CISC 4090: Theory of Computation Chapter 1 Regular Languages

Xiaolan Zhang, adapted from slides by Prof. Werschulz

Fordham University Department of Computer and Information Sciences

Spring, 2014

1 / 95

What is a computer?

- Not a simple question to answer precisely
 - Computers are quite complicated
- ▶ We start with a computational model
 - Different models will have different features, and may match a real computer better in some ways, and worse in others
- Our first model is the finite state machine or finite state automaton

Section 1.1: Finite Automata

Finite automata

Models of computers with extremely limited memory

- Many simple computers have extremely limited memories and are (in fact) finite state machines.
- Can you name any? (Hint: several are in this building, but have nothing specifically to do with our department.)
 - Vending machine
 - Elevators
 - Thermostat
 - Automatic door at supermarket

Automatic door

- What is the desired behavior? Describe the actions and then list the states.
 - Person approaches, door should open
 - Door should stay open while person going through
 - Door should shut if no one near doorway
 - States are Open and Closed
- More details about automatic door
 - Components: front pad, door, rear pad
 - Describe behavior now:
 - Hint: action depends not only on what happens, but also on current state
 - If you walk through, door should stay open when you're on rear pad
 - But if door is closed and someone steps on rear pad, door does not open

Automatic door (cont'd)

5 / 95

More on finite automata

- How may bits of data does this FSM store?
 - ▶ 1 bit: open or closed
- What about state information for elevators, thermostats, vending machines, etc.?
- ► FSM used in speech processing, special character recognition, compiler construction . . .
- Have you implemented an FSM? When?
 - ▶ Network protocol for the game "Hangman"

A finite automaton M_1

Finite automaton M_1 with three states:

- We see the state diagram
 - ▶ Start state *q*₁
 - Accept state q₂ (double circle)
 - Several transitions
- ► A string like 1101 will be *accepted* if *M*₁ ends in accept state, and rejects otherwise. What will it do?
- ▶ Can you describe all strings that *M*₁ will accept?
 - All strings ending in 1, and
 - All strings having an even number of 0's following the final 1

8 / 95

Formal definition of finite state automata

A finite (state) automaton (FA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F$):

- ► *Q* is a finite set of *states*
- Σ is a finite set, called the *alphabet*
- $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function*
- $q_0 \in Q$ is the *start state*
- $F \subseteq Q$ is the set of *accepting* (or *final*) *states*.

Describe M_1 using formal definition

- $M_1 = (Q, \Sigma, \delta, q_0, F)$, where
- $Q = \{q_1, q_2, q_3\}$
- Σ = {0, 1}
- q_1 is the start state
- $F = \{q_2\}$ (only one accepting state)
- \blacktriangleright Transition function δ given by

δ	0	1
q_1	q_1	q_2
q_2	<i>q</i> ₃	q_2
q_3	q_2	q_2

9 / 95

The language of an FA

- ► If A is the set of all strings that a machine M accepts, then A is the *language* of M.
 - Write L(M) = A.
 - ► Also say that *M* recognizes or accepts *A*.
- A machine may accept many strings, but only one language.
- ► Convention: *M* accepts strings but recognizes a language.

What is the language of M_1 ?

- We write $L(M_1) = A$, i.e., M_1 recognizes A.
- ► What is A?
 - ▶ $A = \{ w \in \{0, 1\}^* : ... \}.$
 - We have

 $A = \left\{ w \in \{0,1\}^* : w \text{ contains at least one 1} \right.$ and an even number of 0's follow the last 1 $\left. \right\}$

What is the language of M_2 ?

- $M_2 = \{\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\}\}$ where
- \blacktriangleright I leave δ as an exercise.
- What is the language of M_2 ?
 - ▶ $L(M_2) = \{ w \in \{0,1\}^* : ... \}.$
 - $L(M_2) = \{ w \in \{0,1\}^* : w \text{ ends in a } 1 \}.$

- $M_3 = \{\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\}\}$ is M_2 , but with accept state set $\{q_1\}$ instead of $\{q_2\}$.
- ► What is the language of *M*₃?
 - ▶ $L(M_3) = \{ w \in \{0,1\}^* : ... \}.$
 - Guess $L(M_3) = \{ w \in \{0,1\}^* : w \text{ ends in a } 0 \}$. Not quite right. Why?
 - ▶ $L(M_3) = \{ w \in \{0, 1\}^* : w = \varepsilon \text{ or } w \text{ ends in a } 0 \}.$

13 / 95

What is the language of M_4 ?

- M_4 is a five-state automaton (Figure 1.12 on page 38).
- ▶ What does *M*₄ accept?
 - All strings that start and end with a or start and end with b.
 - More simply, $L(M_4)$ is all strings starting and ending with the same symbol.
 - Note that string of length 1 is okay.

Construct M_5 to do modular arithmetic

- Let $\Sigma = \{ \langle \text{RESET} \rangle, 0, 1, 2 \}.$
- Construct M₅ to accept a string iff the sum of each input symbol is a multiple of 3, and (RESET) sets the sum back to 0.

Now generalize M_5

 Generalize M₅ to accept if sum of symbols is a multiple of i instead of 3.

 $M = \{\{q_0, q_1, q_2, \dots, q_{i-1}\}, \{0, 1, 2, \langle \text{RESET} \rangle\}, \delta_i, q_0, \{q_0\}\},\$

where

- $\delta_i(q_j, 0) = q_j$.
- $\delta_i(q_j, 1) = q_k$, where $k = j + 1 \mod i$.
- $\delta_i(q_j, 2) = q_k$, where $k = j + 2 \mod i$.
- $\delta_i(q_j, \langle \text{RESET} \rangle) = q_0.$
- Note: As long as *i* is finite, we are okay and only need finite memory (number of states).
- Could you generalize to $\Sigma = \{0, 1, 2, \dots, k\}$?

Formal definition of acceptance

- Let $M = (Q, \Sigma, \delta, Q_0, F)$ be an FA and let $w = w_1 w_2 \dots w_n \in \Sigma^*$. We say that M accepts w if there exists a sequence $r_0, r_1, \dots, r_n \in Q$ of states such that
 - ▶ $r_0 = q_0$.
- $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i \in \{0, 1, ..., n-1\}$
- ▶ $r_n \in F$.

18 / 95

Regular languages

A language L is *regular* if it is recognized by some finite automaton.

- ► That is, there is a finite automaton M such that L(M) = A, i.e., M accepts all of the strings in the language, and rejects all strings *not* in the language.
- Why should you expect proofs by construction coming up in your next homework?

Designing automata

- > You will need to design an FA that accept a given language L.
- Strategies:
 - Determine what you need to remember (The states).
 - How many states to determine even/odd number of 1's in an input?
 - What does each state represent?
 - Set the start and finish states, based on what each state represents.
 - Assign the transitions.
 - ▶ Check your solution: it should accept every $w \in L$, and it should not accept any $w \notin L$.
 - Be careful about ε.

You try designing FA

Regular operations

- Design an FA to accept the language of binary strings having an odd number of 1's (page 43).
- Design an FA to accept all strings containing the substring 001 (page 44).
 - What do you need to remember?
- Design an FA to accept strings containing the substring abab.

Let A and B be languages. We define three *regular operations*:

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- Concatenation: $A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$
- Kleene *star*: $A^* = \{ x_1 x_2 \dots x_k : k \ge 0 \text{ and each } x_i \in A \}.$
 - ► Kleene star is a unary operator on a single language.
 - ► A* consists of (possibly empty!) concatenations of strings from A.

21 / 95

Examples of regular operations

- Let $A = \{ good, bad \}$ and $B = \{ boy, girl \}$. What are the following?
- ► $A \cup B = \{\text{good}, \text{bad}, \text{boy}, \text{girl}\}.$
- ► A · B = {goodboy, goodgirl, badboy, badgirl}.
- ► A* =
 - $\{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \dots \}.$

Closure

- A set of objects is *closed* under an operation if applying that operations to members of that set always results in a member of that set.
- ▶ The natural numbers $\mathbb{N} = \{1, 2, ...\}$ are closed under addition and multiplication, but not subtraction or division.

Closure for regular languages

- Regular languages are closed under the three regular operations we just introduced (union, concatenation, star).
- Can you look ahead to see why we care?
- ▶ We can build FA to recognize regular expressions!

Closure of union

Theorem 1.25: The class of regular languages is closed under the union operation. That is, if A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$.

How can we prove this?

- Suppose that M_1 accepts A_1 and M_2 accepts A_2 .
- Construct M_3 using M_1 and M_2 to accept $A_1 \cup A_2$.
- We need to simulate M_1 and M_2 running in parallel, and stop if either reaches an accepting state.
 - This last part is feasible, since we can have multiple accepting states.
 - > You need to remember where you are in both machines.

25 / 95

Closure of union (cont'd)

- You need to generate a state to represent the state you are in with M_1 and M_2 .
- Let $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ for $i \in \{1, 2\}$.
- Build $M = (Q, \Sigma, \delta, q, F)$ as follows:
 - ▶ $Q = Q_1 \times Q_2 = \{ (r_1, r_2) : r_1 \in Q_1 \text{ and } r_2 \in Q_2 \}.$
 - Σ is unchanged. (Note that if M_i used Σ_i for $i \in \{1, 2\}$, we could have chosen $\Sigma = \Sigma_1 \cup \Sigma_2$.)
 - ▶ $q_0 = (q_1, q_2).$

►
$$F = \{ (r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2 \}.$$

 $\bullet \ \delta((\mathbf{r}_1,\mathbf{r}_2),\mathbf{a}) = (\delta(\mathbf{r}_1,\mathbf{a}),\delta(\mathbf{r}_2,\mathbf{a})).$

Closure of concatenation

Theorem 1.26: The class of regular languages is closed under the concatenation operator. That is, if A_1 and A_2 are regular languages, then so is $A_1 \cdot A_2$.

Can you see how to do this simply?

Not trivial, since cannot just concatenate M_1 and M_2 , where the finish states of M_1 becoming the start state of M_2 .

- Because we do not accept a string as soon as it enters the finish state, we wait until string is done, so it can leave and come back.
- Thus we do not know when to start using M_2 .
- ► The proof is easy if we use *nondeterministic* FA.

Nondeterminism

- So far, our FA have been *deterministic*: the current state and the input symbol determine the next state.
- ▶ In a *nondeterministic* machine, several choices may exist.
- DFA's have one transition arrow per input symbol
- ▶ NFA's . . .
 - have zero or more transitions for each input symbol, and
 - may have an ε-transition.

30 / 95

29 / 95

How does an NFA compute?

- ▶ When there is a choice, all paths are followed.
 - Think of it as cloning a process and continuing.
 - If there is no arrow, the path terminates and the clone dies (it does not accept if at an accept state when this happens).
 - An NFA may have the empty string cause a transition.

Section 1.2: Nondeterminism

- The NFA accepts any path is in the the accept state.
- Can also be modeled as a tree of possibilities.
- An alternative way of thinking about this:
 - At each choice, you make one guess of which way to go.
 - You always magically guess the right way to go.

Try computing this!

- Try out 010110.
 Is it accepted? Yes!
- What is the language?
 Strings containing either 101 or 11 as a substring.

Construct an NFA

- Construct an NFA that accepts all strings over {0,1}, with a
 1 in the third position from the end.
- **Hint:** The NFA stays in the start state until it guesses that it is three places from the end.
- Solution?

Can we generate a DFA for this?

Yes, but it is more complicated and has eight states.

- ▶ See book, Figure 1.32, page 51.
- Each state represents the last three symbols seen, where we assume we start with 000.
- ▶ What is the transition from 010?
 - On a 1, we go to 101.
 - On a 0, we go to 100.

33 / 95

Formal definition of nondeterministic finite automata

- Similar to DFA, except transition function must work for ε, in addition to Σ, and a "state" is a *set* of states, rather than a single state.
- A nondeterministic finite automaton (NDFA) is a 5-tuple (Q, Σ, δ, q₀, F):
 - ► *Q* is a finite set of *states*
 - Σ is a finite set, called the *alphabet*
 - $\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q)$ is the transition function. (Here, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}.$)
 - $q_0 \in Q$ is the *start state*
 - $F \subseteq Q$ is the set of *accepting* (or *final*) *states*.

Example of formal definition of NFA

1

E

NFA $N_1 = (Q, \Sigma, \delta, q_1, F)$ where $Q = \{q_1, q_2, q_3, q_4\}, \underline{\delta \mid 0}$

 q_1 $\{q_1\}$ $\{q_1, q_2\}$ Ø ► $\Sigma = \{0, 1\},\$ $\{q_3\}$ Ø $\{q_3\}$ q_2 \triangleright q_1 is the start state, Ø Ø **q**3 $\{q_4\}$ ▶ $F = \{q_4\},$ Ø $\{q_4\}$ q_4 $\{q_4\}$

Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages.

- We say two machines are *equivalent* if they recognize the same language.
- NFAs have no more power than DFAs:
 - with respect to what can be expressed.
 - But NFAs may make it much easier to describe a given language.
- ▶ Every NFA has an equivalent DFA.

Proof of equivalence of NFA and DFA

Proof idea:

- ▶ Need to *simulate* an NFA with a DFA.
- With NFAs, given an input, we follow all possible branches and keep a finger on the state for each.
- That is what we need to track: the states we would be in for each branch.
- If the NFA has k states, then it has 2^k possible subsets.
 - Each subset corresponds to one of the possibilities that the DFA needs to remember.
 - The DFA will have 2^k states.

38 / 95

Proof by construction

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing language A.
- Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$.
 - Let's do the easy steps first (skip δ' for now).
 - ► $Q' = \mathscr{P}(Q)$
 - ▶ $q'_0 = \{q_0\}.$
 - $F' = \{ R \in Q' : R \text{ contains an accept state of } N \}.$
 - Transition function?
 - The state $R \in M$ corresponds to a set of states in N.
 - When M reads symbol a in state R, it shows where a takes each state.

•
$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$$

 I ignore ε, but taking that into account does not fundamentally change the proof; we just need to keep track of more states.

Example: Convert an NFA to a DFA

See Example 1.41 on page 57. For now, don't look at solution $\mathsf{DFA}!$

- ► The NFA has 3 states: Q = {1,2,3}. What are the states in the DFA?
 - $\big\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \big\}.$
- What are the start states of the DFA?
 - \blacktriangleright The start states of the NFA, including those reachable by $\varepsilon\text{-transitions}$
 - {1,3} (We include 3 because if we we start in 1, we can immediately move to 3 via an ε-transition.)
- What are the accept states? {{1}, {1,2}, {1,3}, {1,2,3}}.

Example: Convert an NFA to a DFA (cont'd)

Now, let's work on some of those transitions.

- Let's look at state 2 in NFA and complete the transitions for state 2 in the DFA.
 - Where do we go from state 2 on a or b?
 - On a go to states 2 and 3.
 - On b, go to state 3.
 - So what state does {2} in DFA go to for a and b?
 - On a go to state {2, 3}.
 - On b, go to state {3}.
- ▶ Now let's do state {3}.
 - On a go to {1,3}.
 - Why? First go to 1, then ε -transition back to 3.
 - ▶ On b, go to \emptyset .
- ▶ Now check DFA, Figure 1.43, on page 58.

Any questions? Could you do this on a homework? an exam?

Closure under regular operations

- We started this before and did it only for union.Union much simpler using NFA.
- Concatenation and star much easier using NFA.
- ▶ Since DFAs equivalent to NFAs, suffices to just use NFAs
- In all cases, fewer states to track, because we can always "guess" correctly.

41 / 95

Why do we care about closure?

We need to look ahead:

- ► A regular language is what a DFA/NFA accepts.
- ▶ We are now introducing regular operators and then will generate regular expressions from them (Section 1.3).
- We will want to show that the language of regular expressions is equivalent to the language accepted by NFAs/DFAs (i.e., a regular language)
- How do we show this?
 - ► Basic terms in regular expression can generated by a FA.
 - We can implement each operator using a FA and the combination is still able to be represented using a FA

Closure under union

- Given two regular languages A₁ and A₂, recognized by two NFAs N₁ and N₂, construct NFA N to recognize A₁ ∪ A₂.
- How do we construct N? Think!
 - Start by writing down N_1 and N_2 . Now what?
 - Add a new start state and then have it take ε -branches to the start states of N_1 and N_2 .

Closure under concatenation

- Given two regular languages A₁ and A₂ recognized by two NFAs N₁ and N₂, construct NFA N to recognize A₁ · A₂.
- How do we do this?
 - The complication is that we did not know when to switch from handling A₁ to A₂, since can loop thru an accept state.
 - Solution with NFA:
 - ▶ Connect every accept state in N_1 to every start state in N_2 using an ε -transition.
 - Don't remove transitions from accept state in N_1 back to N_1 .

Closure under concatenation (cont'd)

- Given:
 - $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizing A_1 , and
 - $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizing A_2 .
- Construct N = (Q₁ ∪ Q₂, Σ, δ, q₁, F) recognizing A₁ · A₂. Transition function

$$\delta \colon (Q_1 \cup Q_2) imes \Sigma_{arepsilon} o \mathscr{P}(Q_1 \cup Q_2)$$

given as

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in Q_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

45 / 95

Closure under star

- ▶ We have a regular language A₁ and want to prove that A₁^{*} is also regular.
 - Recall: $(ab)^* = \{\varepsilon, ab, abab, ababab, \dots\}.$
- Proof by construction:
 - ► Take the NFA *N*₁ that recognizes *A*₁ and construct from it an NFA *N* that recognizes *A*^{*}₁.
 - How do we do this?
 - Add new ε -transition from accept states to start state.
 - Then make the start state an additional accept state, so that ε is accepted.
 - This almost works, but not quite.
 - Problem? May have transition from intermediate state to start state; should not accept this.
 - Solution? Add a new start state with an ε-transition to the original start state, and have ε-transitions from accept states to old start state.

Closure under star (cont'd)

Regular expressions

Section 1.3: Regular expressions

- Based on the regular operators.
- Examples:
 - ▶ (0 ∪ 1)0*
 - ► A 0 or 1, followed by any number of 0's.
 - Concatenation operator implied.
 - What does $(0 \cup 1)^*$ mean?
 - Al possible strings of 0 and 1.
 Not 0* or 1*, so does not require we commit to 0 or 1 before applying * operator.
 - Assuming $\Sigma = \{0, 1\}$, equivalent to Σ^* .

49 / 95

Definition of regular expression

- Let Σ be an alphabet. R is a regular expression over Σ if R is:
 - *a*, for some $a \in \Sigma$
 - ► *ε*
 - ►Ø
 - $R_1 \cup R_2$, where R_1 and R_2 are regular expressions.
 - $R_1 \cap R_2$, where R_1 and R_2 are regular expressions.
 - \triangleright R_1^* , where R_1 is a regular expression.
- Note:
 - ► This is a recursive definition, common to computer science. Since R₁ and R₂ are simpler than R, no issue of infinite recursion.
 - \blacktriangleright Ø is a language containing no strings, and ε is the empty string.

Examples of regular expressions

- $0^*10^* = \{ w \in \{0, 1\}^* : w \text{ contains a single } 1 \}.$
- $\Sigma^* 1 \Sigma^* = \{ w \in \{0, 1\}^* : w \text{ contains at least one } 1 \}.$
- ▶ $01 \cup 10 = \{01, 10\}.$
- ► $(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}.$

Equivalence of regular expressions and finite automata

Theorem: A language is regular if and only if some regular expression describes it.

- ▶ This has two directions, so we need to prove:
 - If a language is described by a regular expression, then it is regular.
 - If a language is regular, then it is described by a regular expression.
- ► We'll do both directions.

Proof: Regular expression \implies regular language

- Proof idea: Given a regular expression R describing a language L, we should
 - Show that some FA recognizes it.
 - Use NFA, since may be easier (and it's equivalent to DFA).
- How do we do this?
 - We will use definition of a regular expression, and show that we can build an FA covering each step.
 - We will do quickly with two parts:
 - Steps 1, 2 and 3 of definition (handle a, ε , and \emptyset).
 - Steps 4, 5, and 6 of definition (handle union, concatenation, and star).

53 / 95

Proof (cont'd)

Steps 1–3 are fairly simple:

► *a*, for some $a \in \Sigma$. The FA is

 $\rightarrow \bigcirc \overset{a}{\rightarrow}$

▶ ε . The FA is

▶ Ø. The FA is

Proof (cont'd)

- For steps 4–6 (union, concatenation, and star), we use the proofs we used earlier, when we established that FA are closed under union, concatenation, and star.
- ▶ So we are done with the proof in one direction.
- So let's try an example.

Example: Regular expression \implies regular language

- Convert (ab ∪ a)* to an NFA.
 See Example 1.56 on page 68.
- Let's outline what we need to do:
 - Handle a.
 - Handle ab.
 - $\blacktriangleright \ {\sf Handle} \ {\tt ab} \cup {\tt a}.$
 - Handle $(ab \cup a)^*$.
- The book has states for ε-transitions. They seem unnecessary and may confuse you. In fact, they are unnecessary in this case.
- ▶ Now we need to do the proof in the other direction.

- A regular language is described by a DFA.
- ▶ Need to show that can convert an DFA to a regular expression.
- The book goes through several pages (Lemma 1.60, pp. 69–74) that don't really add much insight.
 - You can skip this. For the most part, if you understand the ideas for going in the previous direction, you also understand this direction.
 - ▶ But you should be able to handle an example

57 / 95

Example: DFA \implies regular expression

Find the regular expression that is equivalent to the DFA

Answer is $a^*b(a \cup b)^*$.

Section 1.4: Non-regular languages

Non-regular languages

Some example questions

- Do you think every language is regular? That would mean that every language can be described by a FA.
- What might make a language non-regular? Think about main property of a finite automaton: finite memory!
- ► So a language requiring infinite memory cannot be regular!

- Are the following languages regular?
 - $L_1 = \{ w : w \text{ has an equal number of 0's and 1's} \}.$
 - ► L₂ = { w : w has at least 100 1's }.
 - $L_3 = \{ w : w \text{ is of the form } 0^n 1^n \text{ for some } n \ge 0 \}.$
 - First, write out some of the elements in each, to ensure you have the terminology down.
 - ► $L_1 = \{\varepsilon, 01, 10, 1100, 0011, 0101, 1010, 0110, \dots\}.$
 - ▶ $L_2 = \{100 \ 1's, 0 \ 100 \ 1's, 1 \ 100 \ 1's, ... \}.$
 - $L_3 = \{\varepsilon, 01, 0011, 000111, \dots\}.$

62 / 95

61/95

Answers

- L₁ and L₃ are not regular languages; they require infinite memory.
- ► L₂ certainly is regular.
- We will only study infinite regular languages.

What is wrong with this?

Question 1.36 from the book asks:

Let $B_n = \{ a^k : k \text{ is a multiple of } n \}$. Show that B_n is regular.

- How is this regular? How is this question different from the ones before?
- ► Each language B_n has a specific value of n, so n is not a free variable (unlike the previous examples).
- Although k is a free variable, the number of states is bounded by n, and not k.

More on regular languages

- Regular languages can be infinite, but must be described using finitely-many states.
- Thus there are restrictions on the structure of regular languages.
- For an FA to generate an infinite set of strings, what must there be between some states? A loop.
- ▶ This leads to the (in)famous *pumping lemma*.

Pumping Lemma for regular languages

- The Pumping Lemma states that all regular languages have a special pumping property.
- If a language does not have the pumping property, then it is not regular.
 - So one can use the Pumping Lemma to prove that a given language is not regular.
 - Note: Pumping Lemma is an implication, not an equivalence. Hence, there are non-regular languages that have the pumping property.

65 / 95

The Pumping Lemma

- Let L be a regular language. There is a positive integer p such that any s ∈ L with |s| > p can be "pumped".
- ▶ (*p* is the *pumping length* of *L*.)
- ► This means that every string s ∈ L contains a substring that can repeated any number of times (via a loop).
- The statement "s can be pumped" means that we can write s = xyz, where
 - 1. $xy^i z \in L$ for all $i \ge 0$.
 - 2. |y| > 0,
 - 3. $|xy| \le p$.

Pumping Lemma explained

- Condition 1: xyⁱz ∈ L for all i ≥ 0. This simply says that there is a loop.
- Condition 2: |y| > 0.
 Without this condition, then there really would be no loop.
- Condition 3: |xy| ≤ p.
 We don't allow more states than the pumping length, since we want to bound the amount of memory.
- All together, the conditions allow either x or z to be ε, but not both.

The loop need not be in the middle (which would be limiting).

68 / 95

Pumping Lemma: Proof idea

- Let p = number of states in the FA.
- Let $s \in L$ with |s| > p.
- Consider the states that FA goes through for *s*.
- Since there are only p states and |s| > p, one state must be repeated (via pigeonhole principle).
- So, there is a loop.

Pumping Lemma: Example 1

- Let $B = \{ 0^n 1^n : n \ge 0 \}$ (Example 1.73). Show that B is not regular.
- Use proof by contradiction.
 Assume that B is regular.
 Now pick a string that will cause a problem.
- Try $0^p 1^p$.
- Since B is regular, we can write $0^p 1^p = xyz$ as in statement of Pumping Lemma.

Look at y:

- ▶ If y all 0's or all 1's, then $xyyz \notin B$. (Count is wrong.)
- If y a mixture of 0's and 1's, then 0's and 1's not completely separated in xyyz, and so xyyz ∉ B.

So $0^{p}1^{p}$ can't be pumped, and thus *B* is not regular.

69 / 95

Pumping Lemma: Example 2

► Let $C = \{ w \in \{0, 1\}^* : w \text{ has equal number of 0's and 1's} \}$ (Example 1.74).

Show that C is not regular.

- Use proof by contradiction.
 Assume that C is regular.
 Now pick a problematic string.
- ▶ Let's try 0^p1^p again.
 - If we pick x = z = ε and y = 0^ρ1^ρ, can we pump it and have pumped string xyⁱz ∈ C? Yes! Each pumping adds one 0 and one 1. But this choice breaks condition |xy| ≤ ρ.
 - Suppose we choose x, y, z such that |xy| ≤ p and |y| > 0. Since |xy| ≤ p, y consists only of 0's. Hence xyyz ∉ C (too many zeros).
- Shorter proof: If C were regular, then B = C ∩ 0*1* would also be regular. This contradicts previous example!

Common-sense interpretation

- FA can only use finite memory. If L has infinitely many strings, they must be handled by the loop.
- If there are two parts that can generate infinite sequences, we must find a way to link them in the loop.
 - ► If not, *L* is not regular.
 - Examples:
 - ▶ 0ⁿ1ⁿ
 - Equally many 0s and 1s.

Pumping Lemma: Example 3

- Let $F = \{ ww : w \in \{0, 1\}^* \}$ (Example 1.75).
- F = {ε, 00, 11, 0000, 0101, 1010, 1111, ... }.
- Use proof by contradiction. Pick problematic $s \in F$.
- ▶ Try $s = 0^{p}1^{p}1$. Let s = xyz be a splitting as per the Pumping Lemma.
 - Since $|xy| \le p$, y must be all 0's.
 - So $xyyz \notin F$, since 0's separated by 1 must be equal.

Pumping Lemma: Example 4

- Let $D = \{ 1^{n^2} : n \ge 0 \}.$
- ► $D = \{\varepsilon, 1, 1111, 111111111, ... \}.$
- Choose 1^{p^2} .
 - Assume we have $xyz \in D$ as per Pumping Lemma.
 - What about xyyz? The number of 1's differs from those in xyz by |y|.
 - Since $|xy| \le p$, then $|y| \le p$.
 - So if $|xyz| \le p^2$, then $|xyyz| \le p^2 + p$.
 - But $p^2 + p < p^2 + 2p + 1 = (p+1)^2$.
 - Moreover, |y| > 0, and so $|xyyz| > p^2$.
 - So |xyyz| lies between two consecutive perfect squares, and hence xyyz ∉ D.

73 / 95

Pumping Lemma: Example 5

- Let $E = \{0^i 1^j : i > j\}.$
- Assume *E* is regular and let $s = 0^{p+1}1^p$.
- Decompose s = xyz as per statement of Pumping Lemma.
- ▶ By condition 3, y must be all 0's.
 - What can we say about xyyz? Adding the extra y increases number of 0's, which appears to be okay, since i > j is okay.
 - But we can pump down. What about xy⁰z = xz?
 Since s has one more 0 than 1, removing at least one 0 leads to a contradiction. So not regular.

What you must be able to do

- ▶ You should be able to handle examples like 1–3.
- Example 5 is not really any more difficult—just one more thing to think about.
- Example 4 was tough, so I won't expect everyone to get an example like that.
- You need to be able to handle the easy examples.
 On an exam, I would probably give you several problems that are minor variants of these examples.
- Try to reason about the problem using "common sense" and then use that to drive your proof.
- > The homework problems will give you more practice.