
Intro to Dynamic Programming

CIS, Fordham Univ.

Instructor: X. Zhang

Outline

• Introduction via example: Fibonacci, rod
cutting
• Characteristics of problems that can be solved

using dynamic programming
• Unlimited Knapsack problem

• Two dimensional problem spaces
• Longest common subsequence
• Matrix chain multiplication

• Summary

 2

Dynamic Programming

 3

• Optimal substructure: (Optimal) solution to a

problem of size n incorporates (optimal)
solutions to problems of smaller size (n-1, n-2).

• Recursive calling tree shows overlapping of
subproblems

• i.e., same subproblems are called multiple times
• Idea: avoid recomputing subproblems

• store subproblem solutions in memory/table
(hence “programming”)

• Two approaches:
• Memoization: recursive with a table
• Tabulation: non-recursive with a table (tabulation)

Dynamic Programming: ideas

 4

• A company buys long steel rods (of length n), cuts
them into shorter ones to sell
• integral length only
• Selling price for rods of different length:

• Goal: find maximum (possible) total revenue from
selling these rods (and how to achieve it).

Rod Cutting Problem

 5

• Input: length of given rod, n; and p[i], selling price of rod of
length i, e.g.,

• Output: maximal profit over all possible ways to cut n to
shorter pieces and sell

• e.g., for n=4, we could cut it in five ways:
• {4}: do not cut ==> profit: $9
• {3,1} ==> $8+$1=$9
• {2,2} ==> $10 <<== this is the maximal profit!
• {2,1,1} ==> $7
• {1,1,1,1}==> $4

Rod Cutting Problem

 6

multiset:
allow
duplicate,
order
does not
matter

Solution Space
• One way: first enumerate all possible ways to cut , then

evaluate each possible ways to pick one with highest total
selling price

• How to enumerate all possible ways to cut n?
• A combinatorial problem…

 7

• Another way: optimize recursively, find optimal
solution to sub-problem directly, and use them to
solve original problem
• A recursive algorithm that return optimal solution

/*return maximum profit achievable with a rod of length n
by checking all possible ways of cutting n into rods of length i=
1, 2, …, k and selling them for p[i] */
Int CutRod (n, p[1…k])
/*
Base case: smallest problem(s) that we can solve trivially

General case:
 How to reduce problem to smaller problems? */

Optimize recursively

 8

/*return maximum profit achievable with a rod of length n
by checking all possible ways of cutting n into rods of length i=
1, 2, …, k and selling them for p[i] */
Int CutRod (n, p[1…k])
/*
How to reduce the problem to smaller problems, general case?
Hint: use decision tree.

*/

Optimize recursively

 9

//return max. profit one can make with a rod of length n
CutRod (n, p[1…k])
 { //What’s the smallest problem(s) that we can solve trivially?

 if n==0 return 0
 if n==1 return p[1]

 //general case
 curMax=0
 for c1=1, 2, 3, … , min (n, k) {
 //c1: consider the first rod to cut out and sell:

 curProfit = p[c1] + CutRod (n-c1,p)
 If (curProfit > curMax)
 curMax = curProfit
}

return curMax
}

Optimal Substructure
=> recursive solution

 10

What if we remove n=1
from base case?

• Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (n-1, n-2,…).

Optimal substructure

 11

Recursive Tree for CutRod(n=4, p)

 12

How many times CutRod (2) is called?
How about CutRod(1)?

Overlapping of Subproblems

 13

• Recursive calling tree shows
overlapping of subproblems
• i.e., n=4 and n=3 share

overlapping subproblems
(2,1,0)

• Idea: avoid recomputing
subproblems again and again
• store subproblem solutions in

memory/table (hence
“programming”)

DP with Memoization
• Improve recursive solution by storing subproblem solution

in a table
• when need solution of a subproblem, check if it has been

solved before,
• if not, calculate it and store result in table
• if yes, access result stored in table

//return max. profit one can make with a rod of length n
CutRod (n, p[1…k])
 { //What’s the smallest problem(s) that we can solve trivially?

 if n==0 return 0
 if n==1 return p[1]

 //general case
 curMax=0
 for c1=1, 2, 3, … , min (n, k) {
 //c1: consider the first rod to cut out and sell:

 curProfit = p[c1] + CutRod (n-c1,p)
 If (curProfit > curMax)
 curMax = curProfit
}

return curMax
}

Recursion=> Memoization

 15

What kind of table?

Where to allocate the table?

Where to update table entry?

When to look up the table entry?

//return max. profit one can make with a rod of length n
CutRod (n, p[1…k])
1. create an array r[1…n], filled with -1 (indicate “not calculated yet”)
2. CutRodHelper (n, p, r)

CutRodHelper (n, p[1…k], r[])
1. if r[n] >=0 return r[n] //if it has been calculated already
2. // no need to recalculate, return the stored result
3.
4. if n==0 return 0 //base case
5. //general case
6. curMax=0
7. for c1=1, 2, 3, … , min (n, k)
8. curProfit = p[c1] + CutRodHelper (n-c1)
9. curMax = max(curProfit, curMax)
10.
11. r[n]= curMax //save result in r[] for future reference
12. return curMax

Memoization illustrated in code

 16

DP:Tabulation

• Tabulation
• Iteratively solve smaller problems first, move the

way up to larger problems
• bottom-up method: as we solve smaller

problems first, and then larger and larger one
• => when solving a problem, all subproblems

solutions that are needed have already been
calculated

//return max. profit one can make with a rod of length n
1. CutRodBottomUp (n, p[1…k])
2. create an array r[1…n] //store subproblem solutions
3. r[0] = 0
4. for i=1 to n // solve smaller problems first …
5. // calculate ri , max revenue for rod length i
6. curMax=0
7. for c1=1, 2, 3, … , min (i, k)
8. curProfit = p[c1]+ r[i-c1]
9. curMax = max(curProfit, curMax)
10. r[i]= curMax //save result in r[] for future reference
11.
12. return r[n]

Bottom-up

 18

Recap

• We analyze rod cutting problem
• Two characteristics of problems that can benefit

from dynamic programming:
• optimal substructure: a recursive formular

• overlapping subproblems

 19

rn = max
c1=1,2...min{n,k}

{p[c1] + rn−c1
}

Recap (2)

• How dynamic programming works:
• Memoization: recursion with table
• Tabulation: iteratively solve all possible

subproblems, and work our way from small
problems to large problems

 20

//return max. profit one can make with a rod of length n
CutRodTopLevel (n, p[1…k])
1. create an array r[1…n], filled with -1 (indicate “not calculated yet”)
2. CutRodHelper (n, p, r)

CutRod (n, p[1…k], r[])
1. if r[n] >=0 return r[n] //if it has been calculated already
2. // no need to recalculate, return the stored result
3.
4. if n==0
5. r[0] = 0
6. return 0 //base case
7. //general case
8. curMax=0
9. for c1=1, 2, 3, … , min (n, k)
10. curProfit = p[c1] + CutRod (n-c1, p, r)
11. curMax = max(curProfit, curMax)
12.
13. r[n]= curMax //save result in r[] for future reference
14. return curMax

Tracing: CutRod(n=3,p)

 21

Tracing with n=3

table r :

c1
curProfit
curMax

//return max. profit one can make with a rod of length n
CutRodBottomUp (n, p[1…k])
{
 create an array r[1…n] //store subproblem solutions
 r[0] = 0
 for i=1 to n // solve smaller problems first …
 // calculate ri , max revenue for rod length i
 curMax=0
 for c1=1, 2, 3, … , min (i, k)
 curProfit = p[c1]+ r[i-c1]
 curMax = max(curProfit, curMax)
 r[i]= curMax //save result in r[] for future reference

 return r[n]
}

Tabulation: Tracing n=5

 22

//return max. profit one can make with a rod of length n
CutRodBottomUp (n, p[1…k])
{
 create an array r[1…n] //store subproblem solutions
 r[0] = 0
 for i=1 to n // solve smaller problems first …
 // calculate ri , max revenue for rod length i
 curMax=0
 for c1=1, 2, 3, … , min (i, k)
 curProfit = p[c1]+ r[i-c1]
 curMax = max(curProfit, curMax)
 r[i]= curMax //save result in r[] for future reference

 return r[n]
}

Cutting that achieves max profit?

 23

Outline

• Introduction via example: Fibonacci, rod
cutting
• Characteristics of problems that can be solved

using dynamic programming
• Knapsack: with repetition

• Two dimensional problem spaces
• Longest common subsequence
• Matrix chain multiplication

• Summary

 24

• Given:
• A backpack with weight capacity of W
• n different types of objects, i-th type of objects weighs w[i]

and has a value of v[i]
• there are infinite quantities of each object type

• What to put into backpack so that total value is maximized
and total weights <= W

e.g., W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Knapsack Problem

 25

Input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}
Output: maximum value achievable, assuming there is infinity
amount of each object.

Knapsack Problem

 26

For what value of W you know the answer
directly?

For a larger W, how can you reduce it to
smaller problems?

• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities)
with weights and values given by array w[], v[]

• Output: objects so that total value is maximized and total weights <= W

• Let Vk be max total value possible when weight capacity is k
• Recursive formula for Vk

input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}
Output: maximum value achievable, assuming there is infinity amount of each object.

Optimal substructure in Knapsack

 27

• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) with weights
and values given by array w[], v[]

• Output: objects so that total value is maximized and total weights <= W

• Let Vk be max total value possible when weight capacity is k

• What’s the set of objects (multi-set) that achieve Vk?

• The first obj i chosen that achieves the max value above

• and then object i1 chosen for weight capacity k-w[i]

• and then object i2 chosen for weight capacity k-w[i]-w[i1]

• … until the weight capacity ==0 or < min(w)

• Use a table obj[]

• obj[k] store the first object to chose when capacity is k (the one that maximize …)

Knapsack: extension

 28

Optimal substructure
• Optimal substructure: Optimal solution to a

problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, … n-1).

• Rod cutting: find rn (max. revenue for rod of len n)

 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n])
• A recurrence relation (recursive formula)

• => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems
• We solve a range of sub-problems as needed

 29

Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1

Outline

• Introduction via example: rod cutting
• Characteristics of problems that can be solved

using dynamic programming
• Two dimensional problem spaces

• 0/1 Knapsack (i.e., without repetition)
• Minimum Edit Distance
• Matrix chain multiplication

• Summary

 30

• Given
• a weight capacity of a knapsack, W
• n different objects (one of each): with weights and

values given by arrays w[], v[]
• finding a subset of objects …

• Goal: choose a subset of objects so that total value is
maximized and total weights <= W

• Plan:
• Recall you solved this problem in Lab4
• Pure recursive solution
• use memoization or tabulation to improve

Knapsack without repetition

 31

/* Output max. value achievable
@param W: given weight capacity, >=0
@ param n: we can choose from first n obj
@param w, v: weights and values
@return max value achievable from the first n obj under W
*/
Knapsack_Norepeat (W, w, v, n)
{
 if W==0 or n == 0 //base case
 [] //fill in the blank

 /* general case */
 if (w[n-1] > W) // the last obj is too heavy …

 else { //The last obj can fit
 //option 1: if we include n-1-th obj, what’s the max value achievable …

 //option 2: if we don’t include (n-1)-th obj at all, what’s the max value achievable?
 // Which option is better?
}

 32

Recursion Solution
Let’s fill in the blank

DP/Memoization vs Pure Recursion

 33

Memoization Pure Recursion

How does it work?

Solve
subproblems only

if needed

Recursion
overhead?

When to choose
it?

Memoization vs Tabulation

 34

Memoization Tabulation

How does it work?

Solve
subproblems only if

needed

Recursion
overhead?

When to choose it?

Outline
• Introduction via example: rod cutting
• Characteristics of problems that can be solved

using dynamic programming
• More one dimensional examples

• Knapsack with repetition
• Two dimensional problem spaces

• Knapsack without repetition
• Longest common subsequence
• Matrix chain multiplication (skipped)

• Summary

 35

Longest Common Subsequence
• Given a sequence, X=<x1, x2, …, xm>, where each xi is a letter

from a certain alphabet, a subsequence of X is a sequence of
elements taken in order from X but not necessarily consecutive

• Example:
• X = <A, B, C, B, D, A, B>
• <A, B, D>, <B, C, D, B>, <A>, <>, <A,B,C,B,D,A,B> are

subsequence of X
• <A, C, C>, <B, B, C> are not subsequence of X

• How many possible subsequences are there for X?

• Denote length of a sequence X by |X|, which is the number of
letters in sequence

• e.g., X = <A, B, C, B, D, A, B>, |X|=7

Longest Common Subseq.

• Given two sequences
X=<x1,x2,…,xm>, Y=<y1,y2,…yn>

• Find a longest common subsequence (in short, LCS)
of X and Y, i.e., a sequence that
• is a subsequence of X, and is a subsequence of Y
• and is no shorter than any other common subsequences

of X and Y

LCS examples

X = <A, B, C, B, D, A, B> X = 〈A, B, C, B, D, A, B〉

Y = <B, D, C, A, B, A〉 Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are both longest common
subsequences of X and Y (length = 4)

 38

LCS examples

2. X = <A, A, C, A, G, T, T, A, C, C>,

 Y = <T, A, A, G, G, T, C, A>

 What’s the LCS of these two sequences?

 39

Brute-Force Solution
1. /* Check every subsequence of X[1 . . m] to see if it is also a subsequence of Y[1 .. n]. */
2. LCS (X, Y)
3. {
4. for each of 2m subsequence, s, of X
5. //check if s is a subsequence of Y, O(n) time
6. k = |s| //k is length of s
7. j = 1 //used to scan through Y
8.
9. for i=1 to k. //for each letter in s, finds a matching char in Y
10. while (Y[j]!=s[i] and j<=n)
11. j++ // scan Y for a letter matching s[i]
12. if j>n // cannot match s[i]
13. break and s not a subsequence Y
14.
15. s is subsequence of Y, update longest
16.
17.}

Worst-case running time: O(n2m)
 40

Sequence Prefix
• Given a sequence X = <x1, x2, …, xm>,
• Def: i-th prefix of X, Xi = <x1, x2, …, xi>

• Practice: X = <A, B, C, B, D, A, B>,
• what’s X2, X4, X0, X7?

 41

Thinking about subproblems
How to calculate LCS?

X= A B C D
Y= E A C F D

• Assuming subproblems have been solved, i.e., LCS of prefix of X and Y
have been found…

 42

Thinking about subproblems
How to calculate LCS?

X= A B C A D
Y= E A C D E

•Assuming subproblems have been solved, i.e.,
LCS of prefix of X and Y have been found…

 43

Recursive Solution. Case 1
/* Return a longest subsequence of X, Y
@param X: is a sequence
@param Y: is a sequence
@return the longest common subsequence of X and Y*/
LCS (X, Y)
{
 m = |X|, n = |Y|
 if X[m] ==Y[n]

 /* X = 〈A, B, D, E〉

 Y = 〈Z, B, E〉. */

• Todo: find a LCS of Xm-1 and Yn-1, (here, X3 =<A, B, D>, and Y2 = <Z,

B>)
• append X[m] to the end to get LCS of Xm, Yn 44

Recursive Solution. Case 2
if X[m] != Y[n]

 e.g., X = 〈A, B, D, G〉

 Y = 〈Z, B, D〉

• Must solve two subproblems

 LCS(X, Y) = Longer { LCS(Xm - 1, Y),
LCS (X, Yn-1)}

 45

This G and D cannot
be both in LCS

If we ignore last element in X

If we ignore last element in Y

/* Return a longest subsequence of X, Y
@param X: is a string
@param Y: is a string
@return the longest common subsequence of X and Y*/
LCS (X, Y)
{
 m=|X|, n=|Y|
 if (|X| == 0 or |Y|==0) return “ “; //empty string
 //general case
 // can we match last letters of X and Y?
 if X[m] == Y[n]
 return LCS(Xm-1,Yn-1)+X[m] //concatenated with last letter
 else
 // X[m] and Y[n] cannot be both in LCS
 s1 = LCS(Xm-1,Yn) // X[m] is not in LCS
 s2 = LCS(Xm, Yn-1) //Y[n-1] is not in LCS
 return longer one among s1 and s2
}

 46

X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions?

Here we need to calculate prefix (Xm-1, Yn-1), and pass them to recursive calls

/* Return the longest subsequence of X, Y
@param X : is a string
@param Y: is a string
@return the longest common subsequence of Xm and Yn*/
LCS (X, Y, m, n)
{
 if (m== 0 or n==0) return “ “; //empty string
 //general case
 // can we match last letters of X and Y?
 if X[m] == Y[n]
 return LCS(X,Y, m-1, n-1)+X[m] //concatenated with last letter
 else
 // X[m] and Y[n] cannot be both in LCS
 s1 = LCS(X, Y, m-1, n)
 s2 = LCS(X, Y, m, n-1)
 return longer of s1 and s2
}

// keep X, Y as they are, use parameters to specify prefix length
// subproblem’s size is given by m and n, at least one dimension is decreased

 47

X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions?

Optimal substructure &
Overlapping Subproblems

• A recursive solution contains a “small” number of distinct
subproblems repeated many times.
• e.g., LCS (5,5) depends on LCS(4,4), LCS(4,5), LCS(5,4)
• Exercise: Draw subproblem dependence graph

• each node is a subproblem
• directed edge represents “calling”, “uses solution of” relation

• Small number of distinct subproblems:
• total number of distinct LCS subproblems for two

strings of lengths m and n is mn.

 48

Tabulation to avoid recalculation
• Given two sequences X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉

• To ease tracing, we focus on finding length of LCS

c[i, j] = | LCS (Xi, Yj) |
// length of LCS of i-th prefix of X and j-th prefix of Y

 49

 c[i-1, j-1] + 1 if X[i]= Y[j]
c[i, j] =

 max(c[i, j-1], c[i-1, j]) otherwise (i.e., if X[i] ≠ Y[j])

 0, if i=0 or j=0

Tabulation

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y A B C B D A B
X

B

D

C

A

B

A

LCS (X, Y)
 X=<B, D, C, A, B, A>
 Y=<A, B, C, B, D, A, B>
 |X|=6, |Y|=7

 c is 7x8 array

 Goal: calculate C[6,7]
(bottom right corner)

 50

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

C[3,4]= length of LCS (X3, Y4)
= Length of LCS (BDC, ABCB)

3rd row, 4th column element

Bottom-Up

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y A B C B D A B
X

B

D

C

A

B

A

Initialization: base case
c[i,j] = 0 if i=0, or j=0

//Fill table row by row
// from left to right
for (int i=1; i<=m;i++)
 for (int j=1;j<=n;j++)
 Calculate c[i,j]

return c[m, n]

Running time = Θ(mn)

 51

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6C[3,4]= length of LCS (X3, Y4)
= Length of LCS (BDC, ABCB)

3rd row, 4-th column element

Dynamic-Programming Algorithm
A B C B D A B

B

D

C
A

B

A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS
by tracing
backward:

Where do we get value
of C[i,j] from?

 52Output
A

Output
B

Output
C

Output
B

Remark

• Longest common subsequence algorithm is
similar to
• minimum edit distance problem (used by spell

checker to suggest a correction)

• Needleman-Wansh Alg. (used in bioinformatics
to align protein or nucleotide sequences) 53

Matrix
Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

 e.g., a 2 × 3 matrix (there are two rows and three columns)

Each element of a matrix is denoted by a variable with two
subscripts, a2,1 element at second row and first column of a
matrix A.

 an m × n matrix A:

 54

Matrix Multiplication:

Matrix Multiplication

 55

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24

Total (scalar) multiplication: n2xn1xn3

Multiplying a chain of Matrix
Multiplication

Given a sequence/chain of matrices, e.g., A1, A2, A3, there are
different ways to calculate A1A2A3

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100

 A2: 100 x 5

 A3: 5 x 50

all yield the same result

But not same efficiency

 56

Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices, where matrix Ai has
dimension pi-1x pi, find optimal fully parenthesize product A1A2…
An that minimizes number of scalar multiplications.

Chain of matrices <A1, A2, A3, A4>: five distinct ways

 A1: p1 x p2 A2: p2 x p3 A3: p3 x p4 A4: p4 x p5

 57

of multiplication: p3p4p5+ p2p3p5+
p1p2p5

Find the one with minimal multiplications?

Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices, where matrix Ai has

dimension pi-1x pi, find optimal fully parenthesize product
A1A2…An that minimizes number of scalar multiplications.

• Let m[i, j] be the minimal # of scalar multiplications needed to
calculate AiAi+1…Aj (m[1…n]) is what we want to calculate)

• Recurrence relation: how does m[i…j] relate to smaller
problem
• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj

into two groups: (Ai…Ak)(Ak+1…Aj)

• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj

 58

Summary

• Keys to DP
• Recursive algorithm => optimal Substructure
• overlapping subproblems

• Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

• Implementation:
• memoization (table+recursion)
• bottom-up table based (smaller problems first)

• Insights and understanding comes from
practice!

 59

• Given a list of integers, and an integer K
• Is there a subset of these numbers that adds up to K?

• e.g., cannot use a number more than once
• Discussion: brute force approach?

• How many subsets are there?
• How to enumerate all subsets in program/code?

// return true if there is a subset of numbers taken from n[0…len-1]
// that adds up to K
bool AddUpToK (n[], int len, int K)

• K=100, len=9, n:

K-Sum Problem

 60

22 34 18 30 76 1 3 19 80

0 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], n_len, int K)
• K=100, n_len=9, n:

• Think recursively!
• (base case) for what inputs do you know the answer

right away?
•

K-Sum Problem

 62

22 34 18 30 76 1 3 19 80
0 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], len, int K)
• K=100, len=9 n:

• Think recursively!
• (general case) for a general input, how to reduce it to

smaller problem(s)?
• Hint: try to make one single decision first?
•

K-Sum Problem

 63

22 34 18 30 76 1 3 19 80

0. 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], len, int K)
• K=100, len=9 n:

• Think recursively!
• (general case) for a general input, how to reduce it to

smaller problem(s)?
• Decision: include last number, n[len-1], or not?

• if included it, then we need to see if we can add up to K-n[len-1]
using the rest of the numbers

• if not, we need to see if we can add up to K using the rest of the
numbers.
• How to solve two smaller subproblems?

• If either one returns true, return true

K-Sum Problem

 64

22 34 18 30 76 1 3 19 80

0. 1 2 3 4 5 6 7 8

bool AddUpToK (int n[], int len, int K)
{ //base cases

if K==0 return true
if K>0 and len==0 return false

 // general case: consider include last number, or not?

if (AddUpToK (n, len -1, K-n[len-1]))
 return true; //we can make K by including last num…
else
 if (AddUpToK (n, len-1, K))
 return true; //we can make K without using n[len-1]
 else
 return false; //not possible
}

K-Sum Problem

 65

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

bool AddUpToK (int n[], int len, int K)
{ //base cases

if K==0 return true
if K>0 and len==0 return false

 // general case: consider include last number, or not?

if (AddUpToK (n, len-1, K-n[len-1]))
 return true; //we can make K by including last num…
else
 if (AddUpToK (n, len-1, K))
 return true; //we can make K without using n[len-1]
 else
 return false; //not possible
}

K-Sum Problem

 66

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

Draw recursion tree for AddUpToK (n,9,100)

Overlapping subproblems?

/*whether there is a subset of these numbers that add up to K, and output one such subset */
bool AddUpToK_Tabulation (int numbers[], int num_len, int K)
{ bool C[K+1][num_len+1];
 // C[k][n]: can we add up to k using numbers[1…n]

 for n=0 to num_len C[0][n] = 0 // if K==0 return true
 for k=1 to K C[k][0] = false

 //fill in array row by row, left to right
 for k=1 to K
 for n=1 to num_len

 if C[k][n-1]==true C[k][n]=true //we can make k without last number

 //otherwise, can we include numbers[n] to make k?
 else if k==numbers[n]
 C[k][n] = true;

 else if k>numbers[n] and C[k-numbers[n]][n-1]==true
 C[k][n] = true;
 else //k<numbers[n] or cannot make k-numbers[n] using numbers[1…n-1]

 C[k][n] = false
 return C[K][num_len];
}

K-Sum Problem: tabulation

 67

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

