CISC 4090 Homework 1 (100 points total)

Note: according to our book on page 4, the set of natural numbers N does not include 0.

Question 1: (16 points) Examine the following "set-builder" descriptions of the following sets, and provide a list of set members. For full credit your members should show you capture the full diversity and range of the possible elements. Be especially careful for 1c.

Example "builder" description: $\{y \mid y=3x \text{ and } x \in \mathbb{N}\}$ Example answer: $\{3, 6, 9, 12, \dots\}$

- a. $\{5m \mid m \in \mathbb{N} \text{ and } m > 5\}$
- b. $\{\frac{x}{2} \mid x \in \mathbb{Z} \}$
- c. $\{w \mid w \text{ is a string over the alphabet consisting of As and Bs, and } w \text{ is a palindrome (reads the same forward and in reverse)}\}$
- d. $\{(y, y-2) | y \in \mathbb{N} \}$

Question 2: (15 points) Provide a "set-builder" description (see Question 1) for each of the sets with elements listed below.

- a. {10, 100, 1000, 10000, ...}
- b. {1, 4, 7, 10, 13, ...}
- c. $\{3, 4, 5, 6, 7, 8, \ldots\}$
- d. {1,2,3,4,5,6}
- e. {}

Question 3: (20 points)

Let A={ab, aabb, aaabbb, aaaabbbb}, B={ab, abab, ababab}, and C={ab, aabb}

- a. $C \subseteq A$ (circle one) True False b. $B \subseteq A$ (circle one) True False
- c. What is $B \cup C$?
- d. What is $A \cap B$?
- e. What is the power set of C?

Question 4: (10 points)

- a. Given an arbitrary set A, with a total of |A| elements, how many elements are in the power set of A?
- b. Given an arbitrary set A and B with |A| and |B| elements respectively, how many elements are in the "Cartesian product" of the two sets-- $A \times B$?

Question 5: (8 points) Let X be the set $\{2, 4, 6, 8, 10\}$ and Y be the set $\{1, 2, 3, 4, 5\}$. The unary function $f: X \to Y$ and the binary function $g: X \times Y \to X$ are described in the following tables.

n	f(n)		
2	3		
4 6	3		
6	3 5 5		
8	5		
10	1		

g	1	2	3	4	5
2	4	4	4	4	4
4	6	6	6	10	10
6	10	8	6	4	2
8	2	2	6	6	6
10	4	8	10	8	4

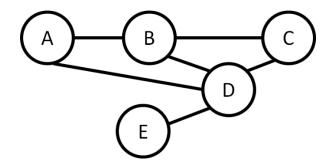
- a. What is the value of f(8)?
- b. What are the range and domain of *f*?
- c. What is the value of g(8,4)?
- d. What is the value of f(g(6,5))?

Question 6: (12 points) Consider the undirected graph G=(V,E) where V, the set of nodes, is $\{1, 2, 3, 4\}$ and E, the set of edges, is $\{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$.

a. Draw the graph G.

- b. What are the degrees of each node?
- c. Write a set of edges forming a path from node 3 to node 4 in the graph.

Question 7: (9 points) Write a formal description of the following graph.



Question 8: (10 points) Show that every graph with two or more nodes contains at least two nodes that have equal degrees.

Notes:

- We do not allow an edge from a node to itself.
- The graph does not have to be connected (some nodes may not have any edges)

Big Hint: Think of the pigeonhole principle, possibly taught in CISC 1100/1400. Feel free to look it up.