
Chapter 2  
  

Scheduling

Outline

• CPU Scheduling
• Importance of scheduling in diff. environment
• CPU bound process, I/O bound process
• Preemptive, non-preemptive scheduling

• Batch system scheduling algorithms
• FCFS, Shortest Job First, Shortest Remaining First

• Interactive system scheduling
• RR, Priority scheduling, Lottery Scheduling

• Realtime system scheduling
• Thread Scheduling

• User-level thread
• Kernel-level thread

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Process States

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-6. CPU utilization as a function of the number of
processes in memory.

Modeling Multiprogramming

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-4. Some of the fields of a typical process table entry.

Process Control Table

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Scheduling Queues
• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in

main memory, ready and waiting to execute
• Device queues – set of processes waiting for

an I/O device
• Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

• Ready queue –
processes residing
in main memory,
ready and waiting
to execute

• Device queues –
processes waiting
for an I/O device

• Processes migrate
among the various
queues

Representation of Process Scheduling

Schedulers
• When to schedule?

• when a process is created, or exits
• when a process blocks on I/O, semaphore, mutex…
• interrupts: hardware or software
• timer interrupt: nonpreemptive vs preemptive

scheduling
• Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue
• Short-term scheduler (or CPU scheduler) – selects

which process should be executed next and allocates CPU

Schedulers
• Short-term scheduler is invoked very frequently

(milliseconds) ⇒ (must be fast)
• Long-term scheduler is invoked very

infrequently (seconds, minutes) ⇒ (may be
slow)

• The long-term scheduler controls the degree of
multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O

than computations, many short CPU bursts
– CPU-bound process – spends more time doing

computations; few very long CPU bursts

Bursts of CPU usage alternate with periods of waiting for I/O. (a) A
CPU-bound process. (b) An I/O-bound process.

Process Behavior

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Batch system: business application, no end
users

• non-preemptive, preemptive
• Interactive system: with interactive users,

or server (with multiple remote interactive
users)

• preemption
• Real time system:

Categories of Scheduling Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling Algorithm Goals

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• First-come first-served
• Shortest job first
• Shortest remaining Time next

Scheduling in Batch Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• First-come first-served
• processes assigned CPU in order of request
• when running process blocks, schedule next one in

queue
• when blocking process becomes ready, enter end of

queue
• Pros: simple, easy to implement, fair (in some sense)
• Cons:

• short jobs arrive after a very long job
• one compute-bound process (1 sec at a time), many IO-

bound processes (perform 1000 disk reads) => take a
long time to finish I/O bound process

First Come First Served

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Assumption: run time for processes are known
in advance

• Scheduler: among equally important jobs in
ready queue, pick the one with the shortest run
time.

• Proof: Shortest Job First yields smallest average
turnaround time, if all jobs are available
simultaneously.

Shortest Job First

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-40. An example of shortest job first scheduling.  
(a) Running four jobs in the original order. (b) Running them in

shortest job first order.

Shortest Job First

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Jobs/Processes can arrive at different time
• Preemptive version of Shortest Job First

• When new job arrives, if its run time is smaller than
current process’s remaining time, schedule the new job

• Some kind of greedy algorithm: keep the ready queue
as short as possible

• Question: Does this scheme minimize average
turnaround time?

Shortest Remaining Time next

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Round-robin scheduling
• Priority scheduling
• Multiple queues
• Shortest process next
• Guaranteed scheduling
• Lottery scheduling
• Fair-share scheduling

Scheduling in Interactive Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• A process, when scheduled to run, is
assigned the CPU for a time interval, quantum

• If process blocks or finishes before quantum
expires, CPU switches to run other process

• If still running at end of quantum, preempt and
schedule other process to run

• Length of quantum
• too short => too much context switch overhead
• too long => system not responsive/interactive
• typical setting: 20-50 msec

Round-Robin Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-41. Round-robin scheduling.  
(a) The list of runnable processes. (b) The list of runnable

processes after B uses up its quantum.

Round-Robin Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Idea: assign each process a priority, ready
processes with highest priority is scheduled to
run

• Setting priority
• based upon the process’s user ID: position,

payment
• higher priority for interactive process, lower

priority for background process => to be
responsive

• dynamically assigned
• e.g., give higher priority to I/O bound process

Priority Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Priority Scheduling: data structure

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Run for one quantum

Run for 2 quanta

Run for 4 quanta

Run for 8 quanta

Example (CTSS)
• CPU bound process will sink to long priority queue

• If used up quantum, move down one class
• larger quantum => cut context switch overhead

• I/O bound process will stay at high priority queue

• Interactive process:
1. wait for command
2. execute command
3. go back to 1

• To minimize response time (step 2 above), schedule
process with shortest running time

• Estimate running time of a process’s step 2 using
history (weighted average, aging)
• Te’ = aTe + (1-a) Ti
• Te: current estimation
• Te’: new estimation
• Ti: current measured running time

Interactive Systems: shortest process next

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• A randomized scheme
• each process given lottery tickets for CPU resource
• Scheduler: choose a lottery ticket at random, the process

holds the ticket is the scheduled to run
• The more tickets a process holds, the higher

probability of scheduled to run
• Pros:

• proportional allocation of CPU
• allow transferring of tickets among cooperating

processes,

Interactive Systems:
Lottery Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Realtime system: must react to external
events within a fixed amount of time

• Periodic events vs aperiodic events
• e.g., in voIP system, incoming audio

packets are periodic events
• in intrusion detection system, detected

abnormal signal is an aperiodic event
• Hard real time

• absolute deadline
• Soft real time

• soft deadline: ok to miss occasionally,
e.g., multimedia system

Scheduling in Real-time Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Outline

• CPU Scheduling
• Importance of scheduling in diff. environment
• CPU bound process, I/O bound process
• Preemptive, non-preemptive scheduling

• Batch system scheduling algorithms
• FCFS, Shortest Job First, Shortest Remaining First

• Interactive system scheduling
• RR, Priority scheduling, Lottery Scheduling

• Realtime system scheduling
• Thread Scheduling

• User-level thread
• Kernel-level thread

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per

CPU burst.

Thread Scheduling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Thread Scheduling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-44. Lunch time in the Philosophy Department.

Dining Philosophers Problem (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-45. A nonsolution to the dining philosophers problem.

Dining Philosophers Problem (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

