CISC 4090: Theory of Computation
Chapter 1
Regular Languages

Xiaolan Zhang, adapted from slides by Prof. Werschulz
Fordham University
Department of Computer and Information Sciences

- Not a simple question to answer precisely
- Computers are quite complicated
- We start with a computational model
- Different models will have different features, and may match a real computer better in some ways, and worse in others
- Our first model is the finite state machine or finite state

What is a computer? automaton automaton

Section 1.1: Finite Automata

Spring, 2014

Finite automata

Models of computers with extremely limited memory

- Many simple computers have extremely limited memories and are (in fact) finite state machines.
- Can you name any? (Hint: several are in this building, but have nothing specifically to do with our department.)
- Vending machine

Elevators

- Thermostat
- Automatic door at supermarket
- What is the desired behavior? Describe the actions and then list the states.
- Person approaches, door should open
- Door should stay open while person going through
- Door should shut if no one near doorway
- States are Open and Closed
- More details about automatic door
- Components: front pad, door, rear pad
- Describe behavior now:
- Hint: action depends not only on what happens, but also on current state
- If you walk through, door should stay open when you're on rear pad
- But if door is closed and someone steps on rear pad, door does not open

More on finite automata

- How may bits of data does this FSM store?
- 1 bit: open or closed
- What about state information for elevators, thermostats, vending machines, etc.?
- FSM used in speech processing, special character recognition, compiler construction...
- Have you implemented an FSM? When?
- Network protocol for the game "Hangman"

Automatic door (cont'd)

REAR, BOTH, NEITHER FRONT, REAR, BOTH

	NEITHER	FRONT	REAR	BOTH
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

A finite automaton M_{1}

Finite automaton M_{1} with three states:

- We see the state diagram
- Start state q_{1}
- Accept state q_{2} (double circle)
- Several transitions
- A string like 1101 will be accepted if M_{1} ends in accept state, and rejects otherwise. What will it do?
- Can you describe all strings that M_{1} will accept?
- All strings ending in 1 , and
- All strings having an even number of 0 's following the final 1

Formal definition of finite state automata

A finite (state) automaton (FA) is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$:

- Q is a finite set of states
- Σ is a finite set, called the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accepting (or final) states.

The language of an FA

- If A is the set of all strings that a machine M accepts, then A is the language of M.
- Write $L(M)=A$.
- Also say that M recognizes or accepts A.
- A machine may accept many strings, but only one language.
- Convention: M accepts strings but recognizes a language.

Describe M_{1} using formal definition

$M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{0,1\}$
- q_{1} is the start state
- $F=\left\{q_{2}\right\}$ (only one accepting state)
- Transition function δ given by

δ	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

- We write $L\left(M_{1}\right)=A$, i.e., M_{1} recognizes A.
- What is A ?
- $A=\left\{w \in\{0,1\}^{*}: \ldots\right\}$.
- We have

$$
\begin{aligned}
A=\{w \in & \{0,1\}^{*}: w \text { contains at least one } 1 \\
& \quad \text { and an even number of } 0 \text { 's follow the last } 1\}
\end{aligned}
$$

What is the language of M_{2} ?

$M_{2}=\left\{\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right\}$ where

- I leave δ as an exercise.
- What is the language of M_{2} ?
- $L\left(M_{2}\right)=\left\{w \in\{0,1\}^{*}: \ldots\right\}$.
- $L\left(M_{2}\right)=\left\{w \in\{0,1\}^{*}: w\right.$ ends in a 1$\}$.

What is the language of M_{4} ?

- M_{4} is a five-state automaton (Figure 1.12 on page 38).
- What does M_{4} accept?
- All strings that start and end with a or start and end with b.
- More simply, $L\left(M_{4}\right)$ is all strings starting and ending with the same symbol.
- Note that string of length 1 is okay.

What is the language of M_{3} ?

- $M_{3}=\left\{\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right\}$ is M_{2}, but with accept state set $\left\{q_{1}\right\}$ instead of $\left\{q_{2}\right\}$.
- What is the language of M_{3} ?
- $L\left(M_{3}\right)=\left\{w \in\{0,1\}^{*}: \ldots\right\}$.
- Guess $L\left(M_{3}\right)=\left\{w \in\{0,1\}^{*}: w\right.$ ends in a 0$\}$.

Not quite right. Why?

- $L\left(M_{3}\right)=\left\{w \in\{0,1\}^{*}: w=\varepsilon\right.$ or w ends in a 0$\}$.
- Let $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$.
- Construct M_{5} to accept a string iff the sum of each input symbol is a multiple of 3 , and \langle RESET \rangle sets the sum back to 0 .

Now generalize M_{5}

- Generalize M_{5} to accept if sum of symbols is a multiple of i instead of 3.
$M=\left\{\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{i-1}\right\},\{0,1,2,\langle\operatorname{RESET}\rangle\}, \delta_{i}, q_{0},\left\{q_{0}\right\}\right\}$,
where
- $\delta_{i}\left(q_{j}, 0\right)=q_{j}$.
- $\delta_{i}\left(q_{j}, 1\right)=q_{k}$, where $k=j+1 \bmod i$.
- $\delta_{i}\left(q_{j}, 2\right)=q_{k}$, where $k=j+2 \bmod i$.
- $\delta_{i}\left(q_{j},\langle\operatorname{RESET}\rangle\right)=q_{0}$.
- Note: As long as i is finite, we are okay and only need finite memory (number of states).
- Could you generalize to $\Sigma=\{0,1,2, \ldots, k\}$?

Regular languages

A language L is regular if it is recognized by some finite automaton.

- That is, there is a finite automaton M such that $L(M)=A$, i.e., M accepts all of the strings in the language, and rejects all strings not in the language.
- Why should you expect proofs by construction coming up in your next homework?

Let $M=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an FA and let $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{*}$. We say that M accepts w if there exists a sequence
$r_{0}, r_{1}, \ldots, r_{n} \in Q$ of states such that

- $r_{0}=q_{0}$.
- $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i \in\{0,1, \ldots, n-1\}$
- $r_{n} \in F$.
- You will need to design an FA that accept a given language L.
- Strategies:
- Determine what you need to remember (The states).
- How many states to determine even/odd number of 1's in an input?
- What does each state represent?
- Set the start and finish states, based on what each state represents.
- Assign the transitions.
- Check your solution: it should accept every $w \in L$, and it should not accept any $w \notin L$.
- Be careful about ε.
- Design an FA to accept the language of binary strings having an odd number of 1 's (page 43).
- Design an FA to accept all strings containing the substring 001 (page 44).
- What do you need to remember?
- Design an FA to accept strings containing the substring abab.

Examples of regular operations

Let A and B be languages. We define three regular operations:

- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$.
- Concatenation: $A \cdot B=\{x y: x \in A$ and $y \in B\}$.
- Kleene star. $A^{*}=\left\{x_{1} x_{2} \ldots x_{k}: k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$.
- Kleene star is a unary operator on a single language.
- A^{*} consists of (possibly empty!) concatenations of strings
from A.

Let $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$. What are the following?

- $A \cup B=\{$ good, bad, boy, girl $\}$.
- $A \cdot B=\{$ goodboy, goodgirl, badboy, badgirl $\}$.
- $A^{*}=$
$\{\varepsilon$, good, bad, goodgood, goodbad, badgood, badbad, ...\}.

Closure

- A set of objects is closed under an operation if applying that operations to members of that set always results in a member of that set.
- The natural numbers $\mathbb{N}=\{1,2, \ldots\}$ are closed under addition and multiplication, but not subtraction or division.

Closure for regular languages

- Regular languages are closed under the three regular operations we just introduced (union, concatenation, star).
- Can you look ahead to see why we care?
- We can build FA to recognize regular expressions!

Closure of union

Theorem 1.25: The class of regular languages is closed under the union operation. That is, if A_{1} and A_{2} are regular languages, then so is $A_{1} \cup A_{2}$.
How can we prove this?

- Suppose that M_{1} accepts A_{1} and M_{2} accepts A_{2}.
- Construct M_{3} using M_{1} and M_{2} to accept $A_{1} \cup A_{2}$.
- We need to simulate M_{1} and M_{2} running in parallel, and stop if either reaches an accepting state.
- This last part is feasible, since we can have multiple accepting states.
- You need to remember where you are in both machines.

Theorem 1.26: The class of regular languages is closed under the concatenation operator. That is, if A_{1} and A_{2} are regular languages, then so is $A_{1} \cdot A_{2}$.
Can you see how to do this simply?
Not trivial, since cannot just concatenate M_{1} and M_{2}, where the finish states of M_{1} becoming the start state of M_{2}.

- Because we do not accept a string as soon as it enters the finish state, we wait until string is done, so it can leave and come back.
- Thus we do not know when to start using M_{2}.
- The proof is easy if we use nondeterministic FA.

Section 1.2: Nondeterminism

How does an NFA compute?

- When there is a choice, all paths are followed.
- Think of it as cloning a process and continuing.
- If there is no arrow, the path terminates and the clone dies (it does not accept if at an accept state when this happens).
- An NFA may have the empty string cause a transition.
- The NFA accepts any path is in the the accept state.
- Can also be modeled as a tree of possibilities.
- An alternative way of thinking about this:
- At each choice, you make one guess of which way to go.
- You always magically guess the right way to go.
- So far, our FA have been deterministic: the current state and the input symbol determine the next state.
- In a nondeterministic machine, several choices may exist.
- DFA's have one transition arrow per input symbol
- NFA's...
- have zero or more transitions for each input symbol, and
- may have an ε-transition.

Try computing this!

- Try out 010110. Is it accepted? Yes!
- What is the language?

Strings containing either 101 or 11 as a substring.

- Construct an NFA that accepts all strings over $\{0,1\}$, with a 1 in the third position from the end.
- Hint: The NFA stays in the start state until it guesses that it is three places from the end.
- Solution?

- Similar to DFA, except transition function must work for ε, in addition to Σ, and a "state" is a set of states, rather than a single state.
- A nondeterministic finite automaton (NDFA) is a 5-tuple
$\left(Q, \Sigma, \delta, q_{0}, F\right):$
- Q is a finite set of states
- Σ is a finite set, called the alphabet
- $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathscr{P}(Q)$ is the transition function. (Here, $\left.\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}.\right)$
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accepting (or final) states.

Can we generate a DFA for this?

Yes, but it is more complicated and has eight states.

- See book, Figure 1.32, page 51.
- Each state represents the last three symbols seen, where we assume we start with 000.
-What is the transition from 010 ?
- On a 1, we go to 101.
- On a 0, we go to 100 .

Example of formal definition of NFA

NFA $N_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$ where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$,
- $\Sigma=\{0,1\}$,
- q_{1} is the start state,
- $F=\left\{q_{4}\right\}$,

NFAs and DFAs recognize the same class of languages.

- We say two machines are equivalent if they recognize the same language.
- NFAs have no more power than DFAs:
- with respect to what can be expressed.
- But NFAs may make it much easier to describe a given language.
- Every NFA has an equivalent DFA.

Proof by construction

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA recognizing language A.
- Construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$.
- Let's do the easy steps first (skip δ^{\prime} for now)
- $Q^{\prime}=\mathscr{P}(Q)$
- $q_{0}^{\prime}=\left\{q_{0}\right\}$.
- $F^{\prime}=\left\{R \in Q^{\prime}: R\right.$ contains an accept state of $\left.N\right\}$.

Transition function?

- The state $R \in M$ corresponds to a set of states in N
- When M reads symbol a in state R, it shows where a takes each state.
- $\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)$
- I ignore ε, but taking that into account does not fundamentally change the proof; we just need to keep track of more states.

Proof idea:

- Need to simulate an NFA with a DFA.
- With NFAs, given an input, we follow all possible branches and keep a finger on the state for each.
- That is what we need to track: the states we would be in for each branch.
- If the NFA has k states, then it has 2^{k} possible subsets.
- Each subset corresponds to one of the possibilities that the DFA needs to remember
- The DFA will have 2^{k} states.

Example: Convert an NFA to a DFA

See Example 1.41 on page 57. For now, don't look at solution DFA!

- The NFA has 3 states: $Q=\{1,2,3\}$. What are the states in the DFA?
$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.
- What are the start states of the DFA?
- The start states of the NFA, including those reachable by ε-transitions
- $\{1,3\}$ (We include 3 because if we we start in 1 , we can immediately move to 3 via an ε-transition.)
- What are the accept states?
$\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}$

Example: Convert an NFA to a DFA (cont'd)

Now, let's work on some of those transitions

- Let's look at state 2 in NFA and complete the transitions for state 2 in the DFA
- Where do we go from state 2 on a or b?
- On a go to states 2 and 3 .
- On b, go to state 3 .
- So what state does $\{2\}$ in DFA go to for a and b ?
- On a go to state $\{2,3\}$

On b, go to state $\{3\}$.

- Now let's do state $\{3\}$.
- On a go to $\{1,3\}$.

Why? First go to 1 , then ε-transition back to 3 .

- On b, go to \emptyset.
- Now check DFA, Figure 1.43, on page 58.

Any questions? Could you do this on a homework? an exam?

- Since DFAs equivalent to NFAs, suffices to just use NFAs
- In all cases, fewer states to track, because we can always
- We started this before and did it only for union.
- Union much simpler using NFA
- Concatenation and star much easier using NFA. "guess" correctly.

Closure under regular operations

Why do we care about closure?

We need to look ahead:

- A regular language is what a DFA/NFA accepts.
- We are now introducing regular operators and then will generate regular expressions from them (Section 1.3).
- We will want to show that the language of regular expressions is equivalent to the language accepted by NFAs/DFAs (i.e., a regular language)
- How do we show this?
- Basic terms in regular expression can generated by a FA.
- We can implement each operator using a FA and the combination is still able to be represented using a FA

Closure under union

- Given two regular languages A_{1} and A_{2}, recognized by two NFAs N_{1} and N_{2}, construct NFA N to recognize $A_{1} \cup A_{2}$.
- How do we construct N ? Think!
- Start by writing down N_{1} and N_{2}. Now what?
- Add a new start state and then have it take ε-branches to the start states of N_{1} and N_{2}.

Closure under concatenation

- Given two regular languages A_{1} and A_{2} recognized by two NFAs N_{1} and N_{2}, construct NFA N to recognize $A_{1} \cdot A_{2}$.
- How do we do this?
- The complication is that we did not know when to switch from handling A_{1} to A_{2}, since can loop thru an accept state.
- Solution with NFA:
- Connect every accept state in N_{1} to every start state in N_{2} using an ε-transition
- Don't remove transitions from accept state in N_{1} back to N_{1}.

Closure under star

- We have a regular language A_{1} and want to prove that A_{1}^{*} is also regular.
Recall: $(\mathrm{ab})^{*}=\{\varepsilon, \mathrm{ab}, \mathrm{abab}, \mathrm{ababab}, \ldots\}$.
- Proof by construction:
- Take the NFA N_{1} that recognizes A_{1} and construct from it an NFA N that recognizes A_{1}^{*}.
- How do we do this?
- Add new ε-transition from accept states to start state.
- Then make the start state an additional accept state, so that ε is accepted.
- This almost works, but not quite.
- Problem? May have transition from intermediate state to start state; should not accept this.
- Solution? Add a new start state with an ε-transition to the original start state, and have ε-transitions from accept states to old start state.

Closure under concatenation (cont'd)

- Given:
- $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognizing A_{1}, and
- $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognizing A_{2}.
- Construct $N=\left(Q_{1} \cup Q_{2}, \Sigma, \delta, q_{1}, F\right)$ recognizing $A_{1} \cdot A_{2}$ Transition function

$$
\delta:\left(Q_{1} \cup Q_{2}\right) \times \Sigma_{\varepsilon} \rightarrow \mathscr{P}\left(Q_{1} \cup Q_{2}\right)
$$

given as

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in Q_{1} \text { and } a=\varepsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}
$$

Section 1.3: Regular expressions

Definition of regular expression

- Let Σ be an alphabet. R is a regular expression over Σ if R IS:
- a, for some $a \in \Sigma$
- ε
- \emptyset
- $R_{1} \cup R_{2}$, where R_{1} and R_{2} are regular expressions
- $R_{1} \cap R_{2}$, where R_{1} and R_{2} are regular expressions.
- R_{1}^{*}, where R_{1} is a regular expression
- Note:
- This is a recursive definition, common to computer science Since R_{1} and R_{2} are simpler than R, no issue of infinite recursion.
\emptyset is a language containing no strings, and ε is the empty string.
- Based on the regular operators.
- Examples:
- $(0 \cup 1) 0^{*}$
- A 0 or 1, followed by any number of 0's
- Concatenation operator implied.
- What does $(0 \cup 1)^{*}$ mean?
- Al possible strings of 0 and 1 .

Not 0^{*} or 1^{*}, so does not require we commit to 0 or 1 before applying * operator

- Assuming $\Sigma=\{0,1\}$, equivalent to Σ^{*}.

Theorem: A language is regular if and only if some regular expression describes it

- This has two directions, so we need to prove:
- If a language is described by a regular expression, then it is regular.
- If a language is regular, then it is described by a regular expression.
- We'll do both directions.
- Proof idea: Given a regular expression R describing a language L, we should
- Show that some FA recognizes it.
- Use NFA, since may be easier (and it's equivalent to DFA)
- How do we do this?
- We will use definition of a regular expression, and show that we can build an FA covering each step.
- We will do quickly with two parts:
- Steps 1, 2 and 3 of definition (handle a, ε, and \emptyset)

Steps 4, 5, and 6 of definition (handle union, concatenation and star).

Steps 1-3 are fairly simple:

- a, for some $a \in \Sigma$. The FA is

- ε. The FA is

- \emptyset. The FA is

- For steps 4-6 (union, concatenation, and star), we use the proofs we used earlier, when we established that FA are closed under union, concatenation, and star.
- So we are done with the proof in one direction.
- So let's try an example.

Example: Regular expression \Longrightarrow regular language

- Convert $(\mathrm{ab} \cup \mathrm{a})^{*}$ to an NFA.

See Example 1.56 on page 68

- Let's outline what we need to do:
- Handle a.

Handle ab.

- Handle $a b \cup a$.
- Handle $(a b \cup a)^{*}$.
- The book has states for ε-transitions. They seem unnecessary and may confuse you. In fact, they are unnecessary in this case.
- Now we need to do the proof in the other direction.

Example: DFA \Longrightarrow regular expression

Find the regular expression that is equivalent to the DFA
\qquad

- A regular language is described by a DFA.
- Need to show that can convert an DFA to a regular expression.
- The book goes through several pages (Lemma 1.60, pp. 69-74) that don't really add much insight
- You can skip this. For the most part, if you understand the ideas for going in the previous direction, you also understand this direction.
- But you should be able to handle an example

Section 1.4: Non-regular languages

2
2

Answer is $\mathrm{a}^{*} \mathrm{~b}(\mathrm{a} \cup \mathrm{b})^{*}$

- Do you think every language is regular? That would mean that every language can be described by a FA.
- What might make a language non-regular? Think about main property of a finite automaton: finite memory!
- So a language requiring infinite memory cannot be regular!
- L_{1} and L_{3} are not regular languages; they require infinite memory.
- L_{2} certainly is regular.

We will only study infinite regular languages.

- Are the following languages regular?
- $L_{1}=\{w: w$ has an equal number of 0 's and 1's $\}$.
- $L_{2}=\{w: w$ has at least 100 1's $\}$.
- $L_{3}=\left\{w: w\right.$ is of the form $0^{n} 1^{n}$ for some $\left.n \geq 0\right\}$.
- First, write out some of the elements in each, to ensure you have the terminology down.
- $L_{1}=\{\varepsilon, 01,10,1100,0011,0101,1010,0110, \ldots\}$
$L_{2}=\{100$ 1's, 0100 1's, 1100 1's, ... $\}$
- $L_{3}=\{\varepsilon, 01,0011,000111, \ldots\}$.

What is wrong with this?

- Question 1.36 from the book asks:

$$
\begin{aligned}
& \text { Let } B_{n}=\left\{\mathrm{a}^{k}: k \text { is a multiple of } n\right\} \text {. } \\
& \text { Show that } B_{n} \text { is regular. }
\end{aligned}
$$

- How is this regular? How is this question different from the ones before?
- Each language B_{n} has a specific value of n, so n is not a free variable (unlike the previous examples).
- Although k is a free variable, the number of states is bounded by n, and not k.

More on regular languages

- Regular languages can be infinite, but must be described using finitely-many states.
- Thus there are restrictions on the structure of regular languages.
- For an FA to generate an infinite set of strings, what must there be between some states? A loop.
- This leads to the (in)famous pumping lemma.
- The Pumping Lemma states that all regular languages have a special pumping property.
- If a language does not have the pumping property, then it is not regular.
- So one can use the Pumping Lemma to prove that a given language is not regular.
- Note: Pumping Lemma is an implication, not an equivalence. Hence, there are non-regular languages that have the pumping property.

Pumping Lemma explained

- Condition 1: $x y^{i} z \in L$ for all $i \geq 0$. This simply says that there is a loop.
- Condition 2: $|y|>0$.

Without this condition, then there really would be no loop.

- Condition 3: $|x y| \leq p$.

We don't allow more states than the pumping length, since we want to bound the amount of memory.

- All together, the conditions allow either x or z to be ε, but not both.
The loop need not be in the middle (which would be limiting).

Pumping Lemma: Proof idea

- Let $p=$ number of states in the FA.
- Let $s \in L$ with $|s|>p$.
- Consider the states that FA goes through for s.
- Since there are only p states and $|s|>p$, one state must be repeated (via pigeonhole principle).
- So, there is a loop.

Pumping Lemma: Example 2

- Let $C=\left\{w \in\{0,1\}^{*}: w\right.$ has equal number of 0 's and 1 's $\}$ (Example 1.74).
Show that C is not regular.
- Use proof by contradiction.

Assume that C is regular.
Now pick a problematic string.
Let's try $0^{p} 1^{p}$ again.

- If we pick $x=z=\varepsilon$ and $y=0^{\rho} 1^{p}$, can we pump it and have pumped string $x y^{\prime} z \in C$? Yes! Each pumping adds one 0 and one 1. But this choice breaks condition $|x y| \leq p$.
- Suppose we choose x, y, z such that $|x y| \leq p$ and $|y|>0$. Since $|x y| \leq p, y$ consists only of 0 's. Hence $x y y z \notin C$ (too many zeros).
- Shorter proof: If C were regular, then $B=C \cap 0^{*} 1^{*}$ would also be regular. This contradicts previous example!
- Let $B=\left\{0^{n} 1^{n}: n \geq 0\right\}$ (Example 1.73). Show that B is not regular.
- Use proof by contradiction.

Assume that B is regular.
Now pick a string that will cause a problem.

- Try $0^{p} 1^{p}$.
- Since B is regular, we can write $0^{p} 1^{p}=x y z$ as in statement of Pumping Lemma.
Look at y :
- If y all 0 's or all 1's, then $x y y z \notin B$. (Count is wrong.)
- If y a mixture of 0 's and 1 's, then 0 's and 1's not completely separated in $x y y z$, and so $x y y z \notin B$.
So $0^{p} 1^{p}$ can't be pumped, and thus B is not regular.

Common-sense interpretation

- FA can only use finite memory. If L has infinitely many strings, they must be handled by the loop.
- If there are two parts that can generate infinite sequences, we must find a way to link them in the loop.
- If not, L is not regular.
- Examples:
- $0^{n} 1^{n}$
- Equally many 0s and 1s.
- Let $F=\left\{w w: w \in\{0,1\}^{*}\right\}$ (Example 1.75)
- $F=\{\varepsilon, 00,11,0000,0101,1010,1111, \ldots\}$.
- Use proof by contradiction. Pick problematic $s \in F$.
- Try $s=0^{p} 1^{p} 1$. Let $s=x y z$ be a splitting as per the Pumping Lemma.
- Since $|x y| \leq p, y$ must be all 0 's.
- So xyyz $\notin F$, since 0 's separated by 1 must be equal.

Pumping Lemma: Example 5

- Let $E=\left\{0^{i} 1^{j}: i>j\right\}$.
- Assume E is regular and let $s=0^{p+1} 1^{p}$
- Decompose $s=x y z$ as per statement of Pumping Lemma.
- By condition 3, y must be all 0's
- What can we say about xyyz?

Adding the extra y increases number of 0 's, which appears to be okay, since $i>j$ is okay.

- But we can pump down. What about $x y^{0} z=x z$?

Since s has one more 0 than 1 , removing at least one 0 leads to a contradiction. So not regular.

- Let $D=\left\{1^{n^{2}}: n \geq 0\right\}$.
- $D=\{\varepsilon, 1,1111,111111111, \ldots\}$
- Choose $1^{p^{2}}$.
- Assume we have $x y z \in D$ as per Pumping Lemma.
- What about $x y y z$? The number of 1 's differs from those in $x y z$ by $|y|$.
- Since $|x y| \leq p$, then $|y| \leq p$.
- So if $|x y z| \leq p^{2}$, then $|x y y z| \leq p^{2}+p$.
- But $p^{2}+p<p^{2}+2 p+1=(p+1)^{2}$.
- Moreover, $|y|>0$, and so $|x y y z|>p^{2}$
- So $|x y y z|$ lies between two consecutive perfect squares, and hence $x y y z \notin D$.

What you must be able to do

- You should be able to handle examples like 1-3.
- Example 5 is not really any more difficult-just one more thing to think about.
- Example 4 was tough, so I won't expect everyone to get an example like that.
- You need to be able to handle the easy examples. On an exam, I would probably give you several problems that are minor variants of these examples.
- Try to reason about the problem using "common sense" and then use that to drive your proof.
- The homework problems will give you more practice.

