
CISC 4090: Theory of Computation
Chapter 1

Regular Languages

Xiaolan Zhang, adapted from slides by Prof. Werschulz

Fordham University
Department of Computer and Information Sciences

Spring, 2014

1 / 95

Section 1.1: Finite Automata

2 / 95

What is a computer?

I Not a simple question to answer precisely
I Computers are quite complicated

I We start with a computational model
I Different models will have different features, and may match a

real computer better in some ways, and worse in others

I Our first model is the finite state machine or finite state
automaton

3 / 95

Finite automata

Models of computers with extremely limited memory

I Many simple computers have extremely limited memories and
are (in fact) finite state machines.

I Can you name any? (Hint: several are in this building, but
have nothing specifically to do with our department.)

I Vending machine
I Elevators
I Thermostat
I Automatic door at supermarket

4 / 95

Automatic door

I What is the desired behavior? Describe the actions and then
list the states.

I Person approaches, door should open
I Door should stay open while person going through
I Door should shut if no one near doorway
I States are Open and Closed

I More details about automatic door
I Components: front pad, door, rear pad
I Describe behavior now:

I Hint: action depends not only on what happens, but also on
current state

I If you walk through, door should stay open when you’re on
rear pad

I But if door is closed and someone steps on rear pad, door
does not open

5 / 95

Automatic door (cont’d)

closed open

rear, both, neither

front

front, rear, both

neither

neither front rear both

closed closed open closed closed
open closed open open open

6 / 95

More on finite automata

I How may bits of data does this FSM store?
I 1 bit: open or closed

I What about state information for elevators, thermostats,
vending machines, etc.?

I FSM used in speech processing, special character recognition,
compiler construction . . .

I Have you implemented an FSM? When?
I Network protocol for the game “Hangman”

7 / 95

A finite automaton M1

q1 q2 q3

0

1

1

0

0,1

Finite automaton M1 with three states:
I We see the state diagram

I Start state q1

I Accept state q2 (double circle)
I Several transitions

I A string like 1101 will be accepted if M1 ends in accept state,
and rejects otherwise. What will it do?

I Can you describe all strings that M1 will accept?
I All strings ending in 1, and
I All strings having an even number of 0’s following the final 1

8 / 95

Formal definition of finite state automata

A finite (state) automaton (FA) is a 5-tuple (Q,Σ, δ, q0,F):

I Q is a finite set of states

I Σ is a finite set, called the alphabet

I δ : Q × Σ→ Q is the transition function

I q0 ∈ Q is the start state

I F ⊆ Q is the set of accepting (or final) states.

9 / 95

Describe M1 using formal definition

q1 q2 q3

0

1

1

0

0,1

M1 = (Q,Σ, δ, q0,F), where
I Q = {q1, q2, q3}
I Σ = {0, 1}
I q1 is the start state
I F = {q2} (only one accepting state)
I Transition function δ given by

δ 0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

10 / 95

The language of an FA

I If A is the set of all strings that a machine M accepts, then A
is the language of M.

I Write L(M) = A.
I Also say that M recognizes or accepts A.

I A machine may accept many strings, but only one language.

I Convention: M accepts strings but recognizes a language.

11 / 95

What is the language of M1?

I We write L(M1) = A, i.e., M1 recognizes A.
I What is A?

I A = {w ∈ {0, 1}∗ : . . . }.
I We have

A =
{

w ∈ {0, 1}∗ : w contains at least one 1

and an even number of 0’s follow the last 1
}

12 / 95

What is the language of M2?

q1 q2

0

1

1

0

M2 = {{q1, q2}, {0, 1}, δ, q1, {q2}} where

I I leave δ as an exercise.
I What is the language of M2?

I L(M2) = { w ∈ {0, 1}∗ : . . . }.
I L(M2) = { w ∈ {0, 1}∗ : w ends in a 1 }.

13 / 95

What is the language of M3?

q1 q2

0

1

1

0

I M3 = {{q1, q2}, {0, 1}, δ, q1, {q1}} is M2, but with accept
state set {q1} instead of {q2}.

I What is the language of M3?
I L(M3) = { w ∈ {0, 1}∗ : . . . }.
I Guess L(M3) = { w ∈ {0, 1}∗ : w ends in a 0 }.

Not quite right. Why?
I L(M3) = { w ∈ {0, 1}∗ : w = ε or w ends in a 0 }.

14 / 95

What is the language of M4?

I M4 is a five-state automaton (Figure 1.12 on page 38).
I What does M4 accept?

I All strings that start and end with a or start and end with b.
I More simply, L(M4) is all strings starting and ending with the

same symbol.
I Note that string of length 1 is okay.

15 / 95

Construct M5 to do modular arithmetic

I Let Σ = {〈reset〉, 0, 1, 2}.
I Construct M5 to accept a string iff the sum of each input

symbol is a multiple of 3, and 〈reset〉 sets the sum back to 0.

16 / 95

Now generalize M5

I Generalize M5 to accept if sum of symbols is a multiple of i
instead of 3.

M = {{q0, q1, q2, . . . , qi−1}, {0, 1, 2, 〈reset〉}, δi , q0, {q0}} ,

where
I δi (qj , 0) = qj .
I δi (qj , 1) = qk , where k = j + 1 mod i .
I δi (qj , 2) = qk , where k = j + 2 mod i .
I δi (qj , 〈reset〉) = q0.

I Note: As long as i is finite, we are okay and only need finite
memory (number of states).

I Could you generalize to Σ = {0,1, 2, . . . , k}?

17 / 95

Formal definition of acceptance

Let M = (Q,Σ, δ,Q0,F) be an FA and let w = w1w2 . . .wn ∈ Σ∗.
We say that M accepts w if there exists a sequence
r0, r1, . . . , rn ∈ Q of states such that

I r0 = q0.

I δ(ri ,wi+1) = ri+1 for i ∈ {0, 1, . . . , n − 1}
I rn ∈ F .

18 / 95

Regular languages

A language L is regular if it is recognized by some finite
automaton.

I That is, there is a finite automaton M such that L(M) = A,
i.e., M accepts all of the strings in the language, and rejects
all strings not in the language.

I Why should you expect proofs by construction coming up in
your next homework?

19 / 95

Designing automata

I You will need to design an FA that accept a given language L.
I Strategies:

I Determine what you need to remember (The states).
I How many states to determine even/odd number of 1’s in an

input?
I What does each state represent?

I Set the start and finish states, based on what each state
represents.

I Assign the transitions.
I Check your solution: it should accept every w ∈ L, and it

should not accept any w 6∈ L.
I Be careful about ε.

20 / 95

You try designing FA

I Design an FA to accept the language of binary strings having
an odd number of 1’s (page 43).

I Design an FA to accept all strings containing the
substring 001 (page 44).

I What do you need to remember?

I Design an FA to accept strings containing the substring abab.

21 / 95

Regular operations

Let A and B be languages. We define three regular operations:

I Union: A ∪ B = { x : x ∈ A or x ∈ B }.
I Concatenation: A · B = { xy : x ∈ A and y ∈ B }.
I Kleene star: A∗ = { x1x2 . . . xk : k ≥ 0 and each xi ∈ A }.

I Kleene star is a unary operator on a single language.
I A∗ consists of (possibly empty!) concatenations of strings

from A.

22 / 95

Examples of regular operations

Let A = {good, bad} and B = {boy, girl}. What are the
following?

I A ∪ B = {good, bad, boy, girl}.
I A · B = {goodboy, goodgirl, badboy, badgirl}.
I A∗ =
{ε, good, bad, goodgood, goodbad, badgood, badbad, . . . }.

23 / 95

Closure

I A set of objects is closed under an operation if applying that
operations to members of that set always results in a member
of that set.

I The natural numbers N = {1, 2, . . . } are closed under
addition and multiplication, but not subtraction or division.

24 / 95

Closure for regular languages

I Regular languages are closed under the three regular
operations we just introduced (union, concatenation, star).

I Can you look ahead to see why we care?

I We can build FA to recognize regular expressions!

25 / 95

Closure of union

Theorem 1.25: The class of regular languages is closed under the
union operation. That is, if A1 and A2 are regular languages, then
so is A1 ∪ A2.
How can we prove this?

I Suppose that M1 accepts A1 and M2 accepts A2.

I Construct M3 using M1 and M2 to accept A1 ∪ A2.
I We need to simulate M1 and M2 running in parallel, and stop

if either reaches an accepting state.
I This last part is feasible, since we can have multiple accepting

states.
I You need to remember where you are in both machines.

26 / 95

Closure of union (cont’d)

I You need to generate a state to represent the state you are in
with M1 and M2.

I Let Mi = (Qi ,Σ, δi , qi ,Fi) for i ∈ {1, 2}.
I Build M = (Q,Σ, δ, q,F) as follows:

I Q = Q1 × Q2 = { (r1, r2) : r1 ∈ Q1 and r2 ∈ Q2 }.
I Σ is unchanged. (Note that if Mi used Σi for i ∈ {1, 2}, we

could have chosen Σ = Σ1 ∪ Σ2.)
I q0 = (q1, q2).
I F = { (r1, r2) : r1 ∈ F1 or r2 ∈ F2 }.
I δ
(
(r1, r2), a

)
=
(
δ(r1, a), δ(r2, a)

)
.

27 / 95

Closure of concatenation

Theorem 1.26: The class of regular languages is closed under the
concatenation operator. That is, if A1 and A2 are regular
languages, then so is A1 · A2.
Can you see how to do this simply?
Not trivial, since cannot just concatenate M1 and M2, where the
finish states of M1 becoming the start state of M2.

I Because we do not accept a string as soon as it enters the
finish state, we wait until string is done, so it can leave and
come back.

I Thus we do not know when to start using M2.

I The proof is easy if we use nondeterministic FA.

28 / 95

Section 1.2: Nondeterminism

29 / 95

Nondeterminism

I So far, our FA have been deterministic: the current state and
the input symbol determine the next state.

I In a nondeterministic machine, several choices may exist.

I DFA’s have one transition arrow per input symbol
I NFA’s . . .

I have zero or more transitions for each input symbol, and
I may have an ε-transition.

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

30 / 95

How does an NFA compute?

I When there is a choice, all paths are followed.
I Think of it as cloning a process and continuing.
I If there is no arrow, the path terminates and the clone dies (it

does not accept if at an accept state when this happens).
I An NFA may have the empty string cause a transition.
I The NFA accepts any path is in the the accept state.
I Can also be modeled as a tree of possibilities.

I An alternative way of thinking about this:
I At each choice, you make one guess of which way to go.
I You always magically guess the right way to go.

31 / 95

Try computing this!

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

I Try out 010110.
Is it accepted? Yes!

I What is the language?
Strings containing either 101 or 11 as a substring.

32 / 95

Construct an NFA

I Construct an NFA that accepts all strings over {0, 1}, with a
1 in the third position from the end.

I Hint: The NFA stays in the start state until it guesses that it
is three places from the end.

I Solution?

q1 q2 q3 q4

0,1

1 0,1 0,1

33 / 95

Can we generate a DFA for this?

Yes, but it is more complicated and has eight states.

I See book, Figure 1.32, page 51.

I Each state represents the last three symbols seen, where we
assume we start with 000.

I What is the transition from 010?
I On a 1, we go to 101.
I On a 0, we go to 100.

34 / 95

Formal definition of nondeterministic finite automata

I Similar to DFA, except transition function must work for ε, in
addition to Σ, and a “state” is a set of states, rather than a
single state.

I A nondeterministic finite automaton (NDFA) is a 5-tuple
(Q,Σ, δ, q0,F):

I Q is a finite set of states
I Σ is a finite set, called the alphabet
I δ : Q × Σε →P(Q) is the transition function. (Here,

Σε = Σ ∪ {ε}.)
I q0 ∈ Q is the start state
I F ⊆ Q is the set of accepting (or final) states.

35 / 95

Example of formal definition of NFA

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

NFA N1 = (Q,Σ, δ, q1,F) where

I Q = {q1, q2, q3, q4},
I Σ = {0, 1},
I q1 is the start state,

I F = {q4},

δ 0 1 ε

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

36 / 95

Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages.

I We say two machines are equivalent if they recognize the
same language.

I NFAs have no more power than DFAs:
I with respect to what can be expressed.
I But NFAs may make it much easier to describe a given

language.

I Every NFA has an equivalent DFA.

37 / 95

Proof of equivalence of NFA and DFA

Proof idea:

I Need to simulate an NFA with a DFA.

I With NFAs, given an input, we follow all possible branches
and keep a finger on the state for each.

I That is what we need to track: the states we would be in for
each branch.

I If the NFA has k states, then it has 2k possible subsets.
I Each subset corresponds to one of the possibilities that the

DFA needs to remember.
I The DFA will have 2k states.

38 / 95

Proof by construction

I Let N = (Q,Σ, δ, q0,F) be an NFA recognizing language A.
I Construct a DFA M = (Q ′,Σ, δ′, q′0,F

′).
I Let’s do the easy steps first (skip δ′ for now).
I Q ′ = P(Q)
I q′0 = {q0}.
I F ′ = {R ∈ Q ′ : R contains an accept state of N }.
I Transition function?

I The state R ∈ M corresponds to a set of states in N.
I When M reads symbol a in state R, it shows where a takes

each state.
I δ′(R, a) =

⋃
r∈R

δ(r , a).

I I ignore ε, but taking that into account does not fundamentally
change the proof; we just need to keep track of more states.

39 / 95

Example: Convert an NFA to a DFA

See Example 1.41 on page 57. For now, don’t look at solution
DFA!

I The NFA has 3 states: Q = {1, 2, 3}. What are the states in
the DFA?{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

I What are the start states of the DFA?
I The start states of the NFA, including those reachable by
ε-transitions

I {1, 3} (We include 3 because if we we start in 1, we can
immediately move to 3 via an ε-transition.)

I What are the accept states?{
{1}, {1, 2}, {1, 3}, {1, 2, 3}

}
.

40 / 95

Example: Convert an NFA to a DFA (cont’d)

Now, let’s work on some of those transitions.
I Let’s look at state 2 in NFA and complete the transitions for

state 2 in the DFA.
I Where do we go from state 2 on a or b?

I On a go to states 2 and 3.
I On b, go to state 3.

I So what state does {2} in DFA go to for a and b?
I On a go to state {2, 3}.
I On b, go to state {3}.

I Now let’s do state {3}.
I On a go to {1, 3}.

Why? First go to 1, then ε-transition back to 3.
I On b, go to ∅.

I Now check DFA, Figure 1.43, on page 58.

Any questions? Could you do this on a homework? an exam?

41 / 95

Closure under regular operations

I We started this before and did it only for union.
I Union much simpler using NFA.

I Concatenation and star much easier using NFA.

I Since DFAs equivalent to NFAs, suffices to just use NFAs

I In all cases, fewer states to track, because we can always
“guess” correctly.

42 / 95

Why do we care about closure?

We need to look ahead:

I A regular language is what a DFA/NFA accepts.

I We are now introducing regular operators and then will
generate regular expressions from them (Section 1.3).

I We will want to show that the language of regular expressions
is equivalent to the language accepted by NFAs/DFAs (i.e., a
regular language)

I How do we show this?
I Basic terms in regular expression can generated by a FA.
I We can implement each operator using a FA and the

combination is still able to be represented using a FA

43 / 95

Closure under union

I Given two regular languages A1 and A2, recognized by two
NFAs N1 and N2, construct NFA N to recognize A1 ∪ A2.

I How do we construct N? Think!
I Start by writing down N1 and N2. Now what?
I Add a new start state and then have it take ε-branches to the

start states of N1 and N2.

44 / 95

Closure under concatenation

I Given two regular languages A1 and A2 recognized by two
NFAs N1 and N2, construct NFA N to recognize A1 · A2.

I How do we do this?
I The complication is that we did not know when to switch from

handling A1 to A2, since can loop thru an accept state.
I Solution with NFA:

I Connect every accept state in N1 to every start state in N2

using an ε-transition.
I Don’t remove transitions from accept state in N1 back to N1.

45 / 95

Closure under concatenation (cont’d)

I Given:
I N1 = (Q1,Σ, δ1, q1,F1) recognizing A1, and
I N2 = (Q2,Σ, δ2, q2,F2) recognizing A2.

I Construct N = (Q1 ∪ Q2,Σ, δ, q1,F) recognizing A1 · A2.
Transition function

δ : (Q1 ∪ Q2)× Σε →P(Q1 ∪ Q2)

given as

δ(q, a) =

δ1(q, a) q ∈ Q1 and q /∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q2} q ∈ Q1 and a = ε

δ2(q, a) q ∈ Q2

46 / 95

Closure under star

I We have a regular language A1 and want to prove that A∗1 is
also regular.
Recall: (ab)∗ = {ε, ab, abab, ababab, . . . }.

I Proof by construction:
I Take the NFA N1 that recognizes A1 and construct from it an

NFA N that recognizes A∗1 .
I How do we do this?

I Add new ε-transition from accept states to start state.
I Then make the start state an additional accept state, so that
ε is accepted.

I This almost works, but not quite.
I Problem? May have transition from intermediate state to

start state; should not accept this.
I Solution? Add a new start state with an ε-transition to the

original start state, and have ε-transitions from accept states
to old start state.

47 / 95

Closure under star (cont’d)

ε ε

ε

48 / 95

Section 1.3: Regular expressions

49 / 95

Regular expressions

I Based on the regular operators.
I Examples:

I (0 ∪ 1)0∗

I A 0 or 1, followed by any number of 0’s.
I Concatenation operator implied.

I What does (0 ∪ 1)∗ mean?
I Al possible strings of 0 and 1.

Not 0∗ or 1∗, so does not require we commit to 0 or 1 before
applying ∗ operator.

I Assuming Σ = {0, 1}, equivalent to Σ∗.

50 / 95

Definition of regular expression

I Let Σ be an alphabet. R is a regular expression over Σ if R
is:

I a, for some a ∈ Σ
I ε
I ∅
I R1 ∪ R2, where R1 and R2 are regular expressions.
I R1 ∩ R2, where R1 and R2 are regular expressions.
I R∗1 , where R1 is a regular expression.

I Note:
I This is a recursive definition, common to computer science.

Since R1 and R2 are simpler than R, no issue of infinite
recursion.

I ∅ is a language containing no strings, and ε is the empty string.

51 / 95

Examples of regular expressions

I 0∗10∗ = {w ∈ {0, 1}∗ : w contains a single 1 }.
I Σ∗1Σ∗ = {w ∈ {0, 1}∗ : w contains at least one 1 }.
I 01 ∪ 10 = {01, 10}.
I (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.

52 / 95

Equivalence of regular expressions and finite automata

Theorem: A language is regular if and only if some regular
expression describes it.

I This has two directions, so we need to prove:
I If a language is described by a regular expression, then it is

regular.
I If a language is regular, then it is described by a regular

expression.

I We’ll do both directions.

53 / 95

Proof: Regular expression =⇒ regular language

I Proof idea: Given a regular expression R describing a
language L, we should

I Show that some FA recognizes it.
I Use NFA, since may be easier (and it’s equivalent to DFA).

I How do we do this?
I We will use definition of a regular expression, and show that

we can build an FA covering each step.
I We will do quickly with two parts:

I Steps 1, 2 and 3 of definition (handle a, ε, and ∅).
I Steps 4, 5, and 6 of definition (handle union, concatenation,

and star).

54 / 95

Proof (cont’d)

Steps 1–3 are fairly simple:

I a, for some a ∈ Σ. The FA is

a

I ε. The FA is

I ∅. The FA is

55 / 95

Proof (cont’d)

I For steps 4–6 (union, concatenation, and star), we use the
proofs we used earlier, when we established that FA are closed
under union, concatenation, and star.

I So we are done with the proof in one direction.

I So let’s try an example.

56 / 95

Example: Regular expression =⇒ regular language

I Convert (ab ∪ a)∗ to an NFA.
See Example 1.56 on page 68.

I Let’s outline what we need to do:
I Handle a.
I Handle ab.
I Handle ab ∪ a.
I Handle (ab ∪ a)∗.

I The book has states for ε-transitions. They seem unnecessary
and may confuse you. In fact, they are unnecessary in this
case.

I Now we need to do the proof in the other direction.

57 / 95

Proof: Regular language =⇒ regular expression

I A regular language is described by a DFA.

I Need to show that can convert an DFA to a regular expression.
I The book goes through several pages (Lemma 1.60,

pp. 69–74) that don’t really add much insight.
I You can skip this. For the most part, if you understand the

ideas for going in the previous direction, you also understand
this direction.

I But you should be able to handle an example

58 / 95

Example: DFA =⇒ regular expression

Find the regular expression that is equivalent to the DFA

1

2

a

b

a,b

Answer is a∗b(a ∪ b)∗.

59 / 95

Section 1.4: Non-regular languages

��

60 / 95

Non-regular languages

I Do you think every language is regular? That would mean
that every language can be described by a FA.

I What might make a language non-regular? Think about main
property of a finite automaton: finite memory!

I So a language requiring infinite memory cannot be regular!

61 / 95

Some example questions

I Are the following languages regular?
I L1 = {w : w has an equal number of 0’s and 1’s }.
I L2 = {w : w has at least 100 1’s }.
I L3 = {w : w is of the form 0n1n for some n ≥ 0 }.
I First, write out some of the elements in each, to ensure you

have the terminology down.
I L1 = {ε, 01, 10, 1100, 0011, 0101, 1010, 0110, . . . }.
I L2 = {100 1’s, 0 100 1’s, 1 100 1’s, . . . }.
I L3 = {ε, 01, 0011, 000111, . . . }.

62 / 95

Answers

I L1 and L3 are not regular languages; they require infinite
memory.

I L2 certainly is regular.

We will only study infinite regular languages.

63 / 95

What is wrong with this?

I Question 1.36 from the book asks:

Let Bn = { ak : k is a multiple of n}.
Show that Bn is regular.

I How is this regular? How is this question different from the
ones before?

I Each language Bn has a specific value of n, so n is not a free
variable (unlike the previous examples).

I Although k is a free variable, the number of states is bounded
by n, and not k .

64 / 95

More on regular languages

I Regular languages can be infinite, but must be described
using finitely-many states.

I Thus there are restrictions on the structure of regular
languages.

I For an FA to generate an infinite set of strings, what must
there be between some states? A loop.

I This leads to the (in)famous pumping lemma.

65 / 95

Pumping Lemma for regular languages

I The Pumping Lemma states that all regular languages have a
special pumping property.

I If a language does not have the pumping property, then it is
not regular.

I So one can use the Pumping Lemma to prove that a given
language is not regular.

I Note: Pumping Lemma is an implication, not an equivalence.
Hence, there are non-regular languages that have the pumping
property.

66 / 95

The Pumping Lemma

I Let L be a regular language. There is a positive integer p such
that any s ∈ L with |s| > p can be “pumped”.

I (p is the pumping length of L.)

I This means that every string s ∈ L contains a substring that
can repeated any number of times (via a loop).

I The statement “s can be pumped” means that we can write
s = xyz , where

1. xy iz ∈ L for all i ≥ 0.
2. |y | > 0,
3. |xy | ≤ p.

67 / 95

Pumping Lemma explained

I Condition 1: xy iz ∈ L for all i ≥ 0.
This simply says that there is a loop.

I Condition 2: |y | > 0.
Without this condition, then there really would be no loop.

I Condition 3: |xy | ≤ p.
We don’t allow more states than the pumping length, since we
want to bound the amount of memory.

I All together, the conditions allow either x or z to be ε, but
not both.
The loop need not be in the middle (which would be limiting).

68 / 95

Pumping Lemma: Proof idea

I Let p = number of states in the FA.

I Let s ∈ L with |s| > p.

I Consider the states that FA goes through for s.

I Since there are only p states and |s| > p, one state must be
repeated (via pigeonhole principle).

I So, there is a loop.

69 / 95

Pumping Lemma: Example 1

I Let B = { 0n1n : n ≥ 0 } (Example 1.73).
Show that B is not regular.

I Use proof by contradiction.
Assume that B is regular.
Now pick a string that will cause a problem.

I Try 0p1p.

I Since B is regular, we can write 0p1p = xyz as in statement
of Pumping Lemma.
Look at y :

I If y all 0’s or all 1’s, then xyyz /∈ B. (Count is wrong.)
I If y a mixture of 0’s and 1’s, then 0’s and 1’s not completely

separated in xyyz , and so xyyz /∈ B.

So 0p1p can’t be pumped, and thus B is not regular.

70 / 95

Pumping Lemma: Example 2

I Let C = {w ∈ {0, 1}∗ : w has equal number of 0’s and 1’s }
(Example 1.74).
Show that C is not regular.

I Use proof by contradiction.
Assume that C is regular.
Now pick a problematic string.

I Let’s try 0p1p again.
I If we pick x = z = ε and y = 0p1p, can we pump it and have

pumped string xy iz ∈ C? Yes! Each pumping adds one 0 and
one 1. But this choice breaks condition |xy | ≤ p.

I Suppose we choose x , y , z such that |xy | ≤ p and |y | > 0.
Since |xy | ≤ p, y consists only of 0’s. Hence xyyz /∈ C (too
many zeros).

I Shorter proof: If C were regular, then B = C ∩ 0∗1∗ would
also be regular. This contradicts previous example!

71 / 95

Common-sense interpretation

I FA can only use finite memory. If L has infinitely many
strings, they must be handled by the loop.

I If there are two parts that can generate infinite sequences, we
must find a way to link them in the loop.

I If not, L is not regular.
I Examples:

I 0n1n

I Equally many 0s and 1s.

72 / 95

Pumping Lemma: Example 3

I Let F = {ww : w ∈ {0, 1}∗ } (Example 1.75).

I F = {ε, 00, 11, 0000, 0101, 1010, 1111, . . . }.
I Use proof by contradiction. Pick problematic s ∈ F .
I Try s = 0p1p1. Let s = xyz be a splitting as per the Pumping

Lemma.
I Since |xy | ≤ p, y must be all 0’s.
I So xyyz /∈ F , since 0’s separated by 1 must be equal.

73 / 95

Pumping Lemma: Example 4

I Let D = { 1n2 : n ≥ 0 }.
I D = {ε, 1, 1111, 111111111, . . . }.
I Choose 1p

2
.

I Assume we have xyz ∈ D as per Pumping Lemma.
I What about xyyz? The number of 1’s differs from those

in xyz by |y |.
I Since |xy | ≤ p, then |y | ≤ p.
I So if |xyz | ≤ p2, then |xyyz | ≤ p2 + p.
I But p2 + p < p2 + 2p + 1 = (p + 1)2.
I Moreover, |y | > 0, and so |xyyz | > p2.
I So |xyyz | lies between two consecutive perfect squares, and

hence xyyz /∈ D.

74 / 95

Pumping Lemma: Example 5

I Let E = {0i1j : i > j }.
I Assume E is regular and let s = 0p+11p.

I Decompose s = xyz as per statement of Pumping Lemma.
I By condition 3, y must be all 0’s.

I What can we say about xyyz?
Adding the extra y increases number of 0’s, which appears to
be okay, since i > j is okay.

I But we can pump down. What about xy0z = xz?
Since s has one more 0 than 1, removing at least one 0 leads
to a contradiction. So not regular.

75 / 95

What you must be able to do

I You should be able to handle examples like 1–3.

I Example 5 is not really any more difficult—just one more
thing to think about.

I Example 4 was tough, so I won’t expect everyone to get an
example like that.

I You need to be able to handle the easy examples.
On an exam, I would probably give you several problems that
are minor variants of these examples.

I Try to reason about the problem using “common sense” and
then use that to drive your proof.

I The homework problems will give you more practice.

76 / 95

