
Dr. Gary Weiss 1

Computer Language

Theory

Chapter 1: Regular Languages

Last updated 2/26/21

2Dr. Gary Weiss

Chapter 1.1: Finite Automata

3Dr. Gary Weiss

What is a Computer?

◼ Not a simple question to answer precisely

◼ Computers are quite complicated

◼ We start with a computational model

◼ Different models will have different features and

may match a real computer better in some ways and

worse in others

◼ Our first model is the finite state machine or

finite automata

4Dr. Gary Weiss

Finite Automata

◼ Models of computers with extremely limited
memory

◼ Many simple computers have extremely limited
memories and are in fact finite state machines

◼ Can you name any? Hint: several are in this building
but have nothing specifically to do with our
department

◼ Vending machine

◼ Elevator

◼ Thermostat

◼ Automatic door at supermarket

5Dr. Gary Weiss

Automatic Door

◼ What is the desired behavior? Describe the actions and then list
the states.

◼ Person approaches, door should open

◼ Door should stay open while person going thru

◼ Door should shut if no one near doorway

◼ States are open and closed

◼ More details about automatic door

◼ Front pad Door Rear Pad

◼ Describe behavior now

◼ Hint: action depends not just on what happens, but what state you are
currently in

◼ If you walk thru door should stay open when you are on rear pad

◼ But if door is closed and someone steps on rear pad, door does not open

6Dr. Gary Weiss

Automatic Door cont.

Closed Open

FRONT

NEITHER

REAR, BOTH,

NEITHER

FRONT, REAR,

BOTH

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

7Dr. Gary Weiss

More on Finite Automata

◼ How many bits of data does this FSM store?

◼ 1 bit: open or closed

◼ What about state information for elevators,
thermostats, vending machines, etc?

◼ FSM used in speech processing, optical
character recognition, etc.

◼ Have you implemented FSM? What?

◼ I have implemented network protocols and expert
systems for diagnosing telecommunication
equipment problems

8Dr. Gary Weiss

A finite automata M1

◼ A finite automata M1 with 3 states

◼ We see the state diagram

◼ Start state q1, accept state q2 (double circle), and several transitions

◼ If a string like 1101 will accept if ends in accept state or else
reject. What will it do?

◼ Can you describe all string that this model will accept?

◼ It will accept all strings ending in a 1 and any string with an even
number of 0’s following the last 1

0
0

1

1

0,1

q1 q3
q2

9Dr. Gary Weiss

Formal Definition of Finite Automata

◼ A finite automata is a 5-tuple (Q, , δ, q0, F)

◼ Q is a finite set called states

◼  is a finite set called the alphabet

◼ δ : Q x  → Q is the transition function

◼ q0  Q is the start state

◼ F  Q is the set of accept states

10Dr. Gary Weiss

Describe M1 using Formal Definition

◼ M1 = (Q, , δ, q0, F)

◼ Q =

◼  =

◼ q1 is the start state

◼ F =

0
0

1

1

0,1

q1 q3
q2

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

Transition function δ

{q1, q2, q3}

{0,1}

{q2}

11Dr. Gary Weiss

The Language of M1

◼ If A is the set of all strings that a machine M

accepts, then A is the language of M

◼ L(M) = A

◼ We also say that M recognizes A or M accepts A

◼ A machine may accept many strings, but only

one language

◼ Convention: M accepts string and recognizes a

language

12Dr. Gary Weiss

What is the Language of M1?

◼ L(M1) = A or M1 recognizes A

◼ What is A?

◼ A = {w | …….}

◼ A = {w| w contains at least one 1 and an even

number of 0’s follows the last 1}

13Dr. Gary Weiss

What is the Language of M2?

◼ M2 = {{q1,q2}, {0,1}, δ, q1, {q2}}

◼ I leave δ as an exercise

◼ What is the language of M2?

◼ L(M2) = {w| ? }

◼ L(M2) = {w| w ends in a 1}

0

1

q1 q2

1

0

14Dr. Gary Weiss

What is the Language of M3?

◼ M3 is M2 with different accept state

◼ What is the language of M3?

◼ L(M3) = {w| ? }

◼ L(M3) = {w| w ends in 0} [Not quite right! Why?]

◼ L(M3) = {w| w is the empty string ε or ends in 0}

0

1

q2

1

0

q1

15Dr. Gary Weiss

What is the Language of M4?

◼ M4 is a 5 state automata (Figure 1.12 on page 38)

s

r1

r2

q1

q2

What language does M4 accept?

a
b

b

b
b

b

a

a a

a

What is the Language of M4?

◼ What does M4 accept?

◼ All strings that start and end with a or start and end

with b

◼ More simply, language is all string starting and

ending with the same symbol

◼ Note that length of 1 is okay

16Dr. Gary Weiss

17Dr. Gary Weiss

Construct M5 to do Modulo Arithmetic

◼ Let  = {RESET, 0, 1, 2}

◼ Construct M5 to accept a string only if the sum of each

input symbol is a multiple of 3 and RESET sets the

sum back to 0 (1.13, page 39)

q0

1

0
0, <reset>

0

2

q1

q2

2, <reset>

1, <reset>

1

2

18Dr. Gary Weiss

Now Generalize M5

◼ Generalize M5 to accept if sum of symbols is a multiple of i

instead of 3 (with same )

◼ How many states are needed? What is the start and accept state?

◼ ({q0, q1, q2, q3, …, qi-1} , {0,1,2,RESET}, δ, q0, {q0})

◼ δi(qj, 0) = qj

◼ δi(qj, 1) = qk where k=j+1 modulo i

◼ δi(qj, 2) = qk where k=j+2 modulo i

◼ δi(qj, RESET) = qo

◼ Note: as long as i is finite, we are okay and only need finite

memory (# of states)

◼ Could you generalize on  = {1, 2, 3, …k}?

19Dr. Gary Weiss

Formal Definition of Accept

◼ Definition of M accepting a string:

◼ Let M = (Q, , δ, q0, F) be a finite automata and let

w=w1w2 …wn be a string where wi  .

◼ Then M accepts w if a sequence of states r0, r1, …, rn

in Q exists with 3 conditions

◼ r0=q0

◼ δ(ri, wi+1) = ri+1, for i =0, 1, …, n-1

◼ rn  F

◼ We start in q0, end in accept state, and input symbols yield

path from start to accept that follows transition table

20Dr. Gary Weiss

Regular Languages

◼ Definition: A language is called a regular

language if some finite automata recognizes it

◼ That is, all strings in a regular language are accepted

by some finite automata

◼ Why should you expect proofs by construction

coming up in your next homework?

21Dr. Gary Weiss

Designing Finite Automata

◼ You will need to design FA’s to accept a language

◼ Strategies

◼ Determine what you need to remember (the states)

◼ E.g., how many states to determine even vs. odd number of 1’s?

◼ What does each state represent? Use meaningful state labels.

◼ Set the start and finish states based on what each state

represents

◼ Assign the transitions

◼ Check solution: should accept w  L and not accept w L

◼ Be careful about the empty string!

FA Design Example 1

◼ Design a FA to accept the language of binary

strings where the number of 1’s is odd (page 43)

22Dr. Gary Weiss

FA Design Example 2

◼ Design a FA to accept all string with 001 as a

substring (page 44).

23Dr. Gary Weiss

24Dr. Gary Weiss

Regular Operations

◼ Let A and B be languages. We define 3 regular

operations:

◼ Union: A  B = {x| x A or x B}

◼ Concatenation: A  B where {xy| xA and yB}

◼ Star: A* = {x1x2 ….xk| k ≥ 0 and each xi  A}

◼ Star is a unary operator on a single language

◼ Star repeats a string 0 or more times

25Dr. Gary Weiss

Examples of Regular Operations

◼ Let A = {good, bad} and B = {boy, girl}

◼ Then what is:

◼ A U B

◼ A U B = {good, bad, boy, girl}

◼ A  B

◼ A  B = {goodboy, goodgirl, badboy, badgirl}

◼ A*

◼ A* = {ε, good, bad, goodgood, goodbad, badbad,

badgood, goodgoodgood, …}

26Dr. Gary Weiss

Closure

◼ The natural numbers is closed under addition

and multiplication (but not division and

subtraction)

◼ A collection of objects is closed under an

operation if applying that operation to members

of the collection returns an object in the

collection

27Dr. Gary Weiss

Closure for Regular Languages

◼ Regular languages are closed under the 3 regular

operators we just introduced

◼ Can you look ahead to see why we care?

◼ If these operators are closed, then if we can

implement each operator using a FA, then we can

build a FA to recognize a regular expression

28Dr. Gary Weiss

Closure of Union

◼ Theorem 1.25: The class of regular languages is

closed under the union operation

◼ If A1 and A2 are regular languages then so is A1  A2

◼ How can we prove this? Use proof by construction.

◼ Assume M1 accepts A1 and M2 accepts A2

◼ Construct M3 using M1 and M2 to accept A1  A2

◼ We need to simulate M1 and M2 running in parallel and

stop if either reaches an accept state

◼ This last part is feasible since we can have multiple accept states

◼ You need to remember where you would be in both machines

29Dr. Gary Weiss

Closure of Union II

◼ You need to generate a state to represent the state
you would be in with M1 and M2

◼ Let M1=(Q1, , δ1, q1, F1) and M2=(Q2, , δ2, q2, F2)

◼ Build M3 as follows (we will do Q, , q0, F, δ):

◼ Q={(r1,r2)|r1  Q1 and r2  Q2 (Cartesian product)

◼  stays the same but could more generally be 1 2

◼ q0 is the pair (q1, q2)

◼ F = {(r1, r2)|r1  F1 or r2  F2}

◼ δ((r1,r2),a) = (δ1(r1, a), δ2(r2, a))

30Dr. Gary Weiss

Closure of Concatenation

◼ Theorem 1.26: The class of regular languages is
closed under the concatenation operator

◼ If A1 and A2 are regular languages then so is A1  A2

◼ Can you see how to do this simply?

◼ Not trivial since cannot just concatenate M1 and M2, where
start states of M2 become the finish states of M1

◼ Because we do not accept a string as soon as it enters the finish
state (wait until string is done) it can leave and come back

◼ Thus we do not know when to start using M2; if we make the
wrong choice will not accept a string that can be accepted

◼ Example on next slides

◼ This proof is easy if we have nondeterministic FA

Concatenation Example that Works

◼ First here is an example I think will work

◼ L(M1) = A, where  = {0, 1} and A = binary string

with exactly 2 1’s

◼ L(M2) = B, where  = {0, 1} and B = binary string

with exactly 3 1’s

◼ M1 will enter accept state as soon as sees 2 1’s. It can then

loop back on any 0’s or move to M2 without issue. It can

move immediately to M2 on a 1, and not have an issue

since it cannot loop back, since A accepts only exactly 2

1’s. Once in M2 everything will work okay.

31Dr. Gary Weiss

Concatenation Example that Fails

◼ L(M1) = A, where  = {0, 1} and A = binary string with at least 2 1’s

◼ L(M2) = B, where  = {0, 1} and B = binary string with exactly 2 1’s

◼ This does not work (but easy with NFA or more complicated DFA)

◼ If in M1 and see 2 1’s, enter accept state. When see another 1, have choice to

loop back into accept state in M1, or start moving into M2, to the state that

represents saw first 1 for string in B.

◼ If the concatenated string has exactly 4 1’s total, then will only accept if

move into M2 as early as possible (after seeing the first 2 1’s)

◼ If the concatenated string has more than 4 1’s, then will only accept if loop

in M1 accept state until only 2 1’s left.

◼ Note that the general procedure for putting M1 and M2 together

involves superimposing the start state for M2 onto accept state of

M1 and removing the original arcs in M1 for that state.

32Dr. Gary Weiss

33Dr. Gary Weiss

Chapter 1.2: Nondeterminism

34Dr. Gary Weiss

Nondeterminism
◼ So far our FA is deterministic in that the state and next

symbol determines the next state

◼ In a nondeterministic machine, several choices may exist

◼ DFA’s have one transition arrow per alphabet symbol,

while NFAs have 0 or more for each and ε

0,1

0, ε1
q1 q3

q2

1
q4

0,1

35Dr. Gary Weiss

How does an NFA Compute?

◼ When there is a choice, all paths are followed

◼ Think of it as cloning a process and continuing

◼ If there is no arrow, the path terminates and the clone dies (it

does not accept if at an accept state when that happens)

◼ An NFA may have the empty string cause a transition

◼ The NFA accepts if any path is in the accept state

◼ Can also be modeled as a tree of possibilities

◼ An alternative way of thinking of this

◼ At each choice you make one guess of which way to go

◼ You magically always guess the right way to go

36Dr. Gary Weiss

Try Computing This!

◼ Try out 010110

◼ Is it accepted?

◼ Yes

◼ What is the language?

◼ Strings containing a substring of 101 or 11

0,1

0, ε1
q1 q3

q2

1
q4

0,1

37Dr. Gary Weiss

Construct an NFA

◼ Construct an NFA that accepts all string over

{0,1} with a 1 in the third position from the end

◼ Hint: the NFA stays in the start state until it guesses

that it is three places from the end

38Dr. Gary Weiss

Construct an NFA

◼ Construct an NFA that accepts all string over

{0,1} with a 1 in the third position from the end

◼ Hint: the NFA stays in the start state until it guesses

that it is three places from the end

0,1

0, 11
q1 q3

q2

0,1
q4

39Dr. Gary Weiss

Can we generate a DFA for this?

◼ Yes, but it is more complicated and has 8 states

◼ See book Figure 1.32 page 51

◼ Each state represents the last 3 symbols seen, where

we assume we start with 000

◼ So, states 000, 001, 010, 011, …, 111

◼ What is the transition from 010

◼ On a 1 we go to 101

◼ On a 0 we go to 100

40Dr. Gary Weiss

Formal Definition of

Nondeterministic Finite Automata
◼ Similar to DFA except  includes ε and next

state is not a state but a set of possible states

◼ A nondeterministic finite automata is a 5-tuple
(Q, , δ, q0, F) where

◼ Q is a finite set called states

◼  is a finite set called the alphabet

◼ δ : Q x ε → P(Q) is the transition function

◼ q0  Q is the start state

◼ F  Q is the set of accept states

41Dr. Gary Weiss

Example of Formal Definition of

NFA

◼ NFA N1 is (Q, , δ, q1, F)

◼ Q = {q1, q2, q3, q4}

◼  = {0,1}

◼ q1 is the start state

◼ F = {q4}

0,1

0, ε1
q1 q3

q2

1
q4

0,1

0 1 ε

q1 {q1} {q1, q2} 

q2 {q3}  {q3}

q3  {q4} 

q4 {q4} {q4} 

42Dr. Gary Weiss

Equivalence of NFAs and DFAs

◼ NFAs and DFAs recognize same class of languages

◼ What does this mean? What is the implication?

◼ NFAs have no more power than DFAs

◼ With respect to what can be expressed

◼ Every NFA has an equivalent DFA

◼ But NFAs may make it easier to describe some languages

◼ Terminology: Two machines are equivalent if they

recognize the same language

Similar Idea you are More Familiar with

◼ C, C++, Python, Pascal, Fortran, …

◼ Are these languages equivalent?

◼ Some are more suited to some tasks, but with

enough effort any of these languages can compute

anything the others can

◼ If necessary, you can even write a compiler for one

language using another

43Dr. Gary Weiss

44Dr. Gary Weiss

Proof of Equivalence of NFA & DFA

◼ Proof idea

◼ Need to simulate an NFA with a DFA

◼ With NFA’s, given an input we follow all possible
branches and keep a finger on the state for each

◼ That is what we need to keep track of– the states we
would be in for each branch

◼ If the NFA has k states then it has 2k possible subsets

◼ Each subset corresponds to one of the possibilities that the
DFA needs to remember

◼ The DFA will have 2k states

45Dr. Gary Weiss

Proof by Construction

◼ Let N=(Q, , δ, q0, F) be the NFA recognizing A

◼ Construct DFA M = (Q’, , δ’, q0’, F’)

◼ Lets do the easy ones first (skip δ’ for now)

◼ Q’ = P(Q)

◼ q0’ ={q0}

◼ F’ = {R  Q’| R contains an accept state of N}

◼ Transition function

◼ The state R in M corresponds to a set of states in N

◼ When M reads symbol a in state R, it shows where a takes each state

◼ δ’(R,a) = Union of rR of δ(r,a)

◼ I ignore ε, but taking that into account does not fundamentally
change the proof– we just need to keep track of more states

46Dr. Gary Weiss

Example: Convert an NFA to a DFA

◼ See example 1.41 (pg. 57 2nd ed.)

◼ For now don’t look at solution DFA

◼ The NFA has 3 states: Q = {1, 2, 3}

◼ What are the states in the DFA?

◼ {, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

◼ What are the start states of the DFA?

◼ Start states of NFA include those reachable by ε-moves

◼ {1, 3}

◼ 3 is included because if we start in 1 we can immediately move to 3

◼ What are the accept states?

◼ {{1}, {1,2}, {1,3}, {1,2,3}}

2 3

1

a,b

ab

a

ɛ

47Dr. Gary Weiss

Example: Convert an NFA to a DFA

◼ Now let's work on some of the transitions

◼ Let’s look at state 2 in NFA and complete the transitions for

state 2 in the DFA

◼ Where do we go from state 2 on an “a” and “b”

◼ On “a” to state 2 and 3 and on “b” to state 3

◼ So, what state does {2} in DFA go to for a and b?

◼ Answer: on a to {2,3} and {3} for b

◼ Now let's do state {3}

◼ On “a” goes to {1,3} and on b goes to 

◼ Why {1, 3}? Because first goes to 1 then ε permits a move back to 3!

◼ DFA equivalent to NFA on next slide (and Fig. 1.43, pg. 58 2nd ed)

◼ Any questions? Could you do it on a HW, exam, or quiz?

2 3

1

a,b

ab

a

ɛ

DFAs Equivalent to 3-State NFA

48Dr. Gary Weiss

Can be simplified to DFA below since some states not reachable from start state.
On HW or exam I would want to see the unsimplified version (can also show simplified)

Clearly not

reachable

Represents

“Dead State”

49Dr. Gary Weiss

Closure under Regular Operations

◼ We started this before and did it for Union only

◼ Union much simpler using NFA

◼ Concatenation and Star much easier using NFA

◼ Since DFAs equivalent to NFAs, we can now

just use NFAs

◼ Fewer states to keep track of because we can act

as if we always “guess” correctly

50Dr. Gary Weiss

Why do we care about closure?

◼ We need to look ahead

◼ A regular language is what a DFA/NFA accepts

◼ We are now introducing regular operators and then
will generate regular expressions from them (Ch 1.3)

◼ We will want to show that the language of regular
expressions is equivalent to the language accepted by
NFAs/DFAs (i.e., a regular language)

◼ How do we show this?

◼ Basic terms in regular expression can generated by a FA

◼ We can implement each operator using a FA and the
combination is still able to be represented using a FA

51Dr. Gary Weiss

Closure Under Union

◼ Given two regular languages A1 and A2

recognized by two NFAs N1 and N2, construct

N to recognize A1  A2

◼ How do we construct N? Think!

◼ Start by writing down N1 and N2. Now what?

◼ Add a new start state and then have it take ε

branches to the start states of N1 and N2

◼ Isn’t that easy!

52Dr. Gary Weiss

Closure under Concatenation

◼ Given two regular languages A1 and A2

recognized by two NFAs N1 and N2, construct N
to recognize A1  A2

◼ How do we do this?

◼ The complication is that we did not know when to
switch from handling A1 to A2 since can loop thru an
accept state

◼ Solution with NFA:

◼ Connect every accept state in N1 to every start state in N2

using an ε transition

◼ don’t remove transitions from accept state in N1 back to N1

NFA Proof of Concatenation Closure

53Dr. Gary Weiss

54Dr. Gary Weiss

Closure under Concatenation II

◼ Given:

◼ N1 = (Q1, , δ1, q1, F1) recognizes A1

◼ N2 = (Q2, , δ2, q2, F2) recognizes A2

◼ Construct N=(Q1  Q2, , δ, q1, F2) so that it
recognizes A1 A2

δ1(q,a) q  Q1 and q  F1

δ1(q,a) q  F1 and a  ε

δ1(q,a){q2} q  F1 and a = ε

δ2(q,a) q  Q2

δ(q,a) =

55Dr. Gary Weiss

Closure under Star

◼ Given regular language A1 prove A1* is also regular

◼ Note (ab)* = {, ab, abab, ababab, ...}

◼ Proof by construction

◼ Take NFA N1 that recognizes A1 and construct N from it
that recognizes A1*

◼ How do we do this?

◼ Add new ε-transition from accept states to start state

◼ Then make the start state the accept state so that  is accepted

◼ This almost works, but not quite. What is the problem?

◼ May have transition from intermediate state to start state
and should not accept on this loop-back

◼ Solution: add a new start state that is accept state, with an ε-transition
to the original start state and have ε-transitions from accept states to
old start state

56Dr. Gary Weiss

Closure under Star

ε

ε
ε

57Dr. Gary Weiss

Chapter 1.3: Regular Expressions

58Dr. Gary Weiss

Regular Expressions

◼ Based on the regular operators

◼ Examples:

◼ (0  1)0*

◼ A 0 or 1 followed by any number of 0’s

◼ Concatenation operator implied

◼ What does (0  1)* mean?

◼ All possible strings of 0 and 1

◼ Not 0* or 1* so does not require that commit to 0 or 1 before
applying * operator

◼ Assuming  = {0,1}, then equivalent to *

59Dr. Gary Weiss

Definition of Regular Expression

◼ R is a regular expression if R is
1. a, for some a in alphabet 

2. ε

3. 

4. (R1  R2), where R1 and R2 are regular expressions

5. (R1  R2), where R1 and R2 are regular expressions

6. (R1*), where R1 is a regular expression

◼ Note:
◼ This is a recursive definition, common in computer science

◼ R1and R2 always smaller than R, so no issue of infinite recursion

◼  means language does not include any strings and ε means
it includes the empty string

60Dr. Gary Weiss

Examples of Regular Expressions

◼ 0*10* =

◼ {w| w contains a single 1}

◼ *1*=

◼ {w| w has at least one 1}

◼ 01  10 =

◼ {01, 10}

◼ (0  ε)(1  ε) =

◼ {ε, 0, 1, 01}

61Dr. Gary Weiss

Equivalence of Regular Expressions

and Finite Automata

◼ Theorem: A language is regular if and only if

some regular expression describes it

◼ This has two directions so we need to prove:

◼ If a language is described by a regular expression then it is

regular

◼ If a language is regular then it is described by a regular

expression

◼ We will only do the first direction

62Dr. Gary Weiss

Proof: Regular Expression ➔ Regular Language

◼ Proof idea: Given a regular expression R
describing a language L, we should …

◼ Show that some FA recognizes it

◼ Use NFA since may be easier and equivalent to DFA

◼ How do we do this?

◼ We will use definition of a regular expression and
show that we can build a FA covering each step.

◼ We will do quickly with two parts:

◼ Steps 1,2 and 3 of definition (handle a, ε, and )

◼ Steps 4,5 and 6 (handle union, concatenation, and star)

63Dr. Gary Weiss

Proof Continued

◼ For steps 1-3 we construct the FA below. As a
reminder:

1. a, for some a in alphabet 

2. ε

3. 

a
a ε 

a

64Dr. Gary Weiss

Proof Continued

◼ For steps 4-6 (union, concatenation and star) we

use the proofs we already constructed to show

that FA are closed under union, concatenation,

and star

◼ So we are done with the proof in one direction!

◼ Now let's try an example

65Dr. Gary Weiss

Example: Regular Expression ➔NFA

◼ Convert (ab  a)* to an NFA

◼ Let’s describe the outline of what we need to do

◼ Handle a

◼ Handle ab

◼ Handle ab  a

◼ Handle (ab  a)*

◼ In the solution on next page, which is from the book
(Fig 1.57 page 68), there are states for ε-transitions.
They seem unnecessary and may confuse you. They
are unnecessary in this case.

Conversion of (ab  a)* to an NFA

66Dr. Gary Weiss

67Dr. Gary Weiss

Proof: Regular Language ➔ Regular Expression

◼ This is the proof in the other direction

◼ Need to show can convert any DFA to regular expression

◼ The book goes through several pages (Lemma 1.60 page

69 – 74) that does not really add much insight

◼ You can skip the proof. For the most part, if you

understand the ideas for going in the previous direction,

you also understand this direction.

◼ But you should be able to handle an example. But you need

not use the formal method they have in the book. Just be

able to handle simple examples.

68Dr. Gary Weiss

Example: DFA → Regular Expression

◼ This example is on page 75, Figure 1.67

◼ Do not worry about doing it the way they do it

◼ For the DFA below, what is the equivalent

regular expression?

1
a

2
a, b

Answer: a*b(a  b)*

b

69Dr. Gary Weiss

Chapter 1.4: Nonregular Languages

… and not the real fun begins

Never has something so simple confused so many – Dr. Weiss

70Dr. Gary Weiss

Non-Regular Languages

◼ Do you think every language is regular?

◼ That would mean that every language can be

described by a FA

◼ What might make a language non-regular? Think

about the properties of a finite automata.

◼ Answer: finite memory

◼ So a language is not regular if you need infinite

memory

71Dr. Gary Weiss

Some Example Questions

◼ Consider the following languages

◼ L1 = {w| w has an equal number of 0’s and 1’s}
{ε, 01, 10, 1100, 0011, 0101, 1010, 0110, …}

◼ L2 = {w| w has at least 100 1’s}
{1100, 01100, (01)201, …}

◼ L3 = {w| w is of the form 0n1n, n≥ 0}
{ε, 01, 0011, 000111, 00001111, …}

◼ Now determine if you think they are regular

◼ Is L1 regular? Is L2 regular? Is L3 regular?

◼ Take a minute to think about it

72Dr. Gary Weiss

Answers

◼ Answers:

◼ L1 (equal # 1’s and 0’s) is:

◼ Not regular. It requires infinite memory

◼ L2 (at least 100 1’s) is:

◼ Regular

◼ We can design the DFA easily. Each state represents the

number of 1’s seen and once we get to 100 we loop in the

accept state.

◼ L3 (0n1n) is:

◼ Not regular. It requires infinite memory

Languages We Will Consider

◼ We will only consider infinite languages

◼ This only means that the number of strings

belonging to the language is infinite, not that it

requires infinite memory

◼ L1, L2, and L3 are infinite languages

◼ This language is not:

◼ L5 = {a, ab, abb}

◼ Are finite languages always regular?

◼ Yes, we can create a path and accept state for each

element in the language

73Dr. Gary Weiss

More Examples (I)

◼ For L = (01)n, is L regular? Why or why not?

◼ Note L = {ε, 01, 0101, 010101, 01010101, …}

◼ L is regular because there is a finite pattern

◼ The pattern is “01”. We want to accept (01)*

◼ We can build a DFA for this quite easily using the

construction for concatenation and *.

74Dr. Gary Weiss

75Dr. Gary Weiss

More Examples (2)?

◼ Let Bn = {ak|where k is a multiple of n} for n≥1

◼ B3 = {ɛ, aaa, aaaaaa, aaaaaaaaa, …}

◼ Is this regular?

◼ This language is regular!

◼ How is this question different from the ones before?
◼ Each language has a specific value of n, so n is not a free variable, but k

is a free variable. The number of states is bounded by n, not k.

◼ That is Bn is not a language, but a family of languages, where each one is

defined for a value of n.

◼ The DFA counts the number of a’s modulo k. This requires k states.

Since k is a multiple of n, we need n states. For B3 we need 3 states, for

B6 we need 6 states.

76Dr. Gary Weiss

More on Regular Languages

◼ Regular languages can be infinite but must be

described using finite number of states

◼ Thus there are restrictions on the structure of regular

languages

◼ For a FA to generate an infinite set of string, clearly

there must be a ______ between some states

◼ loop

◼ This leads to the (in)famous pumping lemma

77Dr. Gary Weiss

Pumping Lemma for Regular Languages

◼ The pumping lemma states that all regular

languages have a special property

◼ If a language does not have this property it is

not regular

◼ So can use to prove a language non-regular

◼ Note: the pumping lemma can hold and a language

still not be regular. This is not usually highlighted.

78Dr. Gary Weiss

Pumping Lemma II

◼ Pumping lemma property

◼

1. For each i ≥ 0, x yi z  L

2. |y| > 0, and

3. |xy| ≤ p

◼ This means every string s  L contains a section that

can be repeated any number of times (via a loop)

79Dr. Gary Weiss

Pumping Lemma Conditions

◼ Condition 1: for each i ≥ 0, x yi z  L

◼ This just says that there is a loop

◼ Condition 2: |y| > 0

◼ Without this condition, then there really would be no loop

◼ Condition 3: |xy| ≤ p

◼ We don’t allow more states than the pumping length, since
we want to bound the amount of memory

80Dr. Gary Weiss

Pumping Lemma Proof Idea

◼ Set the pumping lemma length p to number of

states of the FA

◼ If length of s ≤ pumping lemma trivially holds, so

ignore these strings

◼ Consider the states that the FA goes through for s

◼ Since there are only p states and length s > p, by

pigeonhole property one state much be repeated

◼ This means there is a cycle

Partitioning a String s into xyz

◼ We mean breaking s into 3 pieces x, y, and z, so

when we concatenate them, they equal s

◼ Example 1: s = 1101

◼ Solution 1: x=1, y=1, z=01

◼ xyyz = xy2z = 1 11 01 = 11101 (result of “pumping on” y)

◼ Solution 2: x=110, y=1, z =  (only y cannot be )

◼ xyyz = xy2z = 110 11  = 11011

◼ Example: s = 0p1p

◼ Solution 1: x = 0, y = 0, z = 0p-21p (xyz= p0’s then p 1’s)

◼ xy2z = 0 02 0p-21p = 0p+11p (note now one more 0 than 1)

81Dr. Gary Weiss

Using Condition 3

◼ Condition 3 says that |xy| ≤ p

◼ Example: s = 0p1p

◼ What constraints does condition 3 put on y?

◼ y can only contain 0’s since length(xy) ≤ p and s starts

with 0 p’s.

◼ Let’s try to have y include a 1 as follows:

◼ x = 0p y=1 z=1p-1

◼ Now xyz still equal s and y has a 1. Also, |xy| is the shortest it

can be and still contain a 1

◼ |xy| = |x| + |y| = p + 1 ≥ p so violates condition 3

82Dr. Gary Weiss

83Dr. Gary Weiss

Example 1
◼ Let B be the language {0n1n| n≥ 0} (Ex 1.73)

◼ Prove B is not regular using proof by contradiction.

◼ Assume B is regular. Pick a string that will cause a problem.

◼ What string? Use the pumping length p in the string.

◼ Try 0p1p

◼ We need x yi z, let’s focus on y. What may y contain? What then

happens when we pump on y? Is the pumped string in B?

◼ If y all 0’s or all 1’s, then if xyz L then xyyz  L (number 0’s  1’s)

◼ If y a mixture of 0 and 1, then 0’s and 1’s in s not separated

Example 1 Continued

◼ We can simplify the proof by using condition 3, since

then instead of 3 possibilities for y, we have one

◼ Since condition 3 says that |xy| ≤ p, and string s starts with

0p, then the strings x and y can only contain 0’s.

◼ We showed why this was a few slides earlier with an example

◼ But let’s try again anyway:

◼ x = 0p y = 1 z = 1p-1 so that xyz = 0p1p

◼ But |xy| = |x| + |y| = p + 1 ≥ p so condition 3 is violated

◼ Demonstrates that y cannot have 0’s while satisfying condition 3

◼ Since y must be all 0’s, pumping up adds only 0’s to a string that was

in the language. But if we add only 0’s to a string that had equal #’s of

0’s and 1’s, then it must now have more 0’s than 1’s.

84Dr. Gary Weiss

Common Sense Idea Behind Proof

◼ The key idea is that we can have any number of 0’s at

the start and we must then have an equal number of 1’s

◼ But we cannot keep track of an arbitrary number of

0’s. That is, the number of 0’s is unbounded

◼ For any string, the number of 0’s is not infinite, but it is

not bounded by any value

◼ So if you tell me that the FA has p states, I will tell you

that it cannot recognize a string with more than p 0’s.

◼ Alternatively, if you build a FA to handle 1 million 0’s, I will then

give you a string with more than that number of 0’s.

85Dr. Gary Weiss

86Dr. Gary Weiss

Example 2

◼ Let C = {w|w has equal number of 0’s and 1’s} (Ex 1.74)

◼ Can you do this with finite memory?

◼ No

◼ Prove C is not regular, using proof by contradiction

◼ Assume C is regular. Pick a problematic string.

◼ Let’s try 0p1p

◼ This string is in C since equal 0’s and 1’s but note the language does not
require them to be separated.

◼ If we pick y =01, can we pump it and have pumped string  C?

◼ Yes! Each time we pump (i.e., loop) we add one 0 and 1. So works!

◼ Note however that pumped string not in 0n1n, but that is okay since in C

◼ But by condition 3, y must be only 0’s given the string that we picked

◼ So y can only have 0s and pumping break equality

◼ Unlike the last case, in this case we must use condition 3

Example 2 (failing proof)
◼ I believe we often learn more by failing. Let’s retry the problem.

◼ Let C = {w|w has equal number of 0’s and 1’s}

◼ Prove C is not regular, using proof by contradiction

◼ Assume C is regular

◼ Let’s try s = (01)p, which is a valid string in C

◼ Can we pump this?

◼ Yes! Specify x, y, and z

◼ Let x = ɛ, y = 01, z = (01)p-1

◼ What does this prove?

◼ Nothing! Proof by contradiction failed but does not mean it is

regular. It means we failed to prove it is not regular.

◼ We failed because we picked an “easy” string. We need to pick a

hard string, that reflects the full complexity of the problem.

87Dr. Gary Weiss

88Dr. Gary Weiss

Common-Sense Interpretation

◼ FA can only use finite memory. If infinite strings,

then the loop must handle this

◼ If there are two parts that can generate infinite sequences

and there is a condition that ties them together, then we

must find a way to link them in the loop

◼ If they are connected and we cannot link them, then it is

not regular

◼ Examples: 0n1n equal numbers of 0s and 1s

89Dr. Gary Weiss

Example 3

◼ Let F = {ww| w  {0,1}*} (Ex 1.75)

◼ F = {ε, 00, 11, 0101, 1010, 0000, 1111, 101101, …}

◼ Can you do this with finite memory?

◼ No, you need to remember all of w

◼ Use proof by contradiction. Pick s  F that will be
problematic

◼ s = 0p10p1

◼ Since |xy| < p, y must be all 0’s (0’s from the start of string)

◼ If we pump y, then only adding 0’s. That will be a problem in this
case since the number of 0’s separated by the 1 must be equal

◼ Need to be careful. Sometimes when you add to the first half, the halfway
points changes. But use of 1 as delimiter still prevents successful pumping.

90Dr. Gary Weiss

Example 4

◼ Let D = {1n2| n ≥ 0}

◼ D = {, 1, 1111, 111111111, …}

◼ Proof by contradiction

◼ Choose 1p2

◼ Assume we have an xyz  D

◼ What about xyyz? The # of 1’s differs from xyz by |y|

◼ Since |xy| ≤ p then |y| ≤ p

◼ Thus xyyz has at most p more 1’s than xyz

◼ So if xyz has length ≤ p2 then xyyz ≤ p2 +p

◼ But (p+1)2 = p2 + 2p + 1 and p2 +p is less than this

◼ Thus length of xyyz lies between consecutive perfect squares and hence

xyyz D

An Intuitive Explanation

◼ As you create larger and larger consecutive

perfect squares, the difference between them

grows and is not bounded.

◼ Thus if you have p states, at some point the

difference between perfect squares will exceed the p

states in the FA.

91Dr. Gary Weiss

92Dr. Gary Weiss

Example 5

◼ Let E = {0i1j| i > j}

◼ Assume E is regular and let s = 0p+11p

◼ By condition 3, y must be all 0’s

◼ What can we say about xyyz?

◼ Adding the extra y increases number of 0’s, which appears

to be okay since i > j is okay

◼ But we can pump down. What about xy0z = xz?

◼ Since s has one more 0 than 1, removing at least one 0

leads to a contradiction. So not regular.

93Dr. Gary Weiss

What you need to be able to do

◼ You should be able to handle examples like 1-3.

◼ Example 5 is not really any more difficult, just one
more thing to think about

◼ Example 4 was tough, so I would not expect everyone
to get an example like that (although I could still ask it)

◼ Everyone should be able to handle the easy examples

◼ Try to reason about the problem using “common
sense” and then use that to drive your proof

◼ The homework problems will give you more practice

