Intro to Dynamic Programming
CIS, Fordham Univ.

Instructor: X. Zhang

Outline

* Introduction via example: Fibonacci, rod
cutting

« Characteristics of problems that can be solved
using dynamic programming
 Unlimited Knapsack problem
 Two dimensional problem spaces
 Longest common subsequence
« Matrix chain multiplication

¢ Summary

Dynamic Programming

Dynamic Programming is mainly an optimization over plain recursion.
Wherever we see a recursive solution that has repeated calls for same in-
puts, we can optimize it using Dynamic Programming. The idea is to simply
store the results of subproblems, so that we do not have to re-compute
them when needed later. This simple optimization reduces time complexi-
ties from exponential to polynomial. For example, if we write simple recur-

int fib(int n)

<= 1) Recursion : Exponential

return n;
return fib(n-1) + fib(n-2);

}

f[e] = o;
f[1] = 1;

or (1= 25 1 0 o) Dynamic Programming : Linear

f[i] = f[i-1] + f[i-2];

return f[n];

Dynamic Programming: ideas

 Optimal substructure: (Optimal) solution to a
problem of size n incorporates (optimal)
solutions to problems of smaller size (n-1, n-2).

 Recursive calling tree shows overlapping of
subproblems
* |.e., same subproblems are called multiple times
* |dea: avoid recomputing subproblems
e store subproblem solutions in memory/table
(hence “programming”)
« Two approaches:

Memoization: recursive with a table
« Tabulation: non-recursive with a table (tabulation)

Rod Cutting Problem

« A company buys long steel rods (of length n), cuts
them into shorter ones to sell

* integral length only
 Selling price for rods of different length:

lengthi |1 2 3 4 5 6 7 8 9 10
picep; |1 5 8 9 10 17 17 20 24 30

 Goal: find maximum (possible) total revenue from
selling these rods (and how to achieve it).

Rod Cutting Problem

e |nput: length of given rod, n; and p[i], selling price of rod of
length i, e.qg.,

lengthi |1 2 3 4 5 6 7 8 9 10
1 5 9 10 17 17 20 24 30

e QOutput: maximal profit over all possible ways to cut n to
shorter pieces and sell

e e.g., for n=4, we could cut it in five ways:
multiset: ¢ {4}: do not cut ==> profit: $9

allow

duplicate, * 13,1} ==> $8+$1=$9

order ¢ {2,2} ==> $10 <<== this is the maximal profit!
does not

{
{ _

matter e {2,1,1} ==> $7
{

Solution Space

* One way: first enumerate all possible ways to cut , then
evaluate each possible ways to pick one with highest total
selling price

e How to enumerate all possible ways to cut n?
e A combinatorial problem...

Optimize recursively

 Another way: optimize recursively, find optimal
solution to sub-problem directly, and use them to
solve original problem

e A recursive algorithm that return optimal solution

/*return maximum profit achievable with a rod of length n

by checking all possible ways of cutting n into rods of length i=
1, 2, ..., k and selling them for p[i] */

Int CutRod (n, p[1...k])
/*
Base case: smallest problem(s) that we can solve trivially

General case:
How to reduce problem to smaller problems? */

Optimize recursively

/*return maximum profit achievable with a rod of length n

by checking all possible ways of cutting n into rods of length i=
1, 2, ..., k and selling them for p[i] */

Int CutRod (n, p[1...k])
/*
How to reduce the problem to smaller problems, general case?

Hint: use decision tree.

*/

Optimal substructure
=> recursive solution

//return max. profit one can make with a rod of length n

CutRod (n, p[1...K])

{ //What's the smallest problem(s) that we can solve trivially?
if n==0 return O

if n== return p[1]
//general case What if we remove n=1
curMax=0 from base case?

forc1=1,2, 3, ..., min(n, k) {
/Ic1: consider the first rod to cut out and sell:

curProfit = p[c1] + CutRod (n-c1,p)
If (curProfit > curMax)
curMax = curProfit

}

return curMax

}

Optimal substructure

Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (n-1, n-2,...).

11

Recursive Tree for CutRod(n=4, p)

How many times CutRod (2) is called?
How about CutRod(1)?

12

Overlapping of Subproblems

Recursive calling tree shows
overlapping of subproblems

* I.e., n=4 and n=3 share
overlapping subproblems
(2,1,0)

|ldea: avoid recomputing

subproblems again and again

« store subproblem solutions in
memory/table (hence
“programming”)

13

DP with Memoization

Improve recursive solution by storing subproblem solution
In a table
when need solution of a subproblem, check if it has been
solved before,

« if not, calculate it and store result in table

« if yes, access result stored in table

Recursion=> Memoization

//return max. profit one can make with a rod of length n

CutRod (n, p[1...K])

{ //What's the smallest problem(s) that we can solve trivially?
if n==0 return 0
if n== return p[1]

//general case
curMax=0
forc1=1,2, 3, ..., min(n, k) {
/[c1: consider the first rod to cut out and sell:

What kind of table?
curProfit = p[c1] + CutRod (n-c1,p)

If (curProfit > curMax)
curMax = curProfit Where to update table entry?

Where to allocate the table?

}

return curMax

} 15

When to look up the table entry?

Memoization illustrated in code

/[return max. profit one can make with a rod of length n

CutRod (n, p[1...k])

1. create an array r[1...n], filled with -1 (indicate “not calculated yet”)
2. CutRodHelper (n, p, r)

CutRodHelper (n, p[1...k], r])
if r[n] >=0 return r[n] //if it has been calculated already
/I no need to recalculate, return the stored result

1.

2

3

4, if n==0 return O //base case

5. /lgeneral case

6 curMax=0

7 for c1=1,2, 3, ..., min (n, k)

8 curProfit = p[c1] + CutRodHelper (n-c1)
9. curMax = max(curProfit, curMax)

10.
11. r[n]= curMax //save result in r[] for future reference
12. return curMax

16

DP:Tabulation

 Tabulation

* |teratively solve smaller problems first, move the
way up to larger problems

* bottom-up method: as we solve smaller
problems first, and then larger and larger one
« => when solving a problem, all subproblems

solutions that are needed have already been
calculated

Bottom-up

//return max. profit one can make with a rod of length n
1. CutRodBottomUp (n, p[1...k])

2. create an array r[1...n] //store subproblem solutions

3. r[0]=0

4. fori=1ton // solve smaller problems first ...

S. // calculate ri , max revenue for rod length |

6. curMax=0

/. for c1=1, 2, 3, ..., min (i, k)

8. curProfit = p[c1]+ r[i-c1]

9. curMax = max(curProfit, curMax)

10. r[i]= curMax //save result in r[] for future reference
11.

12. return r[n]

18

Recap

We analyze rod cutting problem

Two characteristics of problems that can benefit

from dynamic programming:

« optimal substructure: a recursive formular
r,= max Aplcl+r,_.}

c;=1,2..min{n.k}

« overlapping subproblems

|7

19

Recap (2)

How dynamic programming works:
 Memoization: recursion with table

« Tabulation: iteratively solve all possible
subproblems, and work our way from small
problems to large problems

20

Tracing: CutRod(n=3,p)

/[return max. profit one can make with a rod of Een h.n

engthi |1 2 3 4 5 6 7 8 9 10
CutRodTopLevel (n, p[1...k]) picep; |1 5 8 9 10 17 17 20 24 30

1. create an array r[1...n], filled with -1 (indicate “not calculated yet”)
2. CutRodHelper (n, p, r)

CutRod (n, p[1...k], r]) Tracing with n=3
1. if r[n] >=0 return r[n] //if it has been calculgtaple r
2. /l no need to recalculate, return the stored 1

3. gurProfit
4. if n== curMax
5. r[0]=0

6. return O //base case

7. llgeneral case

8. curMax=0

9. for c1=1,2,3, ..., min(n, k)

10. curProfit = p[c1] + CutRod (n-c1, p, r)

11. curMax = max(curProfit, curMax)

13. r[n]= curMax //save result in r[] for future reference

14. return curMax 21

Tabulation: Tracing n=35

//return max. profit one can make with a rod of length n
CutRodBottomUp (n, p[1...K])
{
create an array r[1...n] //store subproblem solutions
r0]1=0
for i=1 to n // solve smaller problems first ...
// calculate ri , max revenue for rod length i
curMax=0
for c1=1, 2, 3, ..., min (i, k)
curProfit = p[c1]+ r[i-c1]
curMax = max(curProfit, curMax)
r[i]= curMax //save result in r[] for future reference

return r[n]

) lengthi |1 2 3 4 5 6 7 8 9
1 9

10

10 17 17 20 24

30

22

Cutting that achieves max profit?

//return max. profit one can make with a rod of length n
CutRodBottomUp (n, p[1...K])
{
create an array r[1...n] //store subproblem solutions
r0]1=0
for i=1 to n // solve smaller problems first ...
// calculate ri , max revenue for rod length i
curMax=0
for c1=1, 2, 3, ..., min (i, k)
curProfit = p[c1]+ r[i-c1]
curMax = max(curProfit, curMax)
r[i]= curMax //save result in r[] for future reference

return r[n]

) lengthi |1 2 3 4 5 6 7 8 9 10
1 9 10 17 17 20 24 30

23

Outline

Introduction via example: Fibonacci, rod
cutting

« Characteristics of problems that can be solved
using dynamic programming

« Knapsack: with repetition

Two dimensional problem spaces
 Longest common subsequence
* Matrix chain multiplication
Summary

24

Knapsack Problem

« Given:
* A backpack with weight capacity of W

« n different types of objects, i-th type of objects weighs w]i]
and has a value of V][]

« there are infinite quantities of each object type

 What to put into backpack so that total value is maximized
and total weights <=W

e.g., W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

2 ’
> « N ((d= 7,7)
Wt.=5 Wt.=3 Wt.=8 Wt.=4
Value = 10 Value = 20 Value = 25 Value = 8

25

Knapsack Problem

Input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}
Output: maximum value achievable, assuming there is infinity
amount of each object.

S w For what value of W you know the answer
ST directly?

For a larger W, how can you reduce it to
smaller problems?

26

Optimal substructure in Knapsack

* Input: weight capacity of a knapsack, W; n different objects (of infinite quantities)
with weights and values given by array w[], v[]

« Output: objects so that total value is maximized and total weights <=W

 Let Vkbe max total value possible when weight capacity is k
e Recursive formula for Vi

input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Output: maximum value achievable, assuming there is infinity amount of each object.

27

Knapsack: extension

Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) with weights
and values given by array w[], v[]

Output: objects so that total value is maximized and total weights <= W

Let Vi be max total value possible when weight capacity is k

What’s the set of objects (multi-set) that achieve V\?

« The first obj i chosen that achieves the max value above
e and then object i1 chosen for weight capacity k-w[i]

. and then object i; chosen for weight capacity k-w[i]-w[i1]
. ... until the weight capacity ==0 or < min(w)

Use a table obj[]

. obj[k] store the first object to chose when capacity is k (the one that maximize ...)

28

Optimal substructure

 Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, ... n-1).

* Rod cutting: find rn (max. revenue for rod of len n)

Sol to problem Sol to problem
instance of size n instance of size n-1, n-2, ... 1

rn = max (p[1]+rn-1, p[2]+r-2, p[3]+rn-3,-.., p[n-1]+r1, p[n])
«— ATECUITENCE relation (recursive tormula)

e => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems

* We solve a range of sub-problems as needed

29

Outline

Introduction via example: rod cutting
Characteristics of problems that can be solved
using dynamic programming

Two dimensional problem spaces

 0/1 Knapsack (i.e., without repetition)

* Minimum Edit Distance

« Matrix chain multiplication

Summary

30

Knapsack without repetition

Given
* a weight capacity of a knapsack, W

« n different objects (one of each): with weights and
values given by arrays w[|, v[|

 finding a subset of objects ...

Goal: choose a subset of objects so that total value is
maximized and total weights <=W

Plan:

« Recall you solved this problem in Lab4

* Pure recursive solution

* use memoization or tabulation to improve

31

/* Output max. value achievable
@param W: given weight capacity, >=0
@ param n: we can choose from first n obj

, Recursion Solution
@param w, v: weights and values

@return max value achievable from the first n obj under W Let,s fl" In the blank
*/
Knapsack_Norepeat (W, w, v, n)
{
if W==0orn== /Ibase case
[] /ffill in the blank

I* general case */
if (w[n-1] > W) // the last obj is too heavy ...

else {//The last obj can fit
//option 1: if we include n-1-th obj, what’s the max value achievable ...

/loption 2: if we don’t include (n-1)-th obj at all, what’s the max value achievable?
/' Which option is better?

32

DP/Memoization vs Pure Recursion

33

Memoization vs Tabulation

34

Outline

Introduction via example: rod cutting
Characteristics of problems that can be solved
using dynamic programming

More one dimensional examples

« Knapsack with repetition
Two dimensional problem spaces

« Knapsack without repetition
 Longest common subsequence

« Matrix chain multiplication (skipped)
Summary

35

Longest Common Subsequence

 Given a sequence, X=<X1, X2, ..., Xm>, Where each x;is a letter
from a certain alphabet, a subsequence of X is a sequence of
elements taken in order from X but not necessarily consecutive

e Example:

e X=<AB,C, B, D,A, B>

e <A, B, D>, <B, C, D, B>, <A>, <>, <A,B,C,B,D,A,B> are
subsequence of X

e <A, C, C>, <B, B, C> are not subsequence of X
« How many possible subsequences are there for X?

e Denote length of a sequence X by IXI, which is the number of
letters in sequence

e eg., X=<AB,(C, B, D, A B>, IXI=7

Longest Common Subseaq.

« Given two sequences
X=<X1,X2,...,Xm>, Y=<Y1,Y2,...yn>
 Find a longest common subsequence (in short, LCS)
of Xand, i.e., a sequence that

e is a subsequence of X, and is a subsequence of Y

« and is no shorter than any other common subsequences
of Xand Y

LCS examples

X = <A/B, C, B\D,,IA, B>) </BC/DWB)

Y =<B, D, C, A, B, A) D, C, A, B, A)

(B, C, B, A)and (B, D, A, B) are both longest common
subsequences of X and Y (length = 4)

LCS examples

2. X=<AA,C,AGTTAC,C>,
Y=<T,AA G G, TC,A>

What's the LCS of these two sequences?

39

Brute-Force Solution

1. /" Check every subsequence of X[71 .. m]to see if it is also a subsequence of Y[71 .. n]. %/
2.LCS (X,Y)

3.4

4. for each of 2m subsequence, s, of X

5. //check if s is a subsequence of Y, O(n) time

6. k =|s| //kis length of s

7. j =1 /lused to scan through Y

8.

9. for i=1 to k. //for each letter in s, finds a matching char in Y
10. while (Y[j]!'=s][i] and j<=n)

11. j+H+ /[scan Y for a letter matching sJi]
12. if ’>n // cannot match s]i]

13. break and s not a subsequence Y

14.

15. s is subsequence of Y, update longest

16.

17.}

Worst-case running time: O(n2m)

Sequence Prefix

« Given a sequence X = <X, Xy, ..., X,>,
 Def. i-th prefix of X, X, =<x4, X5, ..., X;>

* Practice: X=<A,B, C,B, D, A, B>,
e what’s X2, X4, Xo, X77?

41

Thinking about subproblems

How to calculate LCS?

X=ABCD
Y=EACFD

« Assuming subproblems have been solved, i.e., LCS of prefix of X and Y
have been found...

Thinking about subproblems

How to calculate LCS?

*Assuming subproblems have been solved, i.e.,
LCS of prefix of X and Y have been found...

Recursive Solution. Case 1

/* Return a longest subsequence of X, Y
@param X: is a sequence
@param Y. is a sequence

@return the longest common subsequence of X and Y*/
LCS (X, Y)

{
m = |X[, n=1Y]|

if X[m] ==Y[n]
/% X=(A, B, D,
Y =(Z,B,E) ¥

» Todo: find a LCS of X, ,and Y, ; (here, X3 =<A, B, D>, and Y2 = <Z,
B>)

» append X[m] to the end to get LCS of Xn, Yn

Recursive Solution. Case 2

if X[m] !=Y[n]
e.g., X=(A,B,D, G) This G and D cannot
be both in LCS
Y =(Z, B, D)
LCS(X, Y)=Longer { LCS(Xm-1,Y),

LCS (X, Y -1)} If we ignore last element in X

If we ignore last element in Y

e Must solve two subproblems

/* Return a longest subsequence of X, Y

@param X: is a string Recursion

@param Y: is a string
@return the longest common subsequence of X and Y*/ ~ Three Questions?
LCS (X,Y)
{
m=[X], n=[Y|
if (|X| == 0 or |Y|==0) return ““; //fempty string
/lgeneral case

/I can we match last letters of X and Y? X=(A,B, D, E)
if X[m] == Y[n] Y=(Z B, E)
return LCS(Xm-1,Yn-1)+X[m] //concatenated with last letter
else
// X[m] and Y[n] cannot be both in LCS
s1 = LCS(Xm-1,Yn) // X[m] is not in LCS X=(A, B, D, G)
s2 = LCS(Xm, Yn1) //Y[n-1]is not in LCS Y=(Z,B,D)

return longer one among s1 and s2

Here we need to calculate prefix (Xm-1, Yn-1), and pass them to recursive calls

/* Return the longest subsequence of X, Y

@param X : is a string
@param Y: is a string

@return the longest common subsequence of Xm and Yn*/

LCS (X, Y, m, n)
{

if (m== 0 or n==0) return “ “; //empty string

/lgeneral case

/l can we match last letters of X and Y?

if X[m] == Y[n]

return LCS(X,Y, m-1, n-1)+X[m] //concatenated with last letter

else

// X[m] and Y[n] cannot be both in LCS

Recursion

Three Questions?

X=(A, B, D, E)
Y =(Z, B, E)

s1=LCS(X,Y, m-1,n)
s2 =LCS(X,Y, m, n-1)
return longer of s1 and s2

X=(A, B, D, G)
Y =(Z, B, D)

}

I/l keep X, Y as they are, use parameters to specify prefix length

// subproblem’s size is given by m and n, at least one dimension is decreased

47

Optimal substructure &
Overlapping Subproblems

A recursive solution contains a “small” number of distinct
subproblems repeated many times.
e.g., LCS (5,5) depends on LCS(4,4), LCS(4,5), LCS(5,4)
Exercise: Draw subproblem dependence graph
each node is a subproblem
directed edge represents “calling”, “uses solution of” relation

Small number of distinct subproblems:

« total number of distinct LCS subproblems for two
strings of lengths m and nis mn.

48

Tabulation to avoid recalculation

« Given two sequences X = (Xq, Xp, «+ey Xn)» Y = (Y1, Yor «oes Yp)
» To ease tracing, we focus on finding length of LCS

c[i, j] = | LCS (X, Yj) |
// length of LCS of i-th prefix of X and j-th prefix of Y

rc[i-1, j-1] + 1 if X[i]= Y[j]
cli, J] =
{ max(cli, j-1], c[i-1,]]) otherwise (i.e., if X[i] # Y[j])

0, ifi=0 orj=0

\

49

Tabulation
0 1 2 3 4 5 6 7
Yy A B C 8 D A B
LCS (X, Y)

X=<B,D,C,A, B ,A> 0 X

Y=<A,B,C,B,D,A, B>

X|=8, [Y|=7 1 B
Cis 7x8 array 2 D CI2,3] C[i4]
C[3,4]= length of LCS (X3, Y4) C[3,3]
= Length of LCS (BDC,ABCB)| 3 C Cr3,4]
3rd row, 4th column element

4 A

Goal: calculate C[6,7]
(bottom right corner) o B

Initialization: base case 0 X
c[i,j] = 0if i=0, or j=0

/IFill table rowbyrow 1 B
Il from left to right

for (int i=1; i<=m;i++) 2 D Cl2,3] C[:,4]
for (int j=1;j<=n;j++)
Calculate cfi,j] 3 C CI3,3] o
return c[m
urn ¢[m, n] 4 A

Running time = ©(mn) o B

C[3,4]=length of LCS (X3,Y4) | 6 A
= Length of LCS (BDC, ABCB)

3rd row, 4-th column element

Dynamic-Programming Algorithm

":?econgtruct LCS A D @ B

by tracing
backward:

Where do we get value
of CJi,j] from?

Output Output Output Output
B C B A

Remark

Longest common subsequence algorithm is
similar to

 minimum edit distance problem (used by spell
checker to suggest a correction)

INTE«NTION

*EXECUTION

d s s is
e |f each operation has cost of 1
e Distance between these is 5

e |f substitutions cost 2 (Levenshtein)
e Distance between them is 8

Needleman-Wansh Alg. (used in bioinformatics
to align protein or nucleotide sequences)

53

Matrix

Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

e.g., a 2 x 3 matrix (there are two rows and three columns)

[1 9 —-13
20 5 —6 |
Each element of a matrix is denoted by a variable with two

subscripts, az1 element at second row and first column of a
matrix A.

an m x n matrix A: A — 1 G2 - Q2p

54

Matrix Multiplication

Matrix Multiplication: Dimension of A, B, and A x B?
Matrix A Matrix B Product
[1 nill 10] 146 [93 42 92]
2 7 5 3|°12 7 5 |*=
9 0 11 70 60 102
13 1 0]

€ mattwarehoume com

n
[ABJij = A1 Bij + AipBoj+ -+ AipBuj = Y Aiy By,
r=1

MATRIX-MULTIPLY (A4, B
() Total (scalar) multiplication: 4x2x3=24

1 if A.columns # B.rows

2 error “incompatible dimensions”

3 elselet C be anew A.rows X B.columns matrix

. fori = 1to A.rows

5 for j = 1to B.columns

6 Cij = 0

7 for k = 1to A.columns

8 cij = ¢ij +aip-by; Total (scalar) multiplication: n2xn1xns
9

return C
55

Multiplying a chain of Matrix
Multiplication

Given a sequence/chain of matrices, e.q., A, A, A, there are
different ways to calculate AAA,

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100
A2: 100 x 5
Az 5 x50

all yield the same result

But not same efficiency

56

Matrix Chain Multiplication

Given a chain <A4 Ay, ... A,> of matrices, where matrix A; has

dimension p;_.ix p;, find optimal fully parenthesize product A A....

A, that minimizes number of scalar multiplications.
Chain of matrices <A, A, A, A>: five distinct ways

Ai:p1XxXp2 A2 p2xps Aslp3Xps4 A4 paX ps

(A 1 (A2 (A3A4))) # of multiplication: pspaps+ p2psps+
(A1((A243)Ay))
((4142)(4344))

((A 1 (A2A3))A4) Find the one with minimal multiplications?
(((AIAZ)A3)A4)

57

Matrix Chain Multiplication

« Given a chain <A; Ay, ... A,> of matrices, where matrix A; has
dimension p;_.ix p;, find optimal fully parenthesize product
A1As...Anthat minimizes number of scalar multiplications.

« Let mli, j] be the minimal # of scalar multiplications needed to
calculate AiAi+1...A; (m[1...n]) is what we want to calculate)

« Recurrence relation: how does mi...j] relate to smaller
problem

« First decision: pick k (can be i, i+1, ...j-1) where to divide AiAi+1...A;
into two groups: (Ai...Ak)(Ak+1...Aj)

* (Ai...Ax) dimension is pi-1 X Pk, (Ak+1...A;j) dimension is px X p;

(o ifi=j,
mli, j1 = .nllcin.{m[i,k]—l—m[k-i—1,j]+pi—1pkpj} ifi <j.
i<k<j

58

Summary

Keys to DP
* Recursive algorithm => optimal Substructure
« overlapping subproblems

Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

Implementation:
* memoization (table+recursion)
* bottom-up table based (smaller problems first)

Insights and understanding comes from
practice!

59

K-Sum Problem

« Given a list of integers, and an integer K
* |s there a subset of these numbers that adds up to K?

* e.g., cannot use a number more than once
» Discussion: brute force approach?

 How many subsets are there?

 How to enumerate all subsets in program/code?

// return true if there is a subset of numbers taken from n[0...len-1]
// that adds up to K
bool AddUpToK (n[], int len, int K)

« K=100, len=9, n:

22 34 18 30 76 1 3 19 80

60

K-Sum Problem

« bool AddUpToK (n[], n_len, int K)

« K=100,n len=9, n: o 1 2 3 4 5 6 7 8
22 34 18 30 76 1 3 19 80

* Think recursively!

* (base case) for what inputs do you know the answer
right away?

K-Sum Problem

. bool AddUpToK (n[], len, int K)

° K:']OO, |en=9 n: 0.1 2 3 4 5 6 7 8
22 34 18 30 76 1 3 19 80

* Think recursively!

* (general case) for a general input, how to reduce it to
smaller problem(s)?

» Hint: try to make one single decision first?

K-Sum Problem

. bool AddUpToK (n[], len, int K)

« K=100, len=9 n: 0.1 2 3 4 5 6 7 8
22 34 18 30 76 1 3 19 80

* Think recursively!

* (general case) for a general input, how to reduce it to
smaller problem(s)?
« Decision: include last number, n[len-1], or not?

« ifincluded it, then we need to see if we can add up to K-n[len-1]
using the rest of the numbers

* if not, we need to see if we can add up to K using the rest of the
numbers.

« How to solve two smaller subproblems?
e |f either one returns true, return true

64

K-Sum Problem

bool AddUpToK (int n[], int len, int K)

{ //base cases
if K==0 return true
if K>0 and len==0 return false

o1 2 3 4 5 6 7 8

22 34 18 80 76 1 3 19 20

// general case: consider include last number, or not?

if (AddUpToK (n, len -1, K-n[len-1]))

return true; //we can make K by including last num...

else
if (AddUpToK (n, len-1, K))

return true; //we can make K without using n[len-1]

else
return false; //not possible

65

K-Sum Problem

bool AddUpToK (int n[], int len, int K)

{ //base cases
if K==0 return true

if K>0 and len==0 return false 0O 1 2 3 4 56 7 8
22 34 18 8076 1 3 19 20

// general case: consider include last number, or not?
if (AddUpToK (n, len-1, K-n[len-1]))
return true; //we can make K by including last num...
else
if (AddUpToK (n, len-1, K))
return true; //we can make K without using n[len-1]

else
return false; /Inot possible Draw recursion tree for AddUpToK (n,9,100)
} Qverlapping subproblems?

66

K-Sum Problem: tabulation

[*whether there is a subset of these numbers that add up to K, and output one such subset */
bool AddUpToK_Tabulation (int numbers][], int num_len, int K)
{ bool C[K+1][num_len+1];
Il C[k][n]: can we add up to k using numbers[1...n]
for n=0 to num_len C[0][n] = 0 // if K==0 return true
for k=1 to K C[K][0] = false O 1 2 3 4 5 6 7 8

/ffill in array row by row, left to right 22 34 18 80 76 1 3 19 20

fork=1to K
for n=1 to num_len
if C[k][n-1]==true C[k][n]=true //we can make k without last number

/lotherwise, can we include numbers[n] to make k?
else if k==numbers|n]
CIK][n] = true;
else if k>numbers[n] and C[k-numbers[n]][n-1]==true
C[K][n] = true;
else //k<numbers[n] or cannot make k-numbers[n] using numbers|[1...n-1]
Clk][n] = false
return C[K][num_len];

}
67

