CISC 4090: Theory of Computation

Chapter 1
Regular Languages

Xiaolan Zhang, adapted from slides by Prof. Werschulz

Fordham University
Department of Computer and Information Sciences

Spring, 2014

1/95

What is a computer?

> Not a simple question to answer precisely
» Computers are quite complicated
» We start with a computational model
» Different models will have different features, and may match a
real computer better in some ways, and worse in others
» Our first model is the finite state machine or finite state
automaton

3/95

Section 1.1: Finite Automata

2/95

Finite automata

Models of computers with extremely limited memory

» Many simple computers have extremely limited memories and
are (in fact) finite state machines.

» Can you name any? (Hint: several are in this building, but
have nothing specifically to do with our department.)

> Vending machine

» Elevators

> Thermostat

> Automatic door at supermarket

4/95

Automatic door

» What is the desired behavior? Describe the actions and then
list the states.

Person approaches, door should open

Door should stay open while person going through

Door should shut if no one near doorway

States are Open and Closed

v vyVvYyy

» More details about automatic door

» Components: front pad, door, rear pad
» Describe behavior now:

» Hint: action depends not only on what happens, but also on
current state

> If you walk through, door should stay open when you're on
rear pad

» But if door is closed and someone steps on rear pad, door
does not open

5/95

More on finite automata

» How may bits of data does this FSM store?
> 1 bit: open or closed
» What about state information for elevators, thermostats,
vending machines, etc.?
» FSM used in speech processing, special character recognition,
compiler construction ...
» Have you implemented an FSM? When?
» Network protocol for the game “Hangman”

7/95

Automatic door (cont'd)

REAR, BOTH, NEITHER FRONT, REAR, BOTH

FRONT
NEITHER
‘NEITHER FRONT REAR BOTH
CLOSED | CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN
A finite automaton M;
0 1
0
a 1
—
0,1

Finite automaton M; with three states:

> We see the state diagram
> Start state ¢
> Accept state g, (double circle)
» Several transitions

> A string like 1101 will be accepted if My ends in accept state,

and rejects otherwise. What will it do?

» Can you describe all strings that M; will accept?
> All strings ending in 1, and
» All strings having an even number of 0's following the final 1

6

8

95

95

Formal definition of finite state automata

A finite (state) automaton (FA) is a 5-tuple (Q, X, , qo, F):
» @ is a finite set of states
» Y is a finite set, called the alphabet

v

0: Q@ x X — Q is the transition function

> qo € Q is the start state

\4

F C Q is the set of accepting (or final) states.

The language of an FA

» If Ais the set of all strings that a machine M accepts, then A
is the language of M.

> Write L(M) = A.
» Also say that M recognizes or accepts A.

» A machine may accept many strings, but only one language.
» Convention: M accepts strings but recognizes a language.

11/95

Describe M; using formal definition

0 1
0
O
—
0,1

M =(Q,%,9,qo, F), where
» @=1{q1,q,q}
Y ={0,1}
g1 is the start state
F = {g2} (only one accepting state)
Transition function ¢ given by

v

vV vy

What is the language of M;?

> We write L(M;) = A, i.e., My recognizes A.
> What is A?

» A={we{o,1}*:.. . }.

> We have

A={w e {0,1}* : w contains at least one 1

and an even number of 0's follow the last 1}

10

12

95

95

What is the language of M,?

e

My = {{qh Q2}7 {0’ 1}7 57 qi1, {QQ}} where
> | leave § as an exercise.
» What is the language of M,?
» L(Mp)={we{o,1}*:...]
» L[(M;)={we{0,1}* :wendsinal}.

13 /95

What is the language of M,?

> My is a five-state automaton (Figure 1.12 on page 38).
» What does M, accept?

> All strings that start and end with a or start and end with b.
> More simply, L(Mj,) is all strings starting and ending with the
same symbol.
> Note that string of length 1 is okay.

15 /95

What is the language of M5?

0 1
1
~(2__ (=)
0

» Mz ={{q1,92},{0,1},0,q1,{q1}} is Mo, but with accept
state set {q1} instead of {g2}.
» What is the language of M3?
» L(M3)={we{0,1}*:... }.
> Guess L(M3) ={ we {0,1}* : wendsina0}.
Not quite right. Why?
» L(M3)={we{0,1}* :w=corwendsina0}.

Construct Ms to do modular arithmetic

> Let X = {(RESET),0,1,2}.

» Construct Ms to accept a string iff the sum of each input
symbol is a multiple of 3, and (RESET) sets the sum back to 0.

14

16

95

95

Now generalize Ms Formal definition of acceptance

» Generalize Ms to accept if sum of symbols is a multiple of /
instead of 3.
Let M =(Q,X,0,Q, F) be an FA and let w = wiws ... w, € L*.

M = {{90, 91, 92.- - 4i-1}, {0, 1,2, (RESET) }, 6;, qo. {qo}} We say that M accepts w if there exists a sequence

where ro,n,...,m € Q of states such that
> (5,-(qj,0) =q;. > = qo.
> 31(qjs1) = . where k= + Lmod i > (i wisn) = riya for i € {0,1,...,n— 1}
> 0i(gj,2) = q«, where k = j + 2 mod i.
> 8;(qj, (RESET)) = qo. > mekF.
» Note: As long as i is finite, we are okay and only need finite
memory (number of states).
» Could you generalize to ¥ = {0,1,2,...,k}?
17 /95 18 /95
Regular languages Designing automata

> You will need to design an FA that accept a given language L.

A language L is regular if it is recognized by some finite > Strategies:

automaton. » Determine what you need to remember (The states).

» How many states to determine even/odd number of 1's in an
input?

» What does each state represent?

» That is, there is a finite automaton M such that L(M) = A,
i.e., M accepts all of the strings in the language, and rejects

all strings not in the language. > Set the start and finish states, based on what each state
» Why should you expect proofs by construction coming up in represents.
your next homework? > Assign the transitions.

» Check your solution: it should accept every w € L, and it
should not accept any w ¢ L.
> Be careful about €.

19/95 20/95

You try designing FA

» Design an FA to accept the language of binary strings having
an odd number of 1's (page 43).

» Design an FA to accept all strings containing the
substring 001 (page 44).
» What do you need to remember?

» Design an FA to accept strings containing the substring abab.

21/95

Examples of regular operations

Let A = {good,bad} and B = {boy,girl}. What are the
following?
» AU B = {good, bad, boy, girl}.
» A- B = {goodboy, goodgirl, badboy, badgirl}.
> A* =
{e, good, bad, goodgood, goodbad, badgood, badbad, . .. }.

23 /95

Regular operations

Let A and B be languages. We define three regular operations:
> Union: AUB={x:xe€Aorxec B}
» Concatenation: A-B={xy:x€ AandyeB}.
> Kleene starr A* = {x1xz...xx: k>0 and each x; € A}.
» Kleene star is a unary operator on a single language.

» A* consists of (possibly empty!) concatenations of strings
from A.

Closure

> A set of objects is closed under an operation if applying that
operations to members of that set always results in a member
of that set.

» The natural numbers N = {1,2,...} are closed under
addition and multiplication, but not subtraction or division.

22

24

95

95

Closure for regular languages

» Regular languages are closed under the three regular
operations we just introduced (union, concatenation, star).

» Can you look ahead to see why we care?

» We can build FA to recognize regular expressions!

25/95

Closure of union (cont'd)

> You need to generate a state to represent the state you are in
with My and Ms.
> Let M; = (Q,‘, >, 6, qi, F,) for i € {1,2}.
» Build M =(Q,X,d,q,F) as follows:
> Q= xQ={(n,n):ne@adnec @}
> Y is unchanged. (Note that if M; used ¥; for i € {1,2}, we
could have chosen ¥ = ¥; U¥,.)

> qo = (q1,92)-
> F:{(r17r2):r16F1 or QEFQ}.

> 6((ri, r2),a) = (6(r1,a), (2, a)).

27 /95

Closure of union

Theorem 1.25: The class of regular languages is closed under the
union operation. That is, if A; and A, are regular languages, then
so is A1 U A,.
How can we prove this?

» Suppose that My accepts A; and M, accepts As.

» Construct M3 using My and My to accept A; U As.

» We need to simulate M; and M5 running in parallel, and stop

if either reaches an accepting state.

» This last part is feasible, since we can have multiple accepting
states.
> You need to remember where you are in both machines.

Closure of concatenation

Theorem 1.26: The class of regular languages is closed under the
concatenation operator. That is, if A; and A, are regular
languages, then so is A; - As.

Can you see how to do this simply?

Not trivial, since cannot just concatenate M; and M,, where the
finish states of M; becoming the start state of M.

» Because we do not accept a string as soon as it enters the
finish state, we wait until string is done, so it can leave and
come back.

» Thus we do not know when to start using Ms.

» The proof is easy if we use nondeterministic FA.

26

28

95

95

Section 1.2: Nondeterminism

29 /95

How does an NFA compute?

» When there is a choice, all paths are followed.
» Think of it as cloning a process and continuing.
> If there is no arrow, the path terminates and the clone dies (it
does not accept if at an accept state when this happens).
> An NFA may have the empty string cause a transition.
> The NFA accepts any path is in the the accept state.
» Can also be modeled as a tree of possibilities.

» An alternative way of thinking about this:

» At each choice, you make one guess of which way to go.
> You always magically guess the right way to go.

31/95

Nondeterminism

» So far, our FA have been deterministic: the current state and
the input symbol determine the next state.

» In a nondeterministic machine, several choices may exist.

v

DFA's have one transition arrow per input symbol
NFA's ...

> have zero or more transitions for each input symbol, and
» may have an e-transition.

v

0,1 0,1

Try computing this!

» Try out 010110.
Is it accepted? Yes!

» What is the language?
Strings containing either 101 or 11 as a substring.

30

32

95

95

Construct an NFA

» Construct an NFA that accepts all strings over {0,1}, with a
1 in the third position from the end.

» Hint: The NFA stays in the start state until it guesses that it
is three places from the end.

» Solution?
0,1

- a 1 @0,1/%\0,1@

33/95

Formal definition of nondeterministic finite automata

» Similar to DFA, except transition function must work for ¢, in
addition to X, and a “state” is a set of states, rather than a
single state.

> A nondeterministic finite automaton (NDFA) is a 5-tuple
(Qv zv 55 qo, F)

> @ is a finite set of states

> ¥ is a finite set, called the alphabet

> 0 Q x X — P(Q) is the transition function. (Here,
Y. =xU{e})

> qo € Q is the start state

> F C Q is the set of accepting (or final) states.

35/95

Can we generate a DFA for this?

Yes, but it is more complicated and has eight states.
» See book, Figure 1.32, page 51.
» Each state represents the last three symbols seen, where we
assume we start with 000.
» What is the transition from 0107

» On a1, we go to 101.
» On a 0, we go to 100.

Example of formal definition of NFA

NFA Ny = (Q, %, 6, g1, F) where

> Q:{CI17¢727Q37(74}, 6 ‘ 0 1 <€
» ¥ ={o0,1}, a | {a} {ae} 0
> g is the start state, Zi é%} (~Z{)q4} é%}
> F={a} qa | {qa} {aqa} 0

34

36

95

95

Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages.
» We say two machines are equivalent if they recognize the
same language.
» NFAs have no more power than DFAs:

» with respect to what can be expressed.
» But NFAs may make it much easier to describe a given
language.

» Every NFA has an equivalent DFA.

37/95

Proof by construction

> Let N =(Q,X,d,qo, F) be an NFA recognizing language A.
» Construct a DFA M = (Q', X, ¢, gy, F').

> Let's do the easy steps first (skip &’ for now).

» Q' =2Q)
9 = {qo}-
F'={R € Q : R contains an accept state of N }.
Transition function?

v

vy

» The state R € M corresponds to a set of states in N.
» When M reads symbol a in state R, it shows where a takes
each state.
> §'(R,a) = | Jd(r,a).
rer
> | ignore ¢, but taking that into account does not fundamentally
change the proof; we just need to keep track of more states.

39/95

Proof of equivalence of NFA and DFA

Proof idea:
» Need to simulate an NFA with a DFA.

» With NFAs, given an input, we follow all possible branches
and keep a finger on the state for each.

» That is what we need to track: the states we would be in for
each branch.
> If the NFA has k states, then it has 2% possible subsets.

» Each subset corresponds to one of the possibilities that the
DFA needs to remember.
» The DFA will have 2 states.

Example: Convert an NFA to a DFA

See Example 1.41 on page 57. For now, don't look at solution
DFA!

» The NFA has 3 states: Q = {1,2,3}. What are the states in
the DFA?
{0,413, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.

» What are the start states of the DFA?

» The start states of the NFA, including those reachable by
e-transitions

» {1,3} (We include 3 because if we we start in 1, we can
immediately move to 3 via an e-transition.)

» What are the accept states?

{{1},{1,2},{1,3},{1,2,3}}.

38

40

95

95

Example: Convert an NFA to a DFA (cont'd)

Now, let's work on some of those transitions.

> Let's look at state 2 in NFA and complete the transitions for
state 2 in the DFA.

> Where do we go from state 2 on a or b?

> On a go to states 2 and 3.
» On b, go to state 3.

> So what state does {2} in DFA go to for a and b?
» On a go to state {2,3}.
» On b, go to state {3}.

> Now let’s do state {3}.
» On a go to {1,3}.
Why? First go to 1, then e-transition back to 3.
» On b, go to 0.
» Now check DFA, Figure 1.43, on page 58.

Any questions? Could you do this on a homework? an exam?

41/95

Why do we care about closure?

We need to look ahead:
> A regular language is what a DFA/NFA accepts.
» We are now introducing regular operators and then will
generate regular expressions from them (Section 1.3).
» We will want to show that the language of regular expressions

is equivalent to the language accepted by NFAs/DFAs (i.e., a
regular language)

» How do we show this?

» Basic terms in regular expression can generated by a FA.
» We can implement each operator using a FA and the
combination is still able to be represented using a FA

43 /95

Closure under regular operations

v

We started this before and did it only for union.
> Union much simpler using NFA.

v

Concatenation and star much easier using NFA.

v

Since DFAs equivalent to NFAs, suffices to just use NFAs

v

In all cases, fewer states to track, because we can always
“guess’ correctly.

Closure under union

» Given two regular languages A; and Ay, recognized by two
NFAs N; and Ny, construct NFA N to recognize A; U As.
» How do we construct N? Think!
» Start by writing down N; and N,. Now what?

» Add a new start state and then have it take e-branches to the
start states of N; and Ns.

42

44

95

95

Closure under concatenation

» Given two regular languages A; and A; recognized by two
NFAs N; and Ny, construct NFA N to recognize A - As.
» How do we do this?

» The complication is that we did not know when to switch from
handling A; to A,, since can loop thru an accept state.
> Solution with NFA:
» Connect every accept state in N to every start state in N,
using an e-transition.
» Don’t remove transitions from accept state in Ny back to N;.

Closure under star

> We have a regular language A; and want to prove that Aj is
also regular.
Recall: (ab)* = {¢, ab, abab, ababab, ... }.

» Proof by construction:

» Take the NFA N, that recognizes A; and construct from it an
NFA N that recognizes Aj.
» How do we do this?

> Add new e-transition from accept states to start state.

» Then make the start state an additional accept state, so that
€ is accepted.

> This almost works, but not quite.

> Problem? May have transition from intermediate state to
start state; should not accept this.

» Solution? Add a new start state with an e-transition to the
original start state, and have e-transitions from accept states
to old start state.

47 /95

Closure under concatenation (cont'd)

» Given:

> Ny = (@1, X, 01, q1, F1) recognizing A;, and
> Ny = (@2, X, 02, g2, F2) recognizing A.

» Construct N = (Q1 U @2, X, 0, g1, F) recognizing Az - Az.

Transition function

5 (QLU @) x Xe = Z(Q1U Q)

given as
61(q,a) gec@andqgg¢F
1) F1 and
5(q.3) = 1(q,a) geFranda#e
01(g,a)U{q2} g€ Qi anda=¢
d2(q, a) qge @

Closure under star (cont'd)

O
~O -OCJ
O O

46

48

95

95

Section 1.3: Regular expressions

49 /95

Definition of regular expression

> Let ¥ be an alphabet. R is a regular expression over ¥ if R
is:

a, for some a € &

€

0

R1 U Ry, where Ry and R, are regular expressions.

R1 N Ry, where Ry and R, are regular expressions.

Ry, where Ry is a regular expression.

> Note:

» This is a recursive definition, common to computer science.
Since Ry and R, are simpler than R, no issue of infinite
recursion.

» () is a language containing no strings, and ¢ is the empty string.

vV VY VY VY VY

51/95

Regular expressions

» Based on the regular operators.

» Examples:

» (0U1)0*
» A0 or 1, followed by any number of O's.
» Concatenation operator implied.
> What does (0 U 1)* mean?
> Al possible strings of 0 and 1.
Not 0" or 1%, so does not require we commit to 0 or 1 before
applying * operator.
> Assuming ¥ = {0, 1}, equivalent to X*.

Examples of regular expressions

v

v

v

v

0*10* = { w € {0, 1}* : w contains a single 1 }.
Y*1¥* = {w € {0,1}* : w contains at least one 1}.
01U 10 = {01, 10}.

(oue)(1ue) ={e,0,1,01}.

50

52

95

95

Equivalence of regular expressions and finite automata

Theorem: A language is regular if and only if some regular

expression describes it.

» This has two directions, so we need to prove:
> If a language is described by a regular expression, then it is

regular.

> If a language is regular, then it is described by a regular

expression.

» We'll do both directions.

Proof (cont'd)

Steps 1-3 are fairly simple:

» a, forsomeac . TheFAis

» c. The FA'is

» 0. The FA is

-0
O
~O

53 /95

55/95

Proof: Regular expression = regular language

» Proof idea: Given a regular expression R describing a
language L, we should
> Show that some FA recognizes it.
» Use NFA, since may be easier (and it's equivalent to DFA).
» How do we do this?
> We will use definition of a regular expression, and show that
we can build an FA covering each step.
» We will do quickly with two parts:
> Steps 1, 2 and 3 of definition (handle a, €, and 0).
> Steps 4, 5, and 6 of definition (handle union, concatenation,
and star).

Proof (cont'd)

» For steps 4-6 (union, concatenation, and star), we use the
proofs we used earlier, when we established that FA are closed
under union, concatenation, and star.

» So we are done with the proof in one direction.

> So let's try an example.

54

56

95

95

Example: Regular expression = regular language Proof: Regular language = regular expression

» Convert (abU a)* to an NFA.
See Example 1.56 on page 68.

> A regular language is described by a DFA.
> Let's outline what we need to do:

> Need to show that can convert an DFA to a regular expression.

» Handle a.

> H::dl: :b » The book goes through several pages (Lemma 1.60,

» Handle ab.U a pp. 69-74) that don't really add much insight.

» Handle (abUa)*. > You can skip this. For the most part, if you understand the

ideas for going in the previous direction, you also understand
this direction.
» But you should be able to handle an example

> The book has states for e-transitions. They seem unnecessary
and may confuse you. In fact, they are unnecessary in this
case.

» Now we need to do the proof in the other direction.

57 /95 58 /95

Example: DFA = regular expression

Find the regular expression that is equivalent to the DFA

Section 1.4: Non-regular languages

; a4

Answer is a*b(a Ub)*.

59 /95 60 /95

Non-regular languages

» Do you think every language is regular? That would mean
that every language can be described by a FA.

» What might make a language non-regular? Think about main
property of a finite automaton: finite memory!

» So a language requiring infinite memory cannot be regular!

61 /95

Answers

» [y and L3 are not regular languages; they require infinite
memory.

> L, certainly is regular.

We will only study infinite regular languages.

63 /95

Some example questions

» Are the following languages regular?

» Ly ={w: w has an equal number of 0's and 1's }.
Ly ={w: w has at least 100 1's }.
Ls = {w: wis of the form 0"1" for some n >0 }.
First, write out some of the elements in each, to ensure you
have the terminology down.
» L1 = {¢,01,10,1100,0011,0101, 1010, 0110, ... }.
» L, ={1001'5,0100 1's,1100 1’s,... }.
» L3 ={e,01,0011,000111,...}.

v

vy

What is wrong with this?

» Question 1.36 from the book asks:
Let B, = {a* : k is a multiple of n}.
Show that B, is regular.

» How is this regular? How is this question different from the
ones before?

» Each language B, has a specific value of n, so n is not a free
variable (unlike the previous examples).

> Although k is a free variable, the number of states is bounded
by n, and not k.

62

64

95

95

More on regular languages Pumping Lemma for regular languages

» The Pumping Lemma states that all regular languages have a

» Regular languages can be infinite, but must be described)]
special pumping property.

using finitely-many states.

- > i it i
» Thus there are restrictions on the structure of regular If a language does not have the pumping property, then it is

| not regular.

anguages. > So one can use the Pumping Lemma to prove that a given
» For an FA to generate an infinite set of strings, what must language is not regular.

there be between some states? A loop. » Note: Pumping Lemma is an implication, not an equivalence.
» This leads to the (in)famous pumping lemma Hence, there are non-regular languages that have the pumping

' property.
65/95 66 /95
The Pumping Lemma Pumping Lemma explained

> Let L be a regular language. There is a positive integer p such » Condition 1: xy'z € L for all / > 0.

that any s € L with |s| > p can be “pumped”. This simply says that there is a loop.
> (p is the pumping length of L.) » Condition 2: |y| > 0.

> This means that every string s € L contains a substring that Without this condition, then there really would be no loop.

can repeated any number of times (via a loop). » Condition 3: [xy| < p.

» The statement “s can be pumped”’ means that we can write We don't allow more states than the pumping length, since we

s = xyz, where want to bound the amount of memory.
1. xy'ze€ Lforall i >0. > All together, the conditions allow either x or z to be ¢, but
2. lyl>0, not both.

3. [yl <p. The loop need not be in the middle (which would be limiting).

67 /95 68 /95

Pumping Lemma: Proof idea

» Let p = number of states in the FA.

v

Let s € L with |s| > p.
Consider the states that FA goes through for s.

v

v

Since there are only p states and |s| > p, one state must be
repeated (via pigeonhole principle).

\4

So, there is a loop.

69 /95

Pumping Lemma: Example 2

> Let C ={w € {0,1}* : w has equal number of 0's and 1's }
(Example 1.74).
Show that C is not regular.

> Use proof by contradiction.
Assume that C is regular.
Now pick a problematic string.
> Let's try OP1P again.
> If we pick x = z =€ and y = 0°1P, can we pump it and have
pumped string xy’z € C? Yes! Each pumping adds one 0 and
one 1. But this choice breaks condition |xy| < p.
> Suppose we choose x, y, z such that |xy| < p and |y| > 0.
Since |xy| < p, y consists only of 0's. Hence xyyz ¢ C (too
many zeros).

» Shorter proof: If C were regular, then B = C N 0*1* would
also be regular. This contradicts previous example!

71/95

Pumping Lemma: Example 1

> Let B={0"1":n>0} (Example 1.73).
Show that B is not regular.
» Use proof by contradiction.
Assume that B is regular.
Now pick a string that will cause a problem.
> Try OP1P.
» Since B is regular, we can write 0P1P = xyz as in statement
of Pumping Lemma.
Look at y:

> If y all O's or all 1's, then xyyz ¢ B. (Count is wrong.)
> If y a mixture of 0's and 1's, then O's and 1's not completely
separated in xyyz, and so xyyz ¢ B.

So 0P1P can’t be pumped, and thus B is not regular.

Common-sense interpretation

» FA can only use finite memory. If L has infinitely many
strings, they must be handled by the loop.
» If there are two parts that can generate infinite sequences, we
must find a way to link them in the loop.
> If not, L is not regular.
» Examples:
> 0"1"
» Equally many 0s and 1s.

70

72

95

95

Pumping Lemma: Example 3 Pumping Lemma: Example 4

» Let D={1":n>0}.

> Let F={ww:w e {0,1}*} (Example 1.75). » D={e1,1111,111111111, ...},
2
» F ={£,00,11,0000,0101,1010,1111,...}. > Choose 17"
.. . . > Assume we have xyz € D as per Pumping Lemma.
> Use proof by contradiction. Pick pro-ble.matlc seF.) > What about xyyz? The number of 1's differs from those
» Try s = 0P1P1. Let s = xyz be a splitting as per the Pumping in xyz by |y|.
Lemma. > Since |xy| < p, then |y| < p.
> Since |xy| < p, y must be all 0's. > So if |xyz| < p?, then |xyyz| < p? + p.
» So xyyz ¢ F, since 0's separated by 1 must be equal. » Butp®+p<p’+2p+1=(p+1)>
> Moreover, |y| > 0, and so |xyyz| > p*.
> So |xyyz| lies between two consecutive perfect squares, and
hence xyyz ¢ D.
73 /95 74 /95
Pumping Lemma: Example 5 What you must be able to do
. > You should be able to handle examples like 1-3.
— {01 i>| . e .

> Let E={0'V >} » Example 5 is not really any more difficult—just one more
» Assume E is regular and let s = 0P+11P, thing to think about.
> Decompose s = xyz as per statement of Pumping Lemma. » Example 4 was tough, so | won't expect everyone to get an
» By condition 3, y must be all 0's. example like that.

» What can we say about xyyz? >
Adding the extra y increases number of 0's, which appears to
be okay, since i > j is okay.

» But we can pump down. What about xy°z = xz?
Since s has one more 0 than 1, removing at least one 0 leads > Try to reason about the problem using “common sense” and
to a contradiction. So not regular. then use that to drive your proof.

You need to be able to handle the easy examples.
On an exam, | would probably give you several problems that
are minor variants of these examples.

» The homework problems will give you more practice.

75/95 76 /95

