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Outline

• Introduction via example: Fibonacci, rod 
cutting 
• Characteristics of problems that can be solved 

using dynamic programming 
• Unlimited Knapsack problem  

• Two dimensional problem spaces 
• Longest common subsequence 
• Matrix chain multiplication  

• Summary 
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Dynamic Programming
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• Optimal substructure: (Optimal) solution to a 

problem of size n incorporates (optimal) 
solutions to problems of smaller size (n-1, n-2). 

• Recursive calling tree shows overlapping of 
subproblems 

• i.e., same subproblems are called multiple times  
• Idea: avoid recomputing subproblems 

• store subproblem solutions in memory/table 
(hence “programming”)  

• Two approaches: 
• Memoization: recursive with a table 
• Tabulation: non-recursive with a table (tabulation)

Dynamic Programming: ideas
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• A company buys long steel rods (of length n), cuts 
them into shorter ones to sell 
• integral length only 
• Selling price for rods of different length: 

• Goal: find maximum (possible) total revenue from 
selling these rods (and how to achieve it).

Rod Cutting Problem
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• Input: length of given rod, n; and p[i], selling price of rod of 
length i, e.g.,  

• Output: maximal profit over all possible ways to cut n to 
shorter pieces and sell 

• e.g., for n=4, we could cut it in five ways:  
• {4}: do not cut ==> profit: $9 
• {3,1}  ==> $8+$1=$9 
• {2,2} ==> $10   <<== this is the maximal profit! 
• {2,1,1} ==> $7 
• {1,1,1,1}==> $4

Rod Cutting Problem
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multiset:
allow 
duplicate,
order 
does not 
matter



Solution Space
•  One way: first enumerate all possible ways to cut , then 

evaluate each possible ways to pick one with highest total 
selling price 

• How to enumerate all possible ways to cut n? 
• A combinatorial problem… 
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• Another way: optimize recursively, find optimal 
solution to sub-problem directly, and use them to 
solve original problem 
• A recursive algorithm that return optimal solution 

/*return maximum profit achievable with a rod of length n  
by checking all possible ways of cutting n into rods of length i= 
1, 2, …, k and selling them for p[i] */ 
Int CutRod (n, p[1…k]) 
/* 
Base case: smallest problem(s) that we can solve trivially  

General case:  
  How to reduce problem to smaller problems? */

Optimize recursively
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/*return maximum profit achievable with a rod of length n  
by checking all possible ways of cutting n into rods of length i= 
1, 2, …, k and selling them for p[i] */ 
Int CutRod (n, p[1…k]) 
/* 
How to reduce the problem to smaller problems, general case? 
Hint: use decision tree.  

*/ 

Optimize recursively
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//return max. profit one can make with a rod of length n 
CutRod (n, p[1…k]) 
 {  //What’s the smallest problem(s) that we can solve trivially?  

  if n==0   return 0 
  if n==1     return p[1] 

 //general case  
 curMax=0 
 for c1=1, 2, 3, … ,  min (n, k) { 
      //c1: consider the first rod to cut out and sell: 

  curProfit = p[c1] + CutRod (n-c1,p) 
  If (curProfit > curMax) 
       curMax = curProfit 
} 

return curMax 
}

Optimal Substructure  
=> recursive solution
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What if we remove n=1 
from base case?



           

• Optimal substructure: Optimal solution to a 
problem of size n incorporates optimal solutions 
to problems of smaller size (n-1, n-2,… ). 

Optimal substructure
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Recursive Tree for CutRod(n=4, p)
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How many times CutRod (2) is called?
How about CutRod(1)?  

  



Overlapping of Subproblems 
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• Recursive calling tree shows 
overlapping of subproblems 
• i.e., n=4 and n=3 share 

overlapping subproblems 
(2,1,0) 

• Idea: avoid recomputing 
subproblems again and again 
• store subproblem solutions in 

memory/table (hence 
“programming”) 



DP with Memoization
• Improve recursive solution by storing subproblem solution 

in a table 
• when need solution of a subproblem, check if it has been 

solved before,  
• if not, calculate it and store result in table 
• if yes, access result stored in table 



//return max. profit one can make with a rod of length n 
CutRod (n, p[1…k]) 
 {  //What’s the smallest problem(s) that we can solve trivially?  

  if n==0   return 0 
  if n==1     return p[1] 

 //general case  
 curMax=0 
 for c1=1, 2, 3, … ,  min (n, k) { 
      //c1: consider the first rod to cut out and sell: 

  curProfit = p[c1] + CutRod (n-c1,p) 
  If (curProfit > curMax) 
       curMax = curProfit 
} 

return curMax 
}

Recursion=> Memoization
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What kind of table? 

Where to allocate the table? 

Where to update table entry?

When to look up the table entry?



//return max. profit one can make with a rod of length n 
CutRod (n, p[1…k]) 
1.        create an array r[1…n], filled with -1 (indicate “not calculated yet”) 
2.        CutRodHelper (n, p, r) 

CutRodHelper (n, p[1…k], r[]) 
1. if r[n] >=0 return r[n]  //if it has been calculated already 
2.  // no need to recalculate, return the stored result 
3.     
4. if n==0 return 0 //base case 
5. //general case  
6. curMax=0 
7. for  c1=1, 2, 3, … ,  min (n, k) 
8.          curProfit = p[c1] + CutRodHelper (n-c1) 
9.          curMax = max(curProfit, curMax) 
10.     
11. r[n]= curMax   //save result in r[] for future reference 
12. return curMax

Memoization illustrated in code
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DP:Tabulation

• Tabulation 
• Iteratively solve smaller problems first, move the 

way up to larger problems  
• bottom-up method: as we solve smaller 

problems first, and then larger and larger one 
• => when solving a problem, all subproblems 

solutions that are needed have already been 
calculated 



//return max. profit one can make with a rod of length n 
1. CutRodBottomUp (n, p[1…k]) 
2.     create an array r[1…n] //store subproblem solutions  
3.     r[0] = 0 
4.     for i=1 to n  // solve smaller problems first …  
5.          // calculate ri , max revenue for rod length i      
6.         curMax=0 
7.         for  c1=1, 2, 3, … ,  min (i, k) 
8.              curProfit = p[c1]+ r[i-c1] 
9.              curMax = max(curProfit, curMax) 
10.        r[i]= curMax   //save result in r[] for future reference 
11.  
12. return r[n]

Bottom-up
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Recap

• We analyze rod cutting problem 
• Two characteristics of problems that can benefit 

from dynamic programming: 
• optimal substructure: a recursive formular  

• overlapping subproblems 
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rn = max
c1=1,2...min{n,k}

{p[c1] + rn−c1
}



Recap (2)

• How dynamic programming works: 
• Memoization: recursion with table 
• Tabulation: iteratively solve all possible 

subproblems, and work our way from small 
problems to large problems
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//return max. profit one can make with a rod of length n 
CutRodTopLevel (n, p[1…k]) 
1.        create an array r[1…n], filled with -1 (indicate “not calculated yet”) 
2.        CutRodHelper (n, p, r) 

CutRod (n, p[1…k], r[]) 
1. if r[n] >=0 return r[n]  //if it has been calculated already 
2.  // no need to recalculate, return the stored result 
3.     
4. if n==0  
5.      r[0] = 0 
6.       return 0 //base case 
7. //general case  
8. curMax=0 
9. for  c1=1, 2, 3, … ,  min (n, k) 
10.          curProfit = p[c1] + CutRod (n-c1, p, r) 
11.          curMax = max(curProfit, curMax) 
12.     
13. r[n]= curMax   //save result in r[] for future reference 
14. return curMax

Tracing: CutRod(n=3,p)
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Tracing with n=3

table r :

c1
curProfit
curMax



//return max. profit one can make with a rod of length n 
CutRodBottomUp (n, p[1…k]) 
{ 
    create an array r[1…n] //store subproblem solutions  
    r[0] = 0 
    for i=1 to n  // solve smaller problems first …  
         // calculate ri , max revenue for rod length i      
        curMax=0 
        for  c1=1, 2, 3, … ,  min (i, k) 
             curProfit = p[c1]+ r[i-c1] 
             curMax = max(curProfit, curMax) 
        r[i]= curMax   //save result in r[] for future reference 
  
 return r[n] 
}

Tabulation: Tracing n=5
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//return max. profit one can make with a rod of length n 
CutRodBottomUp (n, p[1…k]) 
{ 
    create an array r[1…n] //store subproblem solutions  
    r[0] = 0 
    for i=1 to n  // solve smaller problems first …  
         // calculate ri , max revenue for rod length i      
        curMax=0 
        for  c1=1, 2, 3, … ,  min (i, k) 
             curProfit = p[c1]+ r[i-c1] 
             curMax = max(curProfit, curMax) 
        r[i]= curMax   //save result in r[] for future reference 
  
 return r[n] 
}

Cutting that achieves max profit?
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Outline

• Introduction via example: Fibonacci, rod 
cutting 
• Characteristics of problems that can be solved 

using dynamic programming 
• Knapsack: with repetition 

• Two dimensional problem spaces 
• Longest common subsequence 
• Matrix chain multiplication  

• Summary 
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• Given: 
• A backpack with weight capacity of W 
• n different types of objects, i-th type of objects weighs w[i] 

and has a value of v[i] 
• there are infinite quantities of each object type 

• What to put into backpack so that total value is maximized 
and total weights <= W 

e.g.,  W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8} 

Knapsack Problem
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Input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8} 
Output: maximum value achievable, assuming there is infinity 
amount of each object. 

Knapsack Problem
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For what value of W you know the answer 
directly?  

For a larger W, how can you reduce it to 
smaller problems?  



• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) 
with weights and values given by array w[ ], v[ ]  

• Output: objects so that total value is maximized and total weights <= W  

• Let Vk be max total value possible when weight capacity is k 
• Recursive formula for Vk 

input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8} 
Output: maximum value achievable, assuming there is infinity amount of each object. 

Optimal substructure in Knapsack 
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• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) with weights 
and values given by array w[ ], v[ ]  

• Output: objects so that total value is maximized and total weights <= W  

• Let Vk be max total value possible when weight capacity is k 

                

• What’s the set of objects (multi-set) that achieve Vk? 

• The first obj i chosen that achieves the max value above  

• and then object i1 chosen for weight capacity k-w[i] 

• and then object i2 chosen for weight capacity k-w[i]-w[i1] 

• … until the weight capacity ==0 or < min(w) 

•  Use a table obj[] 

• obj[k] store the first object to chose when capacity is k (the one that maximize …)

Knapsack: extension 
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Optimal substructure
• Optimal substructure: Optimal solution to a 

problem of size n incorporates optimal solution to 
problem of smaller size (1, 2, 3, … n-1).  

• Rod cutting: find rn (max. revenue for rod of len n)  

 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n]) 
• A recurrence relation (recursive formula) 

• => Dynamic Programming: Build an optimal solution 
to the problem from solutions to subproblems  
• We solve a range of sub-problems as needed 
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Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1 



Outline

• Introduction via example: rod cutting 
• Characteristics of problems that can be solved 

using dynamic programming 
• Two dimensional problem spaces 

• 0/1 Knapsack (i.e., without repetition) 
• Minimum Edit Distance  
• Matrix chain multiplication  

• Summary 
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• Given  
• a weight capacity of a knapsack, W 
• n different objects (one of each): with weights and 

values given by arrays w[ ], v[ ]  
• finding a subset of objects …  

• Goal: choose a subset of objects so that total value is 
maximized and total weights <= W  

• Plan: 
• Recall you solved this problem in Lab4 
• Pure recursive solution 
• use memoization or tabulation to improve

Knapsack without repetition
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/*  Output max. value achievable  
@param W: given weight capacity, >=0 
@ param n: we can choose from first n obj  
@param w, v: weights and values  
@return max value achievable from the first n obj under W 
*/ 
Knapsack_Norepeat (W, w, v, n) 
{ 
    if W==0 or n == 0      //base case 
         [                                        ] //fill in the blank 

    /* general case */ 
    if (w[n-1] > W) // the last obj is too heavy …  
         

   else  { //The last obj can fit  
       //option 1: if we include n-1-th obj, what’s the max value achievable …  
         

      //option 2: if we don’t include (n-1)-th obj at all, what’s the max value achievable?  
      // Which option is better?  
}
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Recursion Solution
Let’s fill in the blank



DP/Memoization vs Pure Recursion
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Memoization Pure Recursion

How does it work?

Solve    
subproblems only 

if needed

Recursion 
overhead?

When to choose 
it?



Memoization vs Tabulation

 34

Memoization Tabulation

How does it work?

Solve    
subproblems only if 

needed

Recursion 
overhead?

When to choose it?



Outline
• Introduction via example: rod cutting 
• Characteristics of problems that can be solved 

using dynamic programming 
• More one dimensional examples  

• Knapsack with repetition 
• Two dimensional problem spaces 

• Knapsack without repetition 
• Longest common subsequence 
• Matrix chain multiplication (skipped) 

• Summary 
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Longest Common Subsequence
• Given a sequence, X=<x1, x2, …, xm>, where each xi is a letter 

from a certain alphabet,  a subsequence of X is a sequence of 
elements taken in order from X but not necessarily consecutive 

• Example:  
• X = <A, B, C, B, D, A, B> 
• <A, B, D>, <B, C, D, B>, <A>, <>, <A,B,C,B,D,A,B> are 

subsequence of X 
• <A, C, C>, <B, B, C> are not subsequence of X 

• How many possible subsequences are there for X?  

• Denote length of a sequence X by |X|, which is the number of 
letters in sequence  

• e.g., X = <A, B, C, B, D, A, B>, |X|=7



Longest Common Subseq.

• Given two sequences 
X=<x1,x2,…,xm>, Y=<y1,y2,…yn> 

• Find a longest common subsequence (in short, LCS) 
of X and Y, i.e., a sequence that  
• is a subsequence of X, and is a subsequence of Y 
• and is no shorter than any other common subsequences 

of X and Y 



LCS examples

X = <A, B, C, B, D, A, B>       X = 〈A, B, C, B, D, A, B〉

Y = <B, D, C, A, B, A〉         Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are both longest common 
subsequences of X and Y (length = 4) 
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LCS examples

2.  X = <A, A, C, A, G, T, T, A, C, C>,  

    Y = <T, A, A, G, G, T, C, A> 

    What’s the LCS of these two sequences?
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Brute-Force Solution
1. /* Check every subsequence of X[1 . . m] to see if it is also a subsequence of Y[1 .. n]. */  
2. LCS (X, Y)  
3. {  
4.     for each of 2m subsequence, s, of X  
5.         //check if s is a subsequence of Y, O(n) time  
6.           k = |s|  //k is length of s  
7.           j = 1  //used to scan through Y  
8.           
9.          for i=1 to k. //for each letter in s, finds a matching char in Y 
10.                while ( Y[j]!=s[i] and j<=n)  
11.                     j++                // scan Y for a letter matching s[i]  
12.               if j>n   // cannot match s[i]   
13.                       break and s not a subsequence Y 
14.         
15.         s is subsequence of Y, update longest  
16.       
17.} 

Worst-case running  time: O(n2m)
 40



Sequence Prefix 
• Given a sequence X = <x1, x2, …, xm>,  
• Def: i-th prefix of X,  Xi = <x1, x2, …, xi> 

• Practice:  X = <A, B, C, B, D, A, B>,  
• what’s X2, X4, X0, X7?
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Thinking about subproblems
How to calculate LCS?  

X= A  B  C  D  
Y= E  A  C  F  D 

• Assuming subproblems have been solved, i.e., LCS of prefix of X and Y 
have been found… 
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Thinking about subproblems
How to calculate LCS?  

X= A  B  C  A  D  
Y= E  A  C  D  E  

•Assuming subproblems have been solved, i.e.,  
LCS of prefix of X and Y have been found… 
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Recursive Solution. Case 1
/* Return a longest subsequence of X, Y 
@param X: is a sequence  
@param Y: is a sequence 
@return the longest common subsequence of X and Y*/ 
LCS (X, Y) 
{ 
   m = |X|, n = |Y| 
   if X[m] ==Y[n] 

    /* X = 〈A, B, D, E〉

   Y = 〈Z, B, E〉.   */

• Todo: find a LCS of Xm-1 and Yn-1, (here, X3 =<A, B, D>, and Y2 = <Z, 

B>) 
• append X[m] to the end to get LCS of Xm, Yn  44



Recursive Solution. Case 2
if  X[m] != Y[n] 

   e.g.,  X = 〈A, B, D, G〉

  Y = 〈Z, B, D〉

• Must solve two subproblems

   LCS(X, Y) = Longer { LCS(Xm - 1, Y), 
LCS (X, Yn-1)} 
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This G and D cannot
be both in LCS

If we ignore last element in X

If we ignore last element in Y



/* Return a longest subsequence of X, Y 
@param X: is a string  
@param Y: is a string 
@return the longest common subsequence of X and Y*/ 
LCS (X, Y) 
{ 
     m=|X|, n=|Y|  
     if (|X| == 0 or |Y|==0) return “ “; //empty string  
     //general case 
     // can we match last letters of X and Y?  
     if X[m] == Y[n] 
             return LCS(Xm-1,Yn-1)+X[m]  //concatenated with last letter 
      else 
            // X[m] and Y[n] cannot be both in LCS 
            s1 = LCS(Xm-1,Yn) //  X[m] is not in LCS 
            s2 = LCS(Xm, Yn-1) //Y[n-1] is not in LCS  
            return longer one among s1 and s2  
}
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X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions? 

Here we need to calculate prefix (Xm-1, Yn-1), and pass them to recursive calls



/* Return the longest subsequence of X, Y 
@param X : is a string  
@param Y: is a string 
@return the longest common subsequence of Xm and Yn*/ 
LCS (X, Y, m, n ) 
{ 
     if (m== 0 or n==0) return “ “; //empty string  
     //general case 
     // can we match last letters of X and Y?  
     if X[m] == Y[n] 
             return LCS(X,Y, m-1, n-1)+X[m]  //concatenated with last letter 
      else 
            // X[m] and Y[n] cannot be both in LCS 
            s1 = LCS(X, Y, m-1, n ) 
            s2 = LCS(X, Y, m, n-1)  
            return longer of s1 and s2  
} 

// keep X, Y as they are, use parameters to specify prefix length  
// subproblem’s size is given by m and n, at least one dimension is decreased 
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X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions? 



Optimal substructure &  
Overlapping Subproblems

• A recursive solution contains a “small” number of distinct 
subproblems repeated many times. 
• e.g., LCS (5,5) depends on LCS(4,4), LCS(4,5), LCS(5,4) 
• Exercise: Draw subproblem dependence graph 

• each node is a subproblem 
• directed edge represents “calling”, “uses solution of” relation  

• Small number of distinct subproblems: 
• total number of distinct LCS subproblems for two 

strings of lengths m and n is mn.
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Tabulation to avoid recalculation
• Given two sequences X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉

• To ease tracing, we focus on finding length of LCS 

c[i, j] = | LCS (Xi, Yj) |    
// length of LCS of i-th prefix of X and j-th prefix of Y  
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  c[i-1, j-1] + 1  if X[i]= Y[j] 
c[i, j] = 

  max(c[i, j-1], c[i-1, j]) otherwise (i.e., if X[i] ≠ Y[j]) 

                  0,  if i=0 or j=0



Tabulation

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y      A      B    C     B    D    A     B   
X 

B     

D    

C   

A    

B 

A

LCS (X, Y) 
    X=<B, D, C, A, B, A> 
    Y=<A, B, C, B, D, A, B> 
   |X|=6, |Y|=7 

 c is 7x8  array 

 Goal: calculate C[6,7] 
(bottom right corner)  
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0       1         2        3         4       5       6        7   

0 

1     

2    

3   

4    

5 

6

C[3,4]= length of LCS (X3, Y4) 
= Length of LCS (BDC, ABCB) 

3rd row, 4th column element



Bottom-Up 

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y      A      B    C     B    D    A     B   
X 

B     

D    

C   

A    

B 

A

Initialization: base case 
c[i,j] = 0 if i=0, or j=0 

//Fill table row by row 
//  from left to right 
for (int i=1; i<=m;i++) 
    for (int j=1;j<=n;j++) 
       Calculate c[i,j]  

return c[m, n] 

Running time = Θ(mn) 
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0       1         2        3         4       5       6        7   

0 

1     

2    

3   

4    

5 

6C[3,4]= length of LCS (X3, Y4) 
= Length of LCS (BDC, ABCB) 

3rd row, 4-th column element



Dynamic-Programming Algorithm
A    B    C   B   D   A   B   

B     

D    

C   
A    

B 

A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS 
by tracing 
backward: 
  
Where do we get value 
of C[i,j] from?  
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A

Output
B

Output
C

Output
B



Remark

• Longest common subsequence algorithm is 
similar to  
• minimum edit distance problem (used by spell 

checker to suggest a correction) 

• Needleman-Wansh Alg. (used in bioinformatics 
to align protein or nucleotide sequences)  53



Matrix
Matrix:  a 2D (rectangular) array of numbers, symbols, or 
expressions, arranged in rows and columns. 

 e.g., a 2 × 3 matrix (there are two rows and three columns) 

Each element of a matrix is denoted by a variable with two 
subscripts, a2,1 element at second row and first column of a 
matrix A. 

   an m × n matrix A: 
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Matrix Multiplication: 

Matrix Multiplication
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Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24  

Total (scalar) multiplication: n2xn1xn3 



Multiplying a chain of Matrix 
Multiplication

Given a sequence/chain of matrices, e.g., A1, A2, A3,  there are 
different ways to calculate A1A2A3 

1. (A1A2)A3) 

2. (A1(A2A3)) 

Dimension of A1: 10 x 100 

                      A2: 100 x 5 

                      A3: 5 x 50 

all yield the same result  

But not same efficiency
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Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices,  where matrix Ai has 
dimension pi-1x pi, find optimal fully parenthesize product A1A2…
An that minimizes number of scalar multiplications. 

Chain of matrices  <A1, A2, A3, A4>: five distinct ways 

   A1: p1 x p2       A2: p2 x p3     A3: p3 x p4       A4: p4 x p5
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# of multiplication: p3p4p5+ p2p3p5+ 
p1p2p5

Find the one with minimal multiplications?



Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices,  where matrix Ai has 

dimension pi-1x pi, find optimal fully parenthesize product 
A1A2…An that minimizes number of scalar multiplications. 

• Let m[i, j] be the minimal # of scalar multiplications needed to 
calculate AiAi+1…Aj   (m[1…n]) is what we want to calculate)  

• Recurrence relation: how does m[i…j] relate to smaller 
problem  
• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj 

into two groups: (Ai…Ak)(Ak+1…Aj) 

• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj
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Summary

• Keys to DP 
• Recursive algorithm => optimal Substructure 
• overlapping subproblems 

• Write recurrence relation for subproblem: i.e., 
how to calculate solution to a problem using sol. 
to smaller subproblems 

• Implementation:  
• memoization (table+recursion) 
• bottom-up table based (smaller problems first)  

• Insights and understanding comes from 
practice!
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• Given a list of integers, and an integer K 
• Is there a subset of these numbers that adds up to K? 

• e.g., cannot use a number more than once  
• Discussion: brute force approach?  

• How many subsets are there?  
• How to enumerate all subsets in program/code?  

// return true if there is a subset of numbers taken from n[0…len-1] 
//  that adds up to K 
bool AddUpToK (n[], int len, int K) 

• K=100, len=9, n:  

K-Sum Problem
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• bool AddUpToK (n[], n_len, int K) 
• K=100, n_len=9,   n:   

• Think recursively!  
• (base case) for what inputs do you know the answer 

right away?   
•

K-Sum Problem

 62

22  34   18   30  76   1   3   19  80 
0     1      2     3       4     5     6     7    8  



• bool AddUpToK (n[], len, int K) 
• K=100, len=9 n:   

• Think recursively!  
• (general case) for a general input, how to reduce it to 

smaller problem(s)? 
• Hint: try to make one single decision first? 
•

K-Sum Problem
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• bool AddUpToK (n[], len, int K) 
• K=100, len=9 n:   

• Think recursively!  
• (general case) for a general input, how to reduce it to 

smaller problem(s)? 
• Decision: include last number, n[len-1], or not?  

• if included it, then we need to see if we can add up to K-n[len-1] 
using the rest of the numbers 

• if not, we need to see if we can add up to K using the rest of the 
numbers.   
• How to solve two smaller subproblems?  

• If either one returns true, return true

K-Sum Problem
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bool AddUpToK (int n[], int len, int K)  
{   //base cases  

if K==0 return true 
if K>0 and len==0 return false  

    
   // general case: consider include last number, or not?  

if  ( AddUpToK (n, len -1, K-n[len-1]) ) 
     return true;     //we can make K by including last num…  
else  
     if (AddUpToK (n, len-1, K)) 
          return true; //we can make K without using n[len-1] 
 else  
      return false;  //not possible  
}

K-Sum Problem
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bool AddUpToK (int n[], int len, int K)  
{   //base cases  

if K==0 return true 
if K>0 and len==0 return false  

    
   // general case: consider include last number, or not?  

if  ( AddUpToK (n, len-1, K-n[len-1]) ) 
     return true;     //we can make K by including last num…  
else  
     if (AddUpToK (n, len-1, K)) 
          return true; //we can make K without using n[len-1] 
 else  
      return false;  //not possible  
}

K-Sum Problem
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/*whether there is a subset of these numbers that add up to K, and output one such subset */ 
bool AddUpToK_Tabulation (int numbers[], int num_len, int K)  
{   bool C[K+1][num_len+1];  
      // C[k][n]: can we add up to k using  numbers[1…n]  

 for n=0 to num_len C[0][n] = 0 // if K==0 return true 
 for k=1 to K C[k][0] = false  
   
 //fill in array row by row, left to right 
 for k=1 to K  
     for n=1 to num_len 

        if C[k][n-1]==true C[k][n]=true  //we can make k without last number 

        //otherwise, can we include numbers[n] to make k? 
        else if k==numbers[n]  
             C[k][n] = true; 

    else  if k>numbers[n] and C[k-numbers[n]][n-1]==true 
         C[k][n] = true; 
    else //k<numbers[n] or cannot make k-numbers[n] using numbers[1…n-1] 

    C[k][n] = false 
  return C[K][num_len]; 
}

K-Sum Problem: tabulation
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