things of a certain type.  

!
If, in a given situation, you have a particular object of that 

type, then by universal instantiation, you conclude that 
such and such is true for that particular object.  

!
You may repeat this process 10, 20, or more times in a 

single proof or problem solution.



Universal Modus Ponens



Universal Modus Ponens
The rule of universal instantiation can be combined with 
modus ponens to obtain a valid form of argument called 
universal modus ponens.



Universal Modus Ponens
Note that the first, or major, premise of universal modus 
ponens could be written “All things that make P (x) true 
make Q (x) true,” in which case the conclusion would follow 
by universal instantiation alone.  
!
However, the if-then form is more natural to use in the 
majority of mathematical situations.



Example 1 – Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, 
and predicate symbols. Is this argument valid? Why? 
!
 If an integer is even, then its square is even.      
 k is a particular integer that is even.      
•    k2 is even. 
!
Solution: 
The major premise of this argument can be rewritten as 
    

    x, if x is an even integer then x2 is even.                



Example 1 – Solution
Let E (x) be “x is an even integer,” let S (x) be “x2 is even,” 
and let k stand for a particular integer that is even.  
!
Then the argument has the following form: 
!
       x, if E (x) then S (x).                
!
    E (k), for a particular k.                
!
                • S (k). 
!
This argument has the form of universal modus ponens and 
is therefore valid.

cont’d



Use of Universal Modus Ponens 
in a Proof



Use of Universal Modus Ponens in a Proof

Prove that the sum of any two even integers is even.  
!
It makes use of the definition of even integer, namely, that 
an integer is even if, and only if, it equals twice some 
integer. (Or, more formally:    integers x, x is even if, and 
only if, ∃ an integer k such that x = 2k.) 
!
Suppose m and n are particular but arbitrarily chosen even 
integers. Then m = 2r for some integer r,(1) and n = 2s for 
some integer s.(2)



Use of Universal Modus Ponens in a Proof

Hence 
!
!
!
Now r + s is an integer,(4) and so 2(r + s) is even.(5)  
 
Thus m + n is even.



Use of Universal Modus Ponens in a Proof

The following expansion of the proof shows how each of the 
numbered steps is justified by arguments that are valid by 
universal modus ponens. 
!
(1)  If an integer is even, then it equals twice some integer. 
      m is a particular even integer. 
      •  m equals twice some integer r. 
!
(2)  If an integer is even, then it equals twice some integer. 
      n is a particular even integer. 
      •  n equals twice some integer s.



Use of Universal Modus Ponens in a Proof

(3)  If a quantity is an integer, then it is a real number. 
      r and s are particular integers. 
      •  r and s are real numbers. 
 
      For all a, b, and c, if a, b, and c are real numbers, 
      then ab + ac = a (b + c). 
      2, r, and s are particular real numbers. 
      •  2r + 2s = 2(r + s). 
!
(4)  For all u and v, if u and v are integers, then u + v is 
      an integer. 
      r and s are two particular integers. 
      •  r + s is an integer.



Use of Universal Modus Ponens in a Proof

(5)  If a number equals twice some integer, then that number 
      is even. 
      2(r + s) equals twice the integer r + s. 
      •  2(r + s) is even.



Universal Modus Tollens



Universal Modus Tollens
Another crucially important rule of inference is universal 
modus tollens. Its validity results from combining universal 
instantiation with modus tollens.  
!
Universal modus tollens is the heart of proof of contradiction, 
which is one of the most important methods of mathematical 
argument.



Example 3 – Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, 
and predicate symbols. Write the major premise in 
conditional form. Is this argument valid? Why? 
!
  All human beings are mortal.                
  Zeus is not mortal.                
              • Zeus is not human. 
!
Solution: 
The major premise can be rewritten as 
  x, if x is human then x is mortal.               



Example 3 – Solution
Let H (x) be “x is human,” let M (x) be “x is mortal,” and let Z 
stand for Zeus.  
!
The argument becomes 
!
         
!
!
!
This argument has the form of universal modus tollens and 
is therefore valid.

cont’d



Proving Validity of Arguments with 
Quantified Statements



Proving Validity of Arguments with Quantified Statements

The intuitive definition of validity for arguments with 
quantified statements is the same as for arguments with 
compound statements.  
!
An argument is valid if, and only if, the truth of its conclusion 
follows necessarily from the truth of its premises. 



Using Diagrams to Test for 
Validity



Using Diagrams to Test for Validity
Consider the statement 
!
 All integers are rational numbers. 
!
Or, formally, 
!
     integers n, n is a rational number. 
!
Picture the set of all integers and the set of all rational 
numbers as disks. 



Using Diagrams to Test for Validity
The truth of the given statement is represented by placing 
the integers disk entirely inside the rationals disk, as shown 
in Figure 3.4.1. 
!
Because the two statements  
 
if x is in D then Q(x)” are  
logically equivalent, both  
can be represented by  
diagrams like the foregoing.

Figure 3.4.1



Using Diagrams to Test for Validity
To test the validity of an argument diagrammatically, 

represent the truth of both premises with diagrams.  
!
Then analyze the diagrams to see whether they necessarily 

represent the truth of the conclusion as well.



Example 6 – Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following 
argument: 
  All human beings are mortal.                
  Felix is mortal.                
              • Felix is a human being.



Example 6 – Solution
The major and minor premises are represented 
diagrammatically in Figure 3.4.4.

Figure 3.4.4

Major premise Minor premise



Example 6 – Solution
All that is known is that the Felix dot is located somewhere 
inside the mortals disk. Where it is located with respect to 
the human beings disk cannot be determined. Either one of 
the situations shown in Figure 3.4.5 might be the case.

cont’d

Figure 3.4.5



Example 6 – Solution
The conclusion “Felix is a human being” is true in the first 

case but not in the second (Felix might, for example, be a 
cat).  

!
Because the conclusion does not necessarily follow from 

the premises, the argument is invalid.

cont’d



Using Diagrams to Test for Validity
The argument of Example 6 would be valid if the major 

premise were replaced by its converse. But since a 
universal conditional statement is not logically equivalent 
to its converse, such a replacement cannot, in general, 
be made.  

!
We say that this argument exhibits the converse error.



Using Diagrams to Test for Validity
The following form of argument would be valid if a conditional 

statement were logically equivalent to its inverse. But it is 
not, and the argument form is invalid.  
 
We say that it exhibits the inverse error.



Example 7 – An Argument with “No”

Use diagrams to test the following argument for validity: 
!
 No polynomial functions have horizontal asymptotes.      
 This function has a horizontal asymptote.      
   • This function is not a polynomial function.



Example 7 – Solution
A good way to represent the major premise diagrammatically 

is shown in Figure 3.4.6, two disks—a disk for polynomial 
functions and a disk for functions with horizontal 
asymptotes—that do not overlap at all. 

Figure 3.4.6



Example 7 – Solution
The minor premise is represented by placing a dot labeled 
“this function” inside the disk for functions with horizontal 
asymptotes. 
!
The diagram shows that “this function” must lie outside the 
polynomial functions disk, and so the truth of the conclusion 
necessarily follows from the truth of the premises. 
!
Hence the argument is valid.

cont’d



Using Diagrams to Test for Validity
An alternative approach to this example is to transform the 
statement “No polynomial functions have horizontal 
asymptotes” into the equivalent form “    x, if x is a 
polynomial function, then x does not have a horizontal 
asymptote.”  
!
!
!
!
 



Using Diagrams to Test for Validity
If this is done, the argument can be seen to have the form 
!
!
!
!
where P (x) is “x is a polynomial function” and Q (x) is  
“x does not have a horizontal asymptote.” 
!
This is valid by universal modus tollens.



Creating Additional Forms of 
Argument



Creating Additional Forms of Argument

Universal modus ponens and modus tollens were obtained 
by combining universal instantiation with modus ponens 
and modus tollens.  

!
In the same way, additional forms of arguments involving 

universally quantified statements can be obtained by 
combining universal instantiation with other of the valid 
argument forms discussed earlier.



Creating Additional Forms of Argument

Consider the following argument: 
    
!
!
 
This argument form can be combined with universal 
instantiation to obtain the following valid argument form.



Example 8 – Evaluating an Argument for Tarski’s World

Consider the Tarski world shown in Figure 3.3.1.

Figure 3.3.1



Example 8 – Evaluating an Argument for Tarski’s World

Reorder and rewrite the premises to show that the 
conclusion follows as a valid consequence from the 
premises. 
1. All the triangles are blue. 

2. If an object is to the right of all the squares, then it is 
    above all the circles. 

3. If an object is not to the right of all the squares, then it is 
    not blue.  

•   All the triangles are above all the circles. 

cont’d



Example 8 – Solution
It is helpful to begin by rewriting the premises and the 
conclusion in if-then form: 
!
1.     x, if x is a triangle, then x is blue. 
!
2.     x, if x is to the right of all the squares, then x is above  
     all the circles. 
!
3.     x, if x is not to the right of all the squares, then x is not 
     blue.  

•      x, if x is a triangle, then x is above all the circles.



Example 8 – Solution
The goal is to reorder the premises so that the conclusion of 
each is the same as the hypothesis of the next.  
!
Also, the hypothesis of the argument’s conclusion should be 
the same as the hypothesis of the first premise, and the 
conclusion of the argument’s conclusion should be the 
same as the conclusion of the last premise.  
!
To achieve this goal, it may be necessary to rewrite some of 
the statements in contrapositive form.

cont’d



Example 8 – Solution
In this example you can see that the first premise should 

remain where it is, but the second and third premises 
should be interchanged.  

!
Then the hypothesis of the argument is the same as the 

hypothesis of the first premise, and the conclusion of the 
argument’s conclusion is the same as the conclusion of 
the third premise.  

!
But the hypotheses and conclusions of the premises do not 

quite line up. This is remedied by rewriting the third 
premise in contrapositive form.

cont’d



Example 8 – Solution
Thus the premises and conclusion of the argument can be 
rewritten as follows: 
!
1.    x, if x is a triangle, then x is blue. 
!
3.    x, if x is blue, then x is to the right of all the squares. 
!
2.    x, if x is to the right of all the squares, then x is above  
     all the circles. 
!
•      x, if x is a triangle, then x is above all the circles.

cont’d



Example 8 – Solution
The validity of this argument follows easily from the validity 
of universal transitivity. 
!
Putting 1 and 3 together and using universal transitivity 
gives that 
4.     x, if x is a triangle, then x is to the right of all the  
     squares. 
!
And putting 4 together with 2 and using universal transitivity 
gives that 
!
    x, if x is a triangle, then x is above all the circles,      
!
which is the conclusion of the argument.

cont’d



Remark on the Converse and 
Inverse Errors



Remark on the Converse and Inverse Errors

A variation of the converse error is a very useful reasoning 
tool, provided that it is used with caution.  

!
It is the type of reasoning that is used by doctors to make 

medical diagnoses and by auto mechanics to repair cars. 



Remark on the Converse and Inverse Errors

It is the type of reasoning used to generate explanations for 
phenomena. It goes like this: If a statement of the form 
!
  For all x, if P (x) then Q (x) 
is true, and if 
!
  Q (a) is true, for a particular a, 
!
then check out the statement P (a); it just might be true.



Remark on the Converse and Inverse Errors

For instance, suppose a doctor knows that  
!
           For all x, if x has pneumonia, then x has a fever and 
           chills, coughs deeply, and feels exceptionally tired 
           and miserable. 
!
And suppose the doctor also knows that 
!
 John has a fever and chills, coughs deeply, 
 and feels exceptionally tired and miserable. 
!
On the basis of these data, the doctor concludes that a 
diagnosis of pneumonia is a strong possibility, though not a 
certainty.



Remark on the Converse and Inverse Errors

The doctor will probably attempt to gain further support for 
this diagnosis through laboratory testing that is specifically 
designed to detect pneumonia.  
!
Note that the closer a set of symptoms comes to being a 
necessary and sufficient condition for an illness, the more 
nearly certain the doctor can be of his or her diagnosis. 
!
This form of reasoning has been named abduction by 
researchers working in artificial intelligence. It is used in 
certain computer programs, called expert systems, that 
attempt to duplicate the functioning of an expert in some 
field of knowledge.


