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Outline

• Introduction via example: Fibonacci, rod 
cutting

• Characteristics of problems that can be solved 

using dynamic programming

• Unlimited Knapsack problem 


• Two dimensional problem spaces

• Longest common subsequence

• Matrix chain multiplication 


• Summary 
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Dynamic Programming
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• Optimal substructure: (Optimal) solution to a 

problem of size n incorporates (optimal) 
solutions to problems of smaller size (n-1, n-2).


• Recursive calling tree shows overlapping of 
subproblems


• i.e., same subproblems are called multiple times 

• Idea: avoid recomputing subproblems


• store subproblem solutions in memory/table 
(hence “programming”) 


• Two approaches:

• Memoization: recursive with a table

• Tabulation: non-recursive with a table (tabulation)

Dynamic Programming: ideas
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• A company buys long steel rods (of length n), cuts 
them into shorter ones to sell

• integral length only

• Selling price for rods of different length:


• Goal: find maximum (possible) total revenue from 
selling these rods (and how to achieve it).

Rod Cutting Problem
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• Input: length of given rod, n; and p[i], selling price of rod of 
length i, e.g., 


• Output: maximal profit over all possible ways to cut n to 
shorter pieces and sell


• e.g., for n=4, we could cut it in five ways: 

• {4}: do not cut ==> profit: $9

• {3,1}  ==> $8+$1=$9

• {2,2} ==> $10   <<== this is the maximal profit!

• {2,1,1} ==> $7

• {1,1,1,1}==> $4

Rod Cutting Problem
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multiset:
allow 
duplicate,
order 
does not 
matter



Solution Space
•  One way: first enumerate all possible ways to cut , then 

evaluate each possible ways to pick one with highest total 
selling price


• How to enumerate all possible ways to cut n?

• A combinatorial problem… 
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• Another way: optimize recursively, find optimal 
solution to sub-problem directly, and use them to 
solve original problem

• A recursive algorithm that return optimal solution


/*return maximum profit achievable with a rod of length n 

by checking all possible ways of cutting n into rods of length i= 
1, 2, …, k and selling them for p[i] */

Int CutRod (n, p[1…k])

/*

Base case: smallest problem(s) that we can solve trivially 


General case: 

  How to reduce problem to smaller problems? */

Optimize recursively
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/*return maximum profit achievable with a rod of length n 

by checking all possible ways of cutting n into rods of length i= 
1, 2, …, k and selling them for p[i] */

Int CutRod (n, p[1…k])

/*

How to reduce the problem to smaller problems, general case?

Hint: use decision tree. 


*/ 

Optimize recursively
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//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

 {  //What’s the smallest problem(s) that we can solve trivially? 


  if n==0   return 0

  if n==1     return p[1]


 //general case 

 curMax=0

 for c1=1, 2, 3, … ,  min (n, k) {

      //c1: consider the first rod to cut out and sell:


  curProfit = p[c1] + CutRod (n-c1,p)

  If (curProfit > curMax)

       curMax = curProfit

}


return curMax

}

Optimal Substructure 

=> recursive solution
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What if we remove n=1 
from base case?



          


• Optimal substructure: Optimal solution to a 
problem of size n incorporates optimal solutions 
to problems of smaller size (n-1, n-2,… ). 

Optimal substructure
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Recursive Tree for CutRod(n=4, p)
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How many times CutRod (2) is called?
How about CutRod(1)?  

  



Overlapping of Subproblems 
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• Recursive calling tree shows 
overlapping of subproblems

• i.e., n=4 and n=3 share 

overlapping subproblems 
(2,1,0)


• Idea: avoid recomputing 
subproblems again and again

• store subproblem solutions in 

memory/table (hence 
“programming”) 



DP with Memoization
• Improve recursive solution by storing subproblem solution 

in a table

• when need solution of a subproblem, check if it has been 

solved before, 

• if not, calculate it and store result in table

• if yes, access result stored in table 



//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

 {  //What’s the smallest problem(s) that we can solve trivially? 


  if n==0   return 0

  if n==1     return p[1]


 //general case 

 curMax=0

 for c1=1, 2, 3, … ,  min (n, k) {

      //c1: consider the first rod to cut out and sell:


  curProfit = p[c1] + CutRod (n-c1,p)

  If (curProfit > curMax)

       curMax = curProfit

}


return curMax

}

Recursion=> Memoization
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What kind of table? 

Where to allocate the table? 

Where to update table entry?

When to look up the table entry?



//return max. profit one can make with a rod of length n

CutRod (n, p[1…k])

1.        create an array r[1…n], filled with -1 (indicate “not calculated yet”)

2.        CutRodHelper (n, p, r)


CutRodHelper (n, p[1…k], r[])

1. if r[n] >=0 return r[n]  //if it has been calculated already

2.  // no need to recalculate, return the stored result

3.    

4. if n==0 return 0 //base case

5. //general case 

6. curMax=0

7. for  c1=1, 2, 3, … ,  min (n, k)

8.          curProfit = p[c1] + CutRodHelper (n-c1)

9.          curMax = max(curProfit, curMax)

10.    

11. r[n]= curMax   //save result in r[] for future reference

12. return curMax

Memoization illustrated in code
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DP:Tabulation

• Tabulation

• Iteratively solve smaller problems first, move the 

way up to larger problems 

• bottom-up method: as we solve smaller 

problems first, and then larger and larger one

• => when solving a problem, all subproblems 

solutions that are needed have already been 
calculated 



//return max. profit one can make with a rod of length n

1. CutRodBottomUp (n, p[1…k])

2.     create an array r[1…n] //store subproblem solutions 

3.     r[0] = 0

4.     for i=1 to n  // solve smaller problems first … 

5.          // calculate ri , max revenue for rod length i     

6.         curMax=0

7.         for  c1=1, 2, 3, … ,  min (i, k)

8.              curProfit = p[c1]+ r[i-c1]

9.              curMax = max(curProfit, curMax)

10.        r[i]= curMax   //save result in r[] for future reference

11. 

12. return r[n]

Bottom-up

￼18



Recap

• We analyze rod cutting problem

• Two characteristics of problems that can benefit 

from dynamic programming:

• optimal substructure: a recursive formular 


• overlapping subproblems 

￼19

rn = max
c1=1,2...min{n,k}

{p[c1] + rn−c1
}



Recap (2)

• How dynamic programming works:

• Memoization: recursion with table

• Tabulation: iteratively solve all possible 

subproblems, and work our way from small 
problems to large problems
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//return max. profit one can make with a rod of length n

CutRodTopLevel (n, p[1…k])

1.        create an array r[1…n], filled with -1 (indicate “not calculated yet”)

2.        CutRodHelper (n, p, r)


CutRod (n, p[1…k], r[])

1. if r[n] >=0 return r[n]  //if it has been calculated already

2.  // no need to recalculate, return the stored result

3.    

4. if n==0 

5.      r[0] = 0

6.       return 0 //base case

7. //general case 

8. curMax=0

9. for  c1=1, 2, 3, … ,  min (n, k)

10.          curProfit = p[c1] + CutRod (n-c1, p, r)

11.          curMax = max(curProfit, curMax)

12.    

13. r[n]= curMax   //save result in r[] for future reference

14. return curMax

Tracing: CutRod(n=3,p)

￼21

Tracing with n=3

table r :

c1
curProfit
curMax



//return max. profit one can make with a rod of length n

CutRodBottomUp (n, p[1…k])

{

    create an array r[1…n] //store subproblem solutions 

    r[0] = 0

    for i=1 to n  // solve smaller problems first … 

         // calculate ri , max revenue for rod length i     

        curMax=0

        for  c1=1, 2, 3, … ,  min (i, k)

             curProfit = p[c1]+ r[i-c1]

             curMax = max(curProfit, curMax)

        r[i]= curMax   //save result in r[] for future reference

 

 return r[n]

}

Tabulation: Tracing n=5

￼22



//return max. profit one can make with a rod of length n

CutRodBottomUp (n, p[1…k])

{

    create an array r[1…n] //store subproblem solutions 

    r[0] = 0

    for i=1 to n  // solve smaller problems first … 

         // calculate ri , max revenue for rod length i     

        curMax=0

        for  c1=1, 2, 3, … ,  min (i, k)

             curProfit = p[c1]+ r[i-c1]

             curMax = max(curProfit, curMax)

        r[i]= curMax   //save result in r[] for future reference

 

 return r[n]

}

Cutting that achieves max profit?
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Outline

• Introduction via example: Fibonacci, rod 
cutting

• Characteristics of problems that can be solved 

using dynamic programming

• Knapsack: with repetition


• Two dimensional problem spaces

• Longest common subsequence

• Matrix chain multiplication 


• Summary 
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• Given:

• A backpack with weight capacity of W

• n different types of objects, i-th type of objects weighs w[i] 

and has a value of v[i]

• there are infinite quantities of each object type


• What to put into backpack so that total value is maximized 
and total weights <= W


e.g.,  W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}


Knapsack Problem
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Input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Output: maximum value achievable, assuming there is infinity 
amount of each object. 

Knapsack Problem
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For what value of W you know the answer 
directly? 


For a larger W, how can you reduce it to 
smaller problems? 




• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) 
with weights and values given by array w[ ], v[ ] 


• Output: objects so that total value is maximized and total weights <= W 


• Let Vk be max total value possible when weight capacity is k

• Recursive formula for Vk


input: W=13, w[4]={5,3,8,4}, v[4]={10,20,25,8}

Output: maximum value achievable, assuming there is infinity amount of each object. 

Optimal substructure in Knapsack 
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• Input: weight capacity of a knapsack, W; n different objects (of infinite quantities) with weights 
and values given by array w[ ], v[ ] 


• Output: objects so that total value is maximized and total weights <= W 


• Let Vk be max total value possible when weight capacity is k


               


• What’s the set of objects (multi-set) that achieve Vk?


• The first obj i chosen that achieves the max value above 


• and then object i1 chosen for weight capacity k-w[i]


• and then object i2 chosen for weight capacity k-w[i]-w[i1]


• … until the weight capacity ==0 or < min(w)


•  Use a table obj[]


• obj[k] store the first object to chose when capacity is k (the one that maximize …)

Knapsack: extension 
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Optimal substructure
• Optimal substructure: Optimal solution to a 

problem of size n incorporates optimal solution to 
problem of smaller size (1, 2, 3, … n-1). 


• Rod cutting: find rn (max. revenue for rod of len n) 


 rn = max (p[1]+rn-1, p[2]+rn-2, p[3]+rn-3,…, p[n-1]+r1, p[n])

• A recurrence relation (recursive formula)


• => Dynamic Programming: Build an optimal solution 
to the problem from solutions to subproblems 

• We solve a range of sub-problems as needed 
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Sol to problem
instance of size n

Sol to problem
instance of size n-1, n-2, … 1 



Outline

• Introduction via example: rod cutting

• Characteristics of problems that can be solved 

using dynamic programming

• Two dimensional problem spaces


• 0/1 Knapsack (i.e., without repetition)

• Minimum Edit Distance 

• Matrix chain multiplication 


• Summary 
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• Given 

• a weight capacity of a knapsack, W

• n different objects (one of each): with weights and 

values given by arrays w[ ], v[ ] 

• finding a subset of objects … 


• Goal: choose a subset of objects so that total value is 
maximized and total weights <= W 


• Plan:

• Recall you solved this problem in Lab4

• Pure recursive solution

• use memoization or tabulation to improve

Knapsack without repetition
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/*  Output max. value achievable 

@param W: given weight capacity, >=0

@ param n: we can choose from first n obj 

@param w, v: weights and values 

@return max value achievable from the first n obj under W

*/

Knapsack_Norepeat (W, w, v, n)

{

    if W==0 or n == 0      //base case

         [                                        ] //fill in the blank


    /* general case */

    if (w[n-1] > W) // the last obj is too heavy … 

        


   else  { //The last obj can fit 

       //option 1: if we include n-1-th obj, what’s the max value achievable … 

        


      //option 2: if we don’t include (n-1)-th obj at all, what’s the max value achievable? 

      // Which option is better? 

}

￼32

Recursion Solution
Let’s fill in the blank



DP/Memoization vs Pure Recursion
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Memoization Pure Recursion

How does it work?

Solve    
subproblems only 

if needed

Recursion 
overhead?

When to choose 
it?



Memoization vs Tabulation
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Memoization Tabulation

How does it work?

Solve    
subproblems only if 

needed

Recursion 
overhead?

When to choose it?



Outline
• Introduction via example: rod cutting

• Characteristics of problems that can be solved 

using dynamic programming

• More one dimensional examples 


• Knapsack with repetition

• Two dimensional problem spaces


• Knapsack without repetition

• Longest common subsequence

• Matrix chain multiplication (skipped)


• Summary 
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Longest Common Subsequence
• Given a sequence, X=<x1, x2, …, xm>, where each xi is a letter 

from a certain alphabet,  a subsequence of X is a sequence of 
elements taken in order from X but not necessarily consecutive


• Example: 

• X = <A, B, C, B, D, A, B>

• <A, B, D>, <B, C, D, B>, <A>, <>, <A,B,C,B,D,A,B> are 

subsequence of X

• <A, C, C>, <B, B, C> are not subsequence of X


• How many possible subsequences are there for X? 


• Denote length of a sequence X by |X|, which is the number of 
letters in sequence 


• e.g., X = <A, B, C, B, D, A, B>, |X|=7



Longest Common Subseq.

• Given two sequences

X=<x1,x2,…,xm>, Y=<y1,y2,…yn>


• Find a longest common subsequence (in short, LCS) 
of X and Y, i.e., a sequence that 

• is a subsequence of X, and is a subsequence of Y

• and is no shorter than any other common subsequences 

of X and Y 



LCS examples

X = <A, B, C, B, D, A, B>       X = 〈A, B, C, B, D, A, B〉

Y = <B, D, C, A, B, A〉         Y = 〈B, D, C, A, B, A〉

• 〈B, C, B, A〉 and 〈B, D, A, B〉 are both longest common 
subsequences of X and Y (length = 4) 
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LCS examples

2.  X = <A, A, C, A, G, T, T, A, C, C>, 


    Y = <T, A, A, G, G, T, C, A>


    What’s the LCS of these two sequences?
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Brute-Force Solution
1. /* Check every subsequence of X[1 . . m] to see if it is also a subsequence of Y[1 .. n]. */ 

2. LCS (X, Y) 

3. { 

4.     for each of 2m subsequence, s, of X 

5.         //check if s is a subsequence of Y, O(n) time 

6.           k = |s|  //k is length of s 

7.           j = 1  //used to scan through Y 

8.          

9.          for i=1 to k. //for each letter in s, finds a matching char in Y

10.                while ( Y[j]!=s[i] and j<=n) 

11.                     j++                // scan Y for a letter matching s[i] 

12.               if j>n   // cannot match s[i]  

13.                       break and s not a subsequence Y

14.        

15.         s is subsequence of Y, update longest 

16.      

17.}


Worst-case running  time: O(n2m)
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Sequence Prefix 
• Given a sequence X = <x1, x2, …, xm>, 

• Def: i-th prefix of X,  Xi = <x1, x2, …, xi>


• Practice:  X = <A, B, C, B, D, A, B>, 

• what’s X2, X4, X0, X7?
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Thinking about subproblems
How to calculate LCS?  

X= A  B  C  D 

Y= E  A  C  F  D


• Assuming subproblems have been solved, i.e., LCS of prefix of X and Y 
have been found… 
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Thinking about subproblems
How to calculate LCS?  

X= A  B  C  A  D 

Y= E  A  C  D  E 


•Assuming subproblems have been solved, i.e., 

LCS of prefix of X and Y have been found… 
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Recursive Solution. Case 1
/* Return a longest subsequence of X, Y

@param X: is a sequence 

@param Y: is a sequence

@return the longest common subsequence of X and Y*/

LCS (X, Y)

{

   m = |X|, n = |Y|

   if X[m] ==Y[n]


    /* X = 〈A, B, D, E〉

	 	  Y = 〈Z, B, E〉.   */

• Todo: find a LCS of Xm-1 and Yn-1, (here, X3 =<A, B, D>, and Y2 = <Z, 

B>)

• append X[m] to the end to get LCS of Xm, Yn ￼44



Recursive Solution. Case 2
if  X[m] != Y[n]


   e.g.,  X = 〈A, B, D, G〉

	 	 Y = 〈Z, B, D〉

• Must solve two subproblems

   LCS(X, Y) = Longer { LCS(Xm - 1, Y),

LCS (X, Yn-1)} 

￼45

This G and D cannot
be both in LCS

If we ignore last element in X

If we ignore last element in Y



/* Return a longest subsequence of X, Y

@param X: is a string 

@param Y: is a string

@return the longest common subsequence of X and Y*/

LCS (X, Y)

{

     m=|X|, n=|Y| 

     if (|X| == 0 or |Y|==0) return “ “; //empty string 

     //general case

     // can we match last letters of X and Y? 

     if X[m] == Y[n]

             return LCS(Xm-1,Yn-1)+X[m]  //concatenated with last letter

      else

            // X[m] and Y[n] cannot be both in LCS

            s1 = LCS(Xm-1,Yn) //  X[m] is not in LCS

            s2 = LCS(Xm, Yn-1) //Y[n-1] is not in LCS 

            return longer one among s1 and s2 

}
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X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions? 

Here we need to calculate prefix (Xm-1, Yn-1), and pass them to recursive calls



/* Return the longest subsequence of X, Y

@param X : is a string 

@param Y: is a string

@return the longest common subsequence of Xm and Yn*/

LCS (X, Y, m, n )

{

     if (m== 0 or n==0) return “ “; //empty string 

     //general case

     // can we match last letters of X and Y? 

     if X[m] == Y[n]

             return LCS(X,Y, m-1, n-1)+X[m]  //concatenated with last letter

      else

            // X[m] and Y[n] cannot be both in LCS

            s1 = LCS(X, Y, m-1, n )

            s2 = LCS(X, Y, m, n-1) 

            return longer of s1 and s2 

}


// keep X, Y as they are, use parameters to specify prefix length 

// subproblem’s size is given by m and n, at least one dimension is decreased 
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X = 〈A, B, D, E〉
Y = 〈Z, B, E〉

X = 〈A, B, D, G〉
Y = 〈Z, B, D〉

Recursion

Three Questions? 



Optimal substructure & 

Overlapping Subproblems

• A recursive solution contains a “small” number of distinct 
subproblems repeated many times.

• e.g., LCS (5,5) depends on LCS(4,4), LCS(4,5), LCS(5,4)

• Exercise: Draw subproblem dependence graph


• each node is a subproblem

• directed edge represents “calling”, “uses solution of” relation 


• Small number of distinct subproblems:

• total number of distinct LCS subproblems for two 

strings of lengths m and n is mn.
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Tabulation to avoid recalculation
• Given two sequences X = 〈x1, x2, …, xm〉, Y = 〈y1, y2, …, yn〉

• To ease tracing, we focus on finding length of LCS


c[i, j] = | LCS (Xi, Yj) |   

// length of LCS of i-th prefix of X and j-th prefix of Y 
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	 	 c[i-1, j-1] + 1	 	 if X[i]= Y[j]

c[i, j] =


	 	 max(c[i, j-1], c[i-1, j])	 otherwise (i.e., if X[i] ≠ Y[j])


                  0,  if i=0 or j=0



Tabulation

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y      A      B    C     B    D    A     B   
X


B    


D   


C  


A   


B


A

LCS (X, Y)

    X=<B, D, C, A, B, A>

    Y=<A, B, C, B, D, A, B>

   |X|=6, |Y|=7


 c is 7x8  array


 Goal: calculate C[6,7] 
(bottom right corner) 
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0       1         2        3         4       5       6        7   

0


1    


2   


3  


4   


5


6

C[3,4]= length of LCS (X3, Y4)

= Length of LCS (BDC, ABCB)


3rd row, 4th column element



Bottom-Up 

C[2,3] C[2,4]

C[3,3]
C[3,4]

Y      A      B    C     B    D    A     B   
X


B    


D   


C  


A   


B


A

Initialization: base case 
c[i,j] = 0 if i=0, or j=0


//Fill table row by row

//  from left to right

for (int i=1; i<=m;i++)

    for (int j=1;j<=n;j++)

       Calculate c[i,j] 


return c[m, n]


Running time = Θ(mn)
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0       1         2        3         4       5       6        7   

0


1    


2   


3  


4   


5


6C[3,4]= length of LCS (X3, Y4)

= Length of LCS (BDC, ABCB)


3rd row, 4-th column element



Dynamic-Programming Algorithm
A    B    C   B   D   A   B   

B    


D   


C  

A   


B


A

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

1 1 1 2 2 20 0

1 2 2 2 2 20 0

1 2 2 2 3 30 1

2 2 3 3 3 40 1

2 2 3 3 4 40 1

Reconstruct LCS 
by tracing 
backward:

 

Where do we get value 
of C[i,j] from? 
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A

Output
B

Output
C

Output
B



Remark

• Longest common subsequence algorithm is 
similar to 

• minimum edit distance problem (used by spell 

checker to suggest a correction)


• Needleman-Wansh Alg. (used in bioinformatics 
to align protein or nucleotide sequences) ￼53



Matrix
Matrix:  a 2D (rectangular) array of numbers, symbols, or 
expressions, arranged in rows and columns.


	 e.g., a 2 × 3 matrix (there are two rows and three columns)


Each element of a matrix is denoted by a variable with two 
subscripts, a2,1 element at second row and first column of a 
matrix A.


   an m × n matrix A: 

￼54



Matrix Multiplication: 

Matrix Multiplication

￼55

Dimension of A, B, and A x B?

Total (scalar) multiplication: 4x2x3=24  

Total (scalar) multiplication: n2xn1xn3 



Multiplying a chain of Matrix 
Multiplication

Given a sequence/chain of matrices, e.g., A1, A2, A3,  there are 
different ways to calculate A1A2A3


1. (A1A2)A3)


2. (A1(A2A3))


Dimension of A1: 10 x 100


                      A2: 100 x 5


                      A3: 5 x 50


all yield the same result 


But not same efficiency
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Matrix Chain Multiplication
Given a chain <A1, A2, … An> of matrices,  where matrix Ai has 
dimension pi-1x pi, find optimal fully parenthesize product A1A2…
An that minimizes number of scalar multiplications.


Chain of matrices  <A1, A2, A3, A4>: five distinct ways


   A1: p1 x p2       A2: p2 x p3     A3: p3 x p4       A4: p4 x p5

￼57

# of multiplication: p3p4p5+ p2p3p5+ 
p1p2p5

Find the one with minimal multiplications?



Matrix Chain Multiplication
• Given a chain <A1, A2, … An> of matrices,  where matrix Ai has 

dimension pi-1x pi, find optimal fully parenthesize product 
A1A2…An that minimizes number of scalar multiplications.


• Let m[i, j] be the minimal # of scalar multiplications needed to 
calculate AiAi+1…Aj   (m[1…n]) is what we want to calculate) 


• Recurrence relation: how does m[i…j] relate to smaller 
problem 

• First decision: pick k (can be i, i+1, …j-1) where to divide AiAi+1…Aj 

into two groups: (Ai…Ak)(Ak+1…Aj)


• (Ai…Ak) dimension is pi-1 x pk, (Ak+1…Aj) dimension is pk x pj
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Summary

• Keys to DP

• Recursive algorithm => optimal Substructure

• overlapping subproblems


• Write recurrence relation for subproblem: i.e., 
how to calculate solution to a problem using sol. 
to smaller subproblems


• Implementation: 

• memoization (table+recursion)

• bottom-up table based (smaller problems first) 


• Insights and understanding comes from 
practice!
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• Given a list of integers, and an integer K

• Is there a subset of these numbers that adds up to K?


• e.g., cannot use a number more than once 

• Discussion: brute force approach? 


• How many subsets are there? 

• How to enumerate all subsets in program/code? 


// return true if there is a subset of numbers taken from n[0…len-1]

//  that adds up to K

bool AddUpToK (n[], int len, int K)


• K=100, len=9, n:  

K-Sum Problem
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• bool AddUpToK (n[], n_len, int K)

• K=100, n_len=9,   n:  


• Think recursively! 

• (base case) for what inputs do you know the answer 

right away?  

•

K-Sum Problem
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• bool AddUpToK (n[], len, int K)

• K=100, len=9 n:  


• Think recursively! 

• (general case) for a general input, how to reduce it to 

smaller problem(s)?

• Hint: try to make one single decision first?

•

K-Sum Problem
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• bool AddUpToK (n[], len, int K)

• K=100, len=9 n:  


• Think recursively! 

• (general case) for a general input, how to reduce it to 

smaller problem(s)?

• Decision: include last number, n[len-1], or not? 


• if included it, then we need to see if we can add up to K-n[len-1] 
using the rest of the numbers


• if not, we need to see if we can add up to K using the rest of the 
numbers.  

• How to solve two smaller subproblems? 


• If either one returns true, return true

K-Sum Problem
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bool AddUpToK (int n[], int len, int K) 

{   //base cases 


if K==0 return true

if K>0 and len==0 return false 


   

   // general case: consider include last number, or not? 


if  ( AddUpToK (n, len -1, K-n[len-1]) )

     return true;     //we can make K by including last num… 

else 

     if (AddUpToK (n, len-1, K))

          return true; //we can make K without using n[len-1]

 else 

      return false;  //not possible 

}

K-Sum Problem
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bool AddUpToK (int n[], int len, int K) 

{   //base cases 


if K==0 return true

if K>0 and len==0 return false 


   

   // general case: consider include last number, or not? 


if  ( AddUpToK (n, len-1, K-n[len-1]) )

     return true;     //we can make K by including last num… 

else 

     if (AddUpToK (n, len-1, K))

          return true; //we can make K without using n[len-1]

 else 

      return false;  //not possible 

}

K-Sum Problem
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Draw recursion tree for AddUpToK (n,9,100)


Overlapping subproblems?



/*whether there is a subset of these numbers that add up to K, and output one such subset */

bool AddUpToK_Tabulation (int numbers[], int num_len, int K) 

{   bool C[K+1][num_len+1]; 

      // C[k][n]: can we add up to k using  numbers[1…n] 


 for n=0 to num_len C[0][n] = 0 // if K==0 return true

 for k=1 to K C[k][0] = false 

  

 //fill in array row by row, left to right

 for k=1 to K 

     for n=1 to num_len


        if C[k][n-1]==true C[k][n]=true  //we can make k without last number


        //otherwise, can we include numbers[n] to make k?

        else if k==numbers[n] 

             C[k][n] = true;


    else  if k>numbers[n] and C[k-numbers[n]][n-1]==true

         C[k][n] = true;

    else //k<numbers[n] or cannot make k-numbers[n] using numbers[1…n-1]


    C[k][n] = false

  return C[K][num_len];

}

K-Sum Problem: tabulation
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