
Intro to Dynamic Programming

CIS, Fordham Univ.

Instructor: X. Zhang

Outline

• Introduction via example: Fibonacci, rod
cutting

• Characteristics of problems that can be solved

using dynamic programming

• Unlimited Knapsack problem

• Two dimensional problem spaces

• Longest common subsequence

• Matrix chain multiplication

• Summary

￼2

Dynamic Programming

￼3

• Optimal substructure: (Optimal) solution to a

problem of size n incorporates (optimal)
solutions to problems of smaller size (n-1, n-2).

• Recursive calling tree shows overlapping of
subproblems

• i.e., same subproblems are called multiple times

• Idea: avoid recomputing subproblems

• store subproblem solutions in memory/table
(hence “programming”)

• Two approaches:

• Memoization: recursive with a table

• Tabulation: non-recursive with a table (tabulation)

Dynamic Programming: ideas

￼4

• A company buys long steel rods (of length n), cuts
them into shorter ones to sell

• integral length only

• Selling price for rods of different length:

• Goal: find maximum (possible) total revenue from
selling these rods (and how to achieve it).

Rod Cutting Problem

￼5

• Input: length of given rod, n; and p[i], selling price of rod of
length i, e.g.,

• Output: maximal profit over all possible ways to cut n to
shorter pieces and sell

• e.g., for n=4, we could cut it in five ways:

• {4}: do not cut ==> profit: $9

• {3,1} ==> $8+$1=$9

• {2,2} ==> $10 <<== this is the maximal profit!

• {2,1,1} ==> $7

• {1,1,1,1}==> $4

Rod Cutting Problem

￼6

multiset:
allow
duplicate,
order
does not
matter

Solution Space
• One way: first enumerate all possible ways to cut , then

evaluate each possible ways to pick one with highest total
selling price

• How to enumerate all possible ways to cut n?

• A combinatorial problem…

￼7

• Another way: optimize recursively, find optimal
solution to sub-problem directly, and use them to
solve original problem

• A recursive algorithm that return optimal solution

/*return maximum profit achievable with a rod of length n

by checking all possible ways of cutting n into rods of length i=
1, 2, …, k and selling them for p[i] */

Int CutRod (n, p[1…k])

/*

Base case: smallest problem(s) that we can solve trivially

General case:

 How to reduce problem to smaller problems? */

Optimize recursively

￼8

/*return maximum profit achievable with a rod of length n

by checking all possible ways of cutting n into rods of length i=
1, 2, …, k and selling them for p[i] */

Int CutRod (n, p[1…k])

/*

How to reduce the problem to smaller problems, general case?

Hint: use decision tree.

*/

Optimize recursively

￼9

//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

 { //What’s the smallest problem(s) that we can solve trivially?

 if n==0 return 0

 if n==1 return p[1]

 //general case

 curMax=0

 for c1=1, 2, 3, … , min (n, k) {

 //c1: consider the first rod to cut out and sell:

 curProfit = p[c1] + CutRod (n-c1,p)

 If (curProfit > curMax)

 curMax = curProfit

}

return curMax

}

Optimal Substructure

=> recursive solution

￼10

What if we remove n=1
from base case?

• Optimal substructure: Optimal solution to a
problem of size n incorporates optimal solutions
to problems of smaller size (n-1, n-2,…).

Optimal substructure

￼11

Recursive Tree for CutRod(n=4, p)

￼12

How many times CutRod (2) is called?
How about CutRod(1)?

Overlapping of Subproblems

￼13

• Recursive calling tree shows
overlapping of subproblems

• i.e., n=4 and n=3 share

overlapping subproblems
(2,1,0)

• Idea: avoid recomputing
subproblems again and again

• store subproblem solutions in

memory/table (hence
“programming”)

DP with Memoization
• Improve recursive solution by storing subproblem solution

in a table

• when need solution of a subproblem, check if it has been

solved before,

• if not, calculate it and store result in table

• if yes, access result stored in table

//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

 { //What’s the smallest problem(s) that we can solve trivially?

 if n==0 return 0

 if n==1 return p[1]

 //general case

 curMax=0

 for c1=1, 2, 3, … , min (n, k) {

 //c1: consider the first rod to cut out and sell:

 curProfit = p[c1] + CutRod (n-c1,p)

 If (curProfit > curMax)

 curMax = curProfit

}

return curMax

}

Recursion=> Memoization

￼15

What kind of table?

Where to allocate the table?

Where to update table entry?

When to look up the table entry?

//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

1. create an array r[1…n], filled with -1 (indicate “not calculated yet”)

2. CutRodHelper (n, p, r)

CutRodHelper (n, p[1…k], r[])

1. if r[n] >=0 return r[n] //if it has been calculated already

2. // no need to recalculate, return the stored result

3.

4. if n==0 return 0 //base case

5. //general case

6. curMax=0

7. for c1=1, 2, 3, … , min (n, k)

8. curProfit = p[c1] + CutRodHelper (n-c1)

9. curMax = max(curProfit, curMax)

10.

11. r[n]= curMax //save result in r[] for future reference

12. return curMax

Memoization illustrated in code

￼16

DP:Tabulation

• Tabulation

• Iteratively solve smaller problems first, move the

way up to larger problems

• bottom-up method: as we solve smaller

problems first, and then larger and larger one

• => when solving a problem, all subproblems

solutions that are needed have already been
calculated

//return max. profit one can make with a rod of length n

1. CutRodBottomUp (n, p[1…k])

2. create an array r[1…n] //store subproblem solutions

3. r[0] = 0

4. for i=1 to n // solve smaller problems first …

5. // calculate ri , max revenue for rod length i

6. curMax=0

7. for c1=1, 2, 3, … , min (i, k)

8. curProfit = p[c1]+ r[i-c1]

9. curMax = max(curProfit, curMax)

10. r[i]= curMax //save result in r[] for future reference

11.

12. return r[n]

Bottom-up

￼18

Recap

• We analyze rod cutting problem

• Two characteristics of problems that can benefit

from dynamic programming:

• optimal substructure: a recursive formular

• overlapping subproblems

￼19

rn = max
c1=1,2...min{n,k}

{p[c1] + rn−c1
}

Recap (2)

• How dynamic programming works:

• Memoization: recursion with table

• Tabulation: iteratively solve all possible

subproblems, and work our way from small
problems to large problems

￼20

//return max. profit one can make with a rod of length n

CutRodTopLevel (n, p[1…k])

1. create an array r[1…n], filled with -1 (indicate “not calculated yet”)

2. CutRodHelper (n, p, r)

CutRod (n, p[1…k], r[])

1. if r[n] >=0 return r[n] //if it has been calculated already

2. // no need to recalculate, return the stored result

3.

4. if n==0

5. r[0] = 0

6. return 0 //base case

7. //general case

8. curMax=0

9. for c1=1, 2, 3, … , min (n, k)

10. curProfit = p[c1] + CutRod (n-c1, p, r)

11. curMax = max(curProfit, curMax)

12.

13. r[n]= curMax //save result in r[] for future reference

14. return curMax

Tracing: CutRod(n=3,p)

￼21

Tracing with n=3

table r :

c1
curProfit
curMax

//return max. profit one can make with a rod of length n

CutRodBottomUp (n, p[1…k])

{

 create an array r[1…n] //store subproblem solutions

 r[0] = 0

 for i=1 to n // solve smaller problems first …

 // calculate ri , max revenue for rod length i

 curMax=0

 for c1=1, 2, 3, … , min (i, k)

 curProfit = p[c1]+ r[i-c1]

 curMax = max(curProfit, curMax)

 r[i]= curMax //save result in r[] for future reference

 return r[n]

}

Tabulation: Tracing n=5

￼22

//return max. profit one can make with a rod of length n

CutRodBottomUp (n, p[1…k])

{

 create an array r[1…n] //store subproblem solutions

 r[0] = 0

 for i=1 to n // solve smaller problems first …

 // calculate ri , max revenue for rod length i

 curMax=0

 for c1=1, 2, 3, … , min (i, k)

 curProfit = p[c1]+ r[i-c1]

 curMax = max(curProfit, curMax)

 r[i]= curMax //save result in r[] for future reference

 return r[n]

}

Cutting that achieves max profit?

￼23

Outline

• Introduction via example: Fibonacci, rod
cutting

• Characteristics of problems that can be solved

using dynamic programming

• Knapsack: with repetition

• Two dimensional problem spaces

• Longest common subsequence

• Matrix chain multiplication

• Summary

￼24

• Given:

• A backpack with weight capacity of W

• n different types of objects, i-th type of objects weighs w[i]

and has a value of v[i]

• there are infinite quantities of each object type

• What to put into backpack so that total value is maximized
and total weights <= W

e.g., W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Knapsack Problem

￼25

Input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Output: maximum value achievable, assuming there is infinity
amount of each object.

Knapsack Problem

￼26

For what value of W you know the answer
directly?

For a larger W, how can you reduce it to
smaller problems?

• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities)
with weights and values given by array w[], v[]

• Output: objects so that total value is maximized and total weights <= W

• Let Vk be max total value possible when weight capacity is k

• Recursive formula for Vk

input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Output: maximum value achievable, assuming there is infinity amount of each object.

Optimal substructure in Knapsack

￼27

• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) with weights
and values given by array w[], v[]

• Output: objects so that total value is maximized and total weights <= W

• Let Vk be max total value possible when weight capacity is k

• What’s the set of objects (multi-set) that achieve Vk?

• The first obj i chosen that achieves the max value above

• and then object i1 chosen for weight capacity k-w[i]

• and then object i2 chosen for weight capacity k-w[i]-w[i1]

• … until the weight capacity ==0 or < min(w)

• Use a table obj[]

• obj[k] store the first object to chose when capacity is k (the one that maximize …)

Knapsack: extension

￼28

Optimal substructure
• Optimal substructure: Optimal solution to a

problem of size n incorporates optimal solution to
problem of smaller size (1, 2, 3, … n-1).

• Rod cutting: find rn (max. revenue for rod of len n)

 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n])

• A recurrence relation (recursive formula)

• => Dynamic Programming: Build an optimal solution
to the problem from solutions to subproblems

• We solve a range of sub-problems as needed

￼29

Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1

Outline

• Introduction via example: rod cutting

• Characteristics of problems that can be solved

using dynamic programming

• Two dimensional problem spaces

• 0/1 Knapsack (i.e., without repetition)

• Minimum Edit Distance

• Matrix chain multiplication

• Summary

￼30

• Given

• a weight capacity of a knapsack, W

• n different objects (one of each): with weights and

values given by arrays w[], v[]

• finding a subset of objects …

• Goal: choose a subset of objects so that total value is
maximized and total weights <= W

• Plan:

• Recall you solved this problem in Lab4

• Pure recursive solution

• use memoization or tabulation to improve

Knapsack without repetition

￼31

/* Output max. value achievable

@param W: given weight capacity, >=0

@ param n: we can choose from first n obj

@param w, v: weights and values

@return max value achievable from the first n obj under W

*/

Knapsack_Norepeat (W, w, v, n)

{

 if W==0 or n == 0 //base case

 [] //fill in the blank

 /* general case */

 if (w[n-1] > W) // the last obj is too heavy …

 else { //The last obj can fit

 //option 1: if we include n-1-th obj, what’s the max value achievable …

 //option 2: if we don’t include (n-1)-th obj at all, what’s the max value achievable?

 // Which option is better?

}

￼32

Recursion Solution
Let’s fill in the blank

DP/Memoization vs Pure Recursion

￼33

Memoization Pure Recursion

How does it work?

Solve
subproblems only

if needed

Recursion
overhead?

When to choose
it?

Memoization vs Tabulation

￼34

Memoization Tabulation

How does it work?

Solve
subproblems only if

needed

Recursion
overhead?

When to choose it?

Outline
• Introduction via example: rod cutting

• Characteristics of problems that can be solved

using dynamic programming

• More one dimensional examples

• Knapsack with repetition

• Two dimensional problem spaces

• Knapsack without repetition

• Longest common subsequence

• Matrix chain multiplication (skipped)

• Summary

￼35

Longest Common Subsequence
• Given a sequence, X=<x1, x2, …, xm>, where each xi is a letter

from a certain alphabet, a subsequence of X is a sequence of
elements taken in order from X but not necessarily consecutive

• Example:

• X = <A, B, C, B, D, A, B>

• <A, B, D>, <B, C, D, B>, <A>, <>, <A,B,C,B,D,A,B> are

subsequence of X

• <A, C, C>, <B, B, C> are not subsequence of X

• How many possible subsequences are there for X?

• Denote length of a sequence X by |X|, which is the number of
letters in sequence

• e.g., X = <A, B, C, B, D, A, B>, |X|=7

Longest Common Subseq.

• Given two sequences

X=<x1,x2,…,xm>, Y=<y1,y2,…yn>

• Find a longest common subsequence (in short, LCS)
of X and Y, i.e., a sequence that

• is a subsequence of X, and is a subsequence of Y

• and is no shorter than any other common subsequences

of X and Y

LCS examples

X = <A, B, C, B, D, A, B> X = 〈A, B, C, B, D, A, B〉

Y = <B, D, C, A, B, A〉 Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are both longest common
subsequences of X and Y (length = 4)

￼38

LCS examples

2. X = <A, A, C, A, G, T, T, A, C, C>,

 Y = <T, A, A, G, G, T, C, A>

 What’s the LCS of these two sequences?

￼39

Brute-Force Solution
1. /* Check every subsequence of X[1 . . m] to see if it is also a subsequence of Y[1 .. n]. */

2. LCS (X, Y)

3. {

4. for each of 2m subsequence, s, of X

5. //check if s is a subsequence of Y, O(n) time

6. k = |s| //k is length of s

7. j = 1 //used to scan through Y

8.

9. for i=1 to k. //for each letter in s, finds a matching char in Y

10. while (Y[j]!=s[i] and j<=n)

11. j++ // scan Y for a letter matching s[i]

12. if j>n // cannot match s[i]

13. break and s not a subsequence Y

14.

15. s is subsequence of Y, update longest

16.

17.}

Worst-case running time: O(n2m)
￼40

Sequence Prefix
• Given a sequence X = <x1, x2, …, xm>,

• Def: i-th prefix of X, Xi = <x1, x2, …, xi>

• Practice: X = <A, B, C, B, D, A, B>,

• what’s X2, X4, X0, X7?

￼41

Thinking about subproblems
How to calculate LCS?  

X= A B C D

Y= E A C F D

• Assuming subproblems have been solved, i.e., LCS of prefix of X and Y
have been found…

￼42

Thinking about subproblems
How to calculate LCS?  

X= A B C A D

Y= E A C D E

•Assuming subproblems have been solved, i.e.,

LCS of prefix of X and Y have been found…

￼43

Recursive Solution. Case 1
/* Return a longest subsequence of X, Y

@param X: is a sequence

@param Y: is a sequence

@return the longest common subsequence of X and Y*/

LCS (X, Y)

{

 m = |X|, n = |Y|

 if X[m] ==Y[n]

 /* X = 〈A, B, D, E〉

	 	 Y = 〈Z, B, E〉. */

• Todo: find a LCS of Xm-1 and Yn-1, (here, X3 =<A, B, D>, and Y2 = <Z,

B>)

• append X[m] to the end to get LCS of Xm, Yn ￼44

Recursive Solution. Case 2
if X[m] != Y[n]

 e.g., X = 〈A, B, D, G〉

	 	 Y = 〈Z, B, D〉

• Must solve two subproblems

 LCS(X, Y) = Longer { LCS(Xm - 1, Y),

LCS (X, Yn-1)}

￼45

This G and D cannot
be both in LCS

If we ignore last element in X

If we ignore last element in Y

/* Return a longest subsequence of X, Y

@param X: is a string

@param Y: is a string

@return the longest common subsequence of X and Y*/

LCS (X, Y)

{

 m=|X|, n=|Y|

 if (|X| == 0 or |Y|==0) return “ “; //empty string

 //general case

 // can we match last letters of X and Y?

 if X[m] == Y[n]

 return LCS(Xm-1,Yn-1)+X[m] //concatenated with last letter

 else

 // X[m] and Y[n] cannot be both in LCS

 s1 = LCS(Xm-1,Yn) // X[m] is not in LCS

 s2 = LCS(Xm, Yn-1) //Y[n-1] is not in LCS

 return longer one among s1 and s2

}

￼46

X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions?

Here we need to calculate prefix (Xm-1, Yn-1), and pass them to recursive calls

/* Return the longest subsequence of X, Y

@param X : is a string

@param Y: is a string

@return the longest common subsequence of Xm and Yn*/

LCS (X, Y, m, n)

{

 if (m== 0 or n==0) return “ “; //empty string

 //general case

 // can we match last letters of X and Y?

 if X[m] == Y[n]

 return LCS(X,Y, m-1, n-1)+X[m] //concatenated with last letter

 else

 // X[m] and Y[n] cannot be both in LCS

 s1 = LCS(X, Y, m-1, n)

 s2 = LCS(X, Y, m, n-1)

 return longer of s1 and s2

}

// keep X, Y as they are, use parameters to specify prefix length

// subproblem’s size is given by m and n, at least one dimension is decreased

￼47

X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions?

Optimal substructure &

Overlapping Subproblems

• A recursive solution contains a “small” number of distinct
subproblems repeated many times.

• e.g., LCS (5,5) depends on LCS(4,4), LCS(4,5), LCS(5,4)

• Exercise: Draw subproblem dependence graph

• each node is a subproblem

• directed edge represents “calling”, “uses solution of” relation

• Small number of distinct subproblems:

• total number of distinct LCS subproblems for two

strings of lengths m and n is mn.

￼48

Tabulation to avoid recalculation
• Given two sequences X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉

• To ease tracing, we focus on finding length of LCS

c[i, j] = | LCS (Xi, Yj) |

// length of LCS of i-th prefix of X and j-th prefix of Y

￼49

	 	 c[i-1, j-1] + 1	 	 if X[i]= Y[j]

c[i, j] =

	 	 max(c[i, j-1], c[i-1, j])	 otherwise (i.e., if X[i] ≠ Y[j])

 0, if i=0 or j=0

Tabulation

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y A B C B D A B
X

B

D

C

A

B

A

LCS (X, Y)

 X=<B, D, C, A, B, A>

 Y=<A, B, C, B, D, A, B>

 |X|=6, |Y|=7

 c is 7x8 array

 Goal: calculate C[6,7]
(bottom right corner)

￼50

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

C[3,4]= length of LCS (X3, Y4)

= Length of LCS (BDC, ABCB)

3rd row, 4th column element

Bottom-Up

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y A B C B D A B
X

B

D

C

A

B

A

Initialization: base case
c[i,j] = 0 if i=0, or j=0

//Fill table row by row

// from left to right

for (int i=1; i<=m;i++)

 for (int j=1;j<=n;j++)

 Calculate c[i,j]

return c[m, n]

Running time = Θ(mn)

￼51

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6C[3,4]= length of LCS (X3, Y4)

= Length of LCS (BDC, ABCB)

3rd row, 4-th column element

Dynamic-Programming Algorithm
A B C B D A B

B

D

C

A

B

A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS
by tracing
backward:

Where do we get value
of C[i,j] from?

￼52Output
A

Output
B

Output
C

Output
B

Remark

• Longest common subsequence algorithm is
similar to

• minimum edit distance problem (used by spell

checker to suggest a correction)

• Needleman-Wansh Alg. (used in bioinformatics
to align protein or nucleotide sequences) ￼53

Matrix
Matrix: a 2D (rectangular) array of numbers, symbols, or
expressions, arranged in rows and columns.

	 e.g., a 2 × 3 matrix (there are two rows and three columns)

Each element of a matrix is denoted by a variable with two
subscripts, a2,1 element at second row and first column of a
matrix A.

 an m × n matrix A:

￼54

Matrix Multiplication:

Matrix Multiplication

￼55

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24

Total (scalar) multiplication: n2xn1xn3

Multiplying a chain of Matrix
Multiplication

Given a sequence/chain of matrices, e.g., A1, A2, A3, there are
different ways to calculate A1A2A3

1. (A1A2)A3)

2. (A1(A2A3))

Dimension of A1: 10 x 100

 A2: 100 x 5

 A3: 5 x 50

all yield the same result

But not same efficiency

￼56

Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices, where matrix Ai has
dimension pi-1x pi, find optimal fully parenthesize product A1A2…
An that minimizes number of scalar multiplications.

Chain of matrices <A1, A2, A3, A4>: five distinct ways

 A1: p1 x p2 A2: p2 x p3 A3: p3 x p4 A4: p4 x p5

￼57

of multiplication: p3p4p5+ p2p3p5+
p1p2p5

Find the one with minimal multiplications?

Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices, where matrix Ai has

dimension pi-1x pi, find optimal fully parenthesize product
A1A2…An that minimizes number of scalar multiplications.

• Let m[i, j] be the minimal # of scalar multiplications needed to
calculate AiAi+1…Aj (m[1…n]) is what we want to calculate)

• Recurrence relation: how does m[i…j] relate to smaller
problem

• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj

into two groups: (Ai…Ak)(Ak+1…Aj)

• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj

￼58

Summary

• Keys to DP

• Recursive algorithm => optimal Substructure

• overlapping subproblems

• Write recurrence relation for subproblem: i.e.,
how to calculate solution to a problem using sol.
to smaller subproblems

• Implementation:

• memoization (table+recursion)

• bottom-up table based (smaller problems first)

• Insights and understanding comes from
practice!

￼59

• Given a list of integers, and an integer K

• Is there a subset of these numbers that adds up to K?

• e.g., cannot use a number more than once

• Discussion: brute force approach?

• How many subsets are there?

• How to enumerate all subsets in program/code?

// return true if there is a subset of numbers taken from n[0…len-1]

// that adds up to K

bool AddUpToK (n[], int len, int K)

• K=100, len=9, n:

K-Sum Problem

￼60

22 34 18 30 76 1 3 19 80

0 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], n_len, int K)

• K=100, n_len=9, n:

• Think recursively!

• (base case) for what inputs do you know the answer

right away?

•

K-Sum Problem

￼62

22 34 18 30 76 1 3 19 80
0 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], len, int K)

• K=100, len=9 n:

• Think recursively!

• (general case) for a general input, how to reduce it to

smaller problem(s)?

• Hint: try to make one single decision first?

•

K-Sum Problem

￼63

22 34 18 30 76 1 3 19 80

0. 1 2 3 4 5 6 7 8

• bool AddUpToK (n[], len, int K)

• K=100, len=9 n:

• Think recursively!

• (general case) for a general input, how to reduce it to

smaller problem(s)?

• Decision: include last number, n[len-1], or not?

• if included it, then we need to see if we can add up to K-n[len-1]
using the rest of the numbers

• if not, we need to see if we can add up to K using the rest of the
numbers.

• How to solve two smaller subproblems?

• If either one returns true, return true

K-Sum Problem

￼64

22 34 18 30 76 1 3 19 80

0. 1 2 3 4 5 6 7 8

bool AddUpToK (int n[], int len, int K)

{ //base cases

if K==0 return true

if K>0 and len==0 return false

 // general case: consider include last number, or not?

if (AddUpToK (n, len -1, K-n[len-1]))

 return true; //we can make K by including last num…

else

 if (AddUpToK (n, len-1, K))

 return true; //we can make K without using n[len-1]

 else

 return false; //not possible

}

K-Sum Problem

￼65

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

bool AddUpToK (int n[], int len, int K)

{ //base cases

if K==0 return true

if K>0 and len==0 return false

 // general case: consider include last number, or not?

if (AddUpToK (n, len-1, K-n[len-1]))

 return true; //we can make K by including last num…

else

 if (AddUpToK (n, len-1, K))

 return true; //we can make K without using n[len-1]

 else

 return false; //not possible

}

K-Sum Problem

￼66

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

Draw recursion tree for AddUpToK (n,9,100)

Overlapping subproblems?

/*whether there is a subset of these numbers that add up to K, and output one such subset */

bool AddUpToK_Tabulation (int numbers[], int num_len, int K)

{ bool C[K+1][num_len+1];

 // C[k][n]: can we add up to k using numbers[1…n]

 for n=0 to num_len C[0][n] = 0 // if K==0 return true

 for k=1 to K C[k][0] = false

 //fill in array row by row, left to right

 for k=1 to K

 for n=1 to num_len

 if C[k][n-1]==true C[k][n]=true //we can make k without last number

 //otherwise, can we include numbers[n] to make k?

 else if k==numbers[n]

 C[k][n] = true;

 else if k>numbers[n] and C[k-numbers[n]][n-1]==true

 C[k][n] = true;

 else //k<numbers[n] or cannot make k-numbers[n] using numbers[1…n-1]

 C[k][n] = false

 return C[K][num_len];

}

K-Sum Problem: tabulation

￼67

22 34 18 80 76 1 3 19 20

0 1 2 3 4 5 6 7 8

