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Limitations of Algorithmic Solvability

◼ In this chapter we investigate the power of algorithms 

to solve problems

◼ Some can be solved algorithmically and some cannot

◼ Why we study unsolvability

◼ Useful because then can realize that searching for an 

algorithmic solution is a waste of time

◼ Perhaps the problem can be simplified

◼ Gain an perspective on computability and its limits

◼ In my view also related to complexity (Chapter 7)

◼ First we study whether there is an algorithmic solution and then we 

study whether there is an “efficient” (polynomial-time) one
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Chapter 4.1

Decidable Languages
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Decidable Languages

◼ We start with problems that are decidable

◼ We first look at problems concerning regular 

languages and then those for context-free languages
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Decidable Problems for Regular Languages

◼ We give algorithms for testing whether a finite automaton 
accepts a string, whether the language of a finite automaton is 
empty, and whether two finite automata are equivalent

◼ We represent the problems by languages (not FAs)

◼ Let ADFA={(B, w)|B is a DFA that accepts string w}

◼ The problem of testing whether a DFA B accepts a specific 
input w is the same as testing whether (B,w) is a member of the 
language ADFA. 

◼ Showing that the language is decidable is the same thing as 
showing that the computational problem is decidable

◼ So do you understand what ADFA represents? If you had to list 
the elements of ADFA what would they be? 
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ADFA is a Decidable Language

◼ Theorem: ADFA is a decidable language

◼ Proof Idea: Present a TM M that decides ADFA

◼ M = On input (B,w), where B is a DFA and w is a string:

1. Simulate B on input w

2. If the simulation ends in an accept state, then accept; else 

reject
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Outline of Proof

◼ Must take B as input, described as a string, and then simulate it

◼ This means the algorithm for simulating any DFA must be embodied in 
the TM’s state transitions

◼ Think about this. Given a current state and input symbol, scan the tape 
for the encoded transition function and then use that info to determine 
new state

◼ The actual proof would describe how a TM simulates a DFA

◼ Can assume B is represented by its 5 components and then we have w

◼ Note that the TM must be able to handle any DFA, not just this one

◼ Keep track of current state and position in w by writing on the tape

◼ Initially current state is q0 and current position is leftmost symbol of w

◼ The states and position are updated using the transition function δ

◼ TM M’s δ not the same as DFA B’s δ

◼ When M finishes processing, accept if in an accept state; else reject. The 
implementation will make it clear that will complete in finite time.
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ANFA is a Decidable Language

◼ Proof Idea:
◼ Because we have proven decidability for DFAs, all we need to do 

is convert the NFA to a DFA.

◼ N = On input (B,w) where B is an NFA and w is a string

1. Convert NFA B to an equivalent DFA C, using the procedure for 
conversion given in Theorem 1.39

2. Run TM M on input (C,w) using the theorem we just proved

3. If M accepts, then accept; else reject

◼ Running TM M in step 2 means incorporating M into the design 
of N as a subroutine

◼ Note that these proofs allow the TM to be described at the 
highest of the 3 levels we discussed in Chapter 3 (and even then, 
without most of the details!). 
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Computing whether a DFA accepts any String

◼ EDFA = {<A>| A is a DFA and L(A) = ) is a decidable language 

◼ Proof:

◼ A DFA accepts some string iff it is possible to reach the accept state from 
the start state. How can we check this?

◼ We can use a marking algorithm similar to the one used in Chapter 3.

◼ T = On input (A) where A is a DFA:

1. Mark the start state of A

2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any state already marked

4. If no accept state is marked, accept; otherwise reject

◼ In my opinion this proof is clearer than most of the previous ones because 
the pseudo-code above specifies enough details to make it clear how to 
implement it
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EQDFA is a Decidable Language

◼ EQDFA={(A,B)|A and B are DFAs and L(A)=L(B)}

◼ Proof idea

◼ Construct a DFA C from A and B, where C accepts only those strings 

accepted by either A or B but not both (symmetric difference)

◼ If A and B accept the same language, then C will accept nothing and we can 

use the previous proof (for EDFA) to check for this.

◼ So, the proof is:

◼ F = On input (A,B) where A and B are DFAs:

1. Construct DFA C that is the symmetric difference of A and B 

(details on how to do this on next slide)

2. Run TM T from the proof from last slide on input (C)

3. If T accepts (sym. diff=) then accept. If T rejects then reject
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How to Construct C

◼ L(C) = (L(A) ∩ L(B)’)  (L(A)’ ∩ L(B))

◼ We used proofs by construction that regular 

languages are closed under  , ∩ , and complement

◼ We can use those constructions to construct a FA 

that accepts L(C)

◼ Wait a minute! The book is quite cavalier! We never 

proved regular languages are closed under ∩

L(A) L(B)
Complement symbol



Regular Languages Closed under Intersection

◼ If L and M are regular languages, then so is L ∩ M 

◼ Proof: Let A and B be DFAs whose regular languages are 

L and M, respectively

◼ Construct C, the “product automation” of A and B

◼ More on this in a minute, but essentially C tracks the states in A 

and B (just like when we did the proof of union without using 

NFAs)

◼ Make the final states of C be the pairs consisting of final 

states of both A and B

◼ In the union case we the final state any state with a final state in 

A or B
12
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ACFG is a Decidable Language

◼ Proof Idea:
◼ For CFG G and string w want to determine whether G 

generates w. One idea is to use G to go through all 
derivations. This will not work, why?
◼ Because this method a best will yield a TM that is a recognizer, not a 

decider. Can generate infinite strings and if not in the language, will 
never know it. 

◼ But since we know the length of w, we can exploit this. How?

◼ A string w of length n will have a derivation that uses 2n-1 steps if the 
CFG is in Chomsky-Normal Form.
◼ So first convert to Chomsky-Normal Form

◼ Then list all derivations of length 2n-1 steps. If any generates w, then 
accept, else reject.

◼ This is a variant of breadth first search, but instead of extended the 
depth 1 at a time we allow it to go 2n-1 at a time. As long as finite depth 
extension, we are okay
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ECFG is a Decidable Language

◼ How can you do this? What is the brute force 

approach?

◼ Try all possible strings w. Will this work?

◼ The number is not bounded, so this would not be decidable

◼ Instead, think of this as a graph problem where you want 

to know if you can reach a string of terminals from the 

start state

◼ Do you think it is easier to work forward or backwards?

◼ Answer: backwards
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ECFG is a Decidable Language (cont)

◼ Proof Idea: 

◼ Can the start variable generate a string of terminals?

◼ Determine for each variable if it can generate any 
string of terminals and if so, mark it

◼ Keep working backwards so that if the right-side of 
any rule has only marked items, then mark the LHS

◼ For example, if X→ YZ and Y and Z are marked, then 
mark X

◼ If you mark S, then done; if nothing else to mark and S 
not marked, then reject

◼ You start by marking all terminal symbols
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EQCFG is not a Decidable Language

◼ We cannot reuse the reasoning to show that 

EQDFA is a decidable language since CFGs are 

not closed under complement and intersection

◼ As it turns out, EQCFG is not decidable!

◼ We will learn in Chapter 5 how to prove things 

undecidable
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Every Context-Free Language is Decidable

◼ Note that a few slides back we showed ACFG is decidable. 

◼ This is almost the same thing

◼ We want to know if A, which is a CFL, is decidable.
◼ A will have some CFG G that generates it

◼ When we proved that ACFG is decidable, we constructed a TM S that would tell us if 
any CFG accepts a particular input w. 

◼ Now we use this TM and run it on input <G,w> and if it accepts, we accept, and if 
it rejects, we reject. 

◼ This  is so close to the prior proof it is confusing. It comes from the fact that a 
CFL is defined by a CFG.

◼ This leads us to the following picture of the hierarchy of 
languages



19

Hierarchy of Classes of Languages

Regular

Context-Free

Decidable

Turing-recognizable

We proved Regular  Context-free since 

we can convert a FA into a CFG

We just proved that every Context-free 

language is decidable

From the definitions in Chapter 3 it is 

clear that every Decidable language is 

trivially Turing-recognizable. We hinted 

that not every Turing-recognizable 

language is Decidable. Next we prove 

that!
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Chapter 4.2

The Halting Problem
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The Halting Problem
◼ One of the most philosophically important theorems in 

the theory of computation
◼ There is a specific problem that is algorithmically unsolvable.

◼ In fact, ordinary/practical problems may be unsolvable
◼ Software verification

◼ Given a computer program and a precise specification of what the 
program is supposed to do (e.g., sort a list of numbers)

◼ Come up with an algorithm to prove the program works as required

◼ This cannot be done!

◼ But wait, can’t we prove a sorting algorithm works?

◼ Note: the input has two parts: specification and task. The proof is 
not only to prove it works for a specific task, like sorting numbers.

◼ Our first undecidable problem:
◼ Does a TM accept a given input string?

◼ Note: we have shown that a CFL is decidable and a CFG can be 
simulated by a TM. This does not yield a contradiction. TMs are more 
expressive than CFGs.
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Halting Problem II

◼ ATM = {(M,w)|M is a TM and M accepts w}

◼ ATM is undecidable

◼ It can only be undecidable due to a loop of M on w.

◼ If we could determine if it will loop forever, then could reject. 

Hence ATM is often called the halting problem.

◼ As we will show, it is impossible to determine if a TM will always halt 

(i.e., on every possible input).

◼ Note that this is Turing recognizable:

◼ Simulate M on input w and if it accept, then accept; if it ever rejects, 

then reject

◼ We start with the diagonalization method
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Diagonalization Method

◼ In 1873 mathematician Cantor was concerned with the 

problem of measuring the sizes of infinite sets.

◼ How can we tell if one infinite set is bigger than another or if 

they are the same size?

◼ We cannot use the counting method that we would use for finite sets. 

Example: how many even integers are there?

◼ What is larger: the set of even integers or the set of all strings over 

{0,1} (which is the set of all integers)

◼ Cantor observed that two finite sets have the same size if each 

element in one set can be paired with the element in the other

◼ This can work for infinite sets
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Function Property Definitions

◼ From basic discrete math (e.g., CS 1100)

◼ Given a set A and B and a function f from A to B

◼ f is one-to-one if it never maps two elements in A to the 
same element in B

◼ The function add-two is one-to-one whereas absolute-value is not

◼ f is onto if every item in B is reached from some value in a 
(i.e., f(a) = b for every b  B).

◼ For example, if A and B are the set of integers, then add-two is onto 
but if A and B are the positive integers, then it is not onto since b 
= 1 is never hit.

◼ A function that is one-to-one and onto has a (one-to-one) 
correspondence

◼ This allows all items in each set to be paired
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An Example of Pairing Set Items

◼ Let N be the set of natural numbers {1, 2, 3, …} and 
let E be the set of even natural numbers {2, 4, 6, …}.

◼ Using Cantor’s definition of size we can see that N and 
E have the same size.

◼ The correspondence f from N to E is f(n) = 2n.

◼ This may seem bizarre since E is a proper subset of N, 
but it is possible to pair all items, since f(n) is a 1:1 
correspondence, so we say they are the same size.

◼ Definition:

◼ A set is countable if either it is finite or it has the same size as 
N, the set of natural numbers
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Example: Rational Numbers

◼ Let Q = {m/n: m,n  N}, the set of positive 

Rational Numbers

◼ Q seems much larger than N, but according to 

our definition, they are the same size.

◼ Here is the 1:1 correspondence between Q and N

◼ We need to list all of the elements of Q and then label 

the first with 1, the second with 2, etc.

◼ We need to make sure each element in Q is listed only once



27

Correspondence between N and Q
◼ To get our list, we make an infinite matrix containing all the 

positive rational numbers.
◼ Bad way is to make the list by going row-to-row. Since 1st row is 

infinite, would never get to the second row

◼ Instead use the diagonals, not adding the values that are equivalent
◼ So the order is 1/1, 2/1, ½, 3/1, 1/3, …

◼ This yields a correspondence between Q and N
◼ That is, N=1 corresponds to 1/1, N=2 corresponds to 2/1, N=3 

corresponds to ½ etc.

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 5/3 5/4 5/5
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Theorem: R is Uncountable

◼ A real number is one that has a decimal 

representation and R is set of Real Numbers

◼ Includes those that cannot be represented with a 

finite number of digits, like Pi and square root of 2

◼ Will show that there can be no pairing of 

elements between R and N

◼ Will find some x that is always not in the pairings 

and thus a proof by contradiction
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Finding a New Value x
◼ To the right is an example mapping

◼ Assume that it is complete

◼ I now describe a method that will be guaranteed to 
generate a value x not already in the infinite list

◼ Generate x to be a real number between 0 and 1 as 
follows

◼ To ensure that x ≠ f(1), pick a digit not equal to the 
first digit after the decimal point. Any value not equal 
to 1 will work. Pick 4 so we have .4

◼ To x ≠ f(2), pick a digit not equal to the second digit. 
Any value not equal to 5 will work. Pick 6. We have .46

◼ Continue, choosing values along the “diagonal” of 
digits (i.e., if we took the f(n) column and put one digit 
in each column of a new table). 

◼ When done, we are guaranteed to have a value x not 
already in the list since it differs in at least one 
position with every other number in the list.

n f(n)

1 3.14159…

2 55.5555…

3 0.12345…

4 0.500000

. .
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Implications

◼ The theorem we just proved about R being 
uncountable has an important application in the 
theory of computation

◼ It shows that some languages are not decidable or 
even Turing-recognizable, because there are 
uncountably many languages yet only countably 
many Turing Machines.

◼ Because each Turing machine can recognize a single 
language and there are more languages than Turing 
machines, some languages are not recognized by any 
Turing machine.

◼ Corollary: some languages are not Turing-recognizable
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Some Languages are Not Turing-recognizable I

◼ The set of all strings ∑* is countable
◼ A finite number of strings of each length, so we can 

list them by increasing length and hence they are 
countable

◼ The set of all Turing Machines M is countable 
since each TM M has an encoding into a string 
<M>
◼ Order by length and omit strings that do not represent 

valid TM’s and we have a countable list of Turing 
Machines



Some Languages are Not Turing-recognizable II

◼ The set of all languages L over ∑ is uncountable
◼ Recall a language is made up of a set of strings, so different from what 

we just counted on last slide.

◼ Each language is represented by an infinite binary sequence B, where 
each position in the sequence corresponds to a string
◼ Assume ∑* = {s1, s2, s3 …}. We can encode any language as a characteristic binary 

sequence, where the bit indicates whether the corresponding si is a member of the 
language. Thus, there is a 1:1 mapping.

◼ The set of all infinite binary sequences B is uncountable

◼ Can prove uncountable using same proof used to prove real numbers not countable 

◼ L is uncountable because it has a correspondence with B

◼ Since B is uncountable and L and B are of equal size, L is 
uncountable

◼ So set of TMs is countable and the set of languages is not
◼ Means we cannot put set of languages into a correspondence with set of TMs.

◼ Therefore some languages do not have a corresponding Turing machine

◼ Thus some languages not Turing-Recognizable

32



Common Sense Explanation

◼ Comparing languages, a potentially infinite set of 

strings, versus number of strings

◼ Each language is represented by a sequence of 

infinite length whereas each individual string is 

of finite (but unbounded) length

◼ String is to Language as Natural number is to 

Real Number

33
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Halting Problem is Undecidable

◼ Prove that halting problem is undecidable

◼ We started this a while ago …

◼ Let ATM = {<M,w>| M is a TM and accepts w}

◼ Proof Technique:

◼ Assume ATM is decidable and obtain a contradiction

◼ A diagonalization proof
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Proof: Halting Problem is Undecidable

◼ Assume ATM is decidable

◼ Let H be a decider for ATM

◼ On input <M,w>, where M is a TM and w is a string, H halts and accepts 
if M accepts w; otherwise it rejects

◼ Construct a TM D using H as a subroutine

◼ D calls H to determine what M does when input string is its own 
description <M>. 
◼ Like running a C++ program where input is the program represented as a string 

◼ D then outputs the opposite of H’s answer

◼ D(<M>) accepts if M does not accept <M> and rejects if M accepts <M>

◼ Now run D on its own description

◼ D(<D>) = accept if D does not accept <D> and reject if D accepts <D>

◼ No matter what D does it is forced to do the opposite, which is a 
contradiction. Thus, neither TM D or TM H can exist. See next slide.
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The Diagonalization Proof
<M1> <M2> <M3> <M4> … <D>

M1 Accept Reject Accept Reject … Accept

M2 Accept Accept Accept Accept … Accept

M3 Reject Reject Reject Reject … Reject

M4 Accept Accept Reject Reject … Accept

.

D Reject Reject Accept Accept … ?

.

The TM D must invert the value on the diagonal. It can do this for <M1>, <M2>, etc, but not for 

<D>. If  the entry for D(<D>) was accept then it needs to be reject, and if  it was reject then it 

needs to be accept. Contradiction.  Similar to proof  that Real numbers not countable.



A More Satisfying Proof for CS Majors

◼ The last proof uses some mathematical tricks and is not 

very intuitive

◼ Computer programs appear more concrete to most of us

◼ The halting problem naturally is about programs and 

infinite loops

◼ After teaching this many times, I developed a proof that

most of you will find less arbitrary since it focuses 

programs and infinite loops.

◼ But it is nonetheless follows the same steps as the prior proof

37
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Slightly more Concrete Version

◼ You write a program, halts(P, X) in C++ that takes as 
input any C ++ program, P, and the input to that 
program, X
◼ Your program halts(P, X) analyzes P and returns “yes” if P will 

halt on X and “no” if P will not halt on X

◼ You now write a short procedure foo(X):
foo(X) {a: if halts(X,X) then goto a; else halt}

This program does not halt if P halts on X (infinite loop via goto) 
and it does if P does not halt on X

◼ Does foo(foo) halt?
◼ It halts if and only if halts(foo,foo) returns no

◼ It halts if and only if it does not halt. Contradiction.

◼ Thus we have proven that you cannot write a program to 
determine if any arbitrary program will halt or loop
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What does this mean?

◼ Recall what was said earlier

◼ The halting problem is not some contrived problem

◼ The halting problem asks whether we can tell if some TM M 
will accept an input string

◼ We are asking if the language below is decidable

◼ ATM = {(M,w)|M is a TM and M accepts w}

◼ It is not decidable

◼ But as I keep emphasizing, M is an input variable too!

◼ Of course, some algorithms are decidable, like sorting algorithms

◼ Halting problem is Turing-recognizable (we discussed this)

◼ Simulate the TM on w and if it accepts/rejects, then accept/reject.

◼ The halting problem is special because it gets at the heart of 
the matter (it is related to ATM in general)
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Co-Turing Recognizable

◼ A language is co-Turing recognizable if it is the 

complement of a Turing-recognizable language

◼ Theorem: A language is decidable if and only if it is 

Turing-recognizable and co-Turing-recognizable

◼ Why? To be Turing-recognizable, we must accept in finite 

time. If we don’t accept, we may reject or loop (it which case 

it is not decidable).

◼ Since we can invert any “question” by taking the complement, taking 

the complement flips the accept and reject answers. Thus, if we invert 

the question and it is Turing-recognizable, then that means that we 

would get the answer to the original reject question in finite time.
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More Formal Proof

◼ Theorem: A language is decidable iff it is Turing-recognizable 
and co-Turing-recognizable

◼ Proof (2 directions)
◼ Forward direction easy. If it is decidable, then both it and its complement 

are Turing-recognizable

◼ Other direction: 
◼ Assume A and A’ are Turing-recognizable and let M1 recognize A and M2 

recognize A’

◼ The following TM will decide A

◼ M = On input w
1. Run both M1 and M2 on input w in parallel

2. If M1 accepts, accept; if M2 accepts, then reject

◼ Every string is in either A or A’ so every string w must be accepted by either 
M1 or M2. Because M halts whenever M1 or M2 accepts, M always halts and 
so is a decider.

◼ Furthermore, it accepts all strings in A and rejects all not in A, so M is also a 
decider for A and thus A is decidable
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Implication

◼ For any undecidable language, either the 

language or its complement is not Turing-

recognizable
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Complement of ATM is not Turing-recognizable

◼ ATM’ is not Turing-recognizable

◼ Proof:

◼ We know that ATM is Turing-recognizable but not 

decidable

◼ If ATM’ were also Turing-recognizable, then ATM would 

be decidable, which it is not

◼ Thus ATM’ is not Turing-recognizable

◼ This should not be too surprising.

◼ It is harder to determine that something is not in the language
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Computer Language 

Theory

Chapter 5: Reducibility

Due to time constraints we are only going to cover the first 

3 pages of  this chapter. However, we cover the notion of  

reducibility in depth when we cover Chapter 7.
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What is Reducibility?

◼ A reduction is a way of converting one problem 
to another such that the solution to the second 
can be used to solve the first

◼ We say that problem A is reducible to problem B

◼ Example: finding your way around NY City is 
reducible to the problem of finding and reading a map

◼ If A reduces to B, what can we say about the relative 
difficulty of problem A and B?

◼ A can be no harder than B since the solution to B solves A

◼ A could be easier (the reduction is “inefficient” in a sense)

◼ In example above, A is easier than B since B can solve any 
routing problem
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Practice on Reducibility

◼ In our previous class work, did we reduce NFAs 
to DFAs or DFAs to NFAs?

◼ We reduced NFAs to DFAs

◼ We showed that an NFA can be reduced (i.e., converted) 
to a DFA via a set of simple steps

◼ NFA can not be any more powerful than a DFA

◼ Based only on the reduction, NFA could be less powerful

◼ But since we know this is not possible, since an DFA is a 
degenerate form of an NFA, we showed they have the 
same expressive power
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How Reducibility is used to Prove 

Languages Undecidable 
◼ If A is reducible to B and B is decidable, what can we say?

◼ A is decidable (since A can only be “easier”)

◼ Also, B, which is decidable, can be used to solve A

◼ If A is reducible to B and A is decidable, what can we say?
◼ Nothing– B may not be decidable (so this is not useful for us)

◼ If A is undecidable and reducible to B, then what can we 
say about B?
◼ B must be undecidable (B can only be harder than A)

◼ This is the most useful part for Chapter 5, since this is how 
we can prove a language undecidable
◼ We can leverage past proofs and not start from scratch

◼ To show something undecidable, show an undecidable 
problem can be reduced to it.
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Example: Prove HALTTM is Undecidable I

◼ Need to reduce ATM to HALTTM, where ATM already 

proven to be undecidable

◼ Can use HALTTM to solve ATM

◼ Proof by contradiction

◼ Assume HALTTM is decidable and show this implies ATM is 

decidable

◼ Assume TM R that decides HALTTM

◼ Use R to construct S a TM that decides ATM

◼ Pretend you are S and need to decide ATM so if given input <M, w> must 

output accept if M accepts w and reject if M loops on w or rejects w.

◼ First try: simulate M on w and if it accepts then accept and if rejects then 

reject. But in trouble if it loops.

◼ This is bad because we need to be a decider
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Example: Prove HALTTM is Undecidable II

◼ Instead, use assumption that have TM R that decides 

HALTTM

◼ Now can test if M halts on w

◼ If R indicates that M does halt on w, you can use the 

simulation and output the same answer

◼ If R indicates that M does not halt, then reject since infinite 

looping on w means it will never accept

◼ The formal solution on next slide

◼ We already discussed this case when we informally discussed 

how the halting problem is related to ATM 
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Solution: HALTTM is Undecidable

◼ Assume TM R decides HALTTM

◼ Construct TM S to decide ATM as follows

S = “On input <M, w>, an encoding of a TM M 

and a string w:

1. Run TM R on input <M, w>

2. If R rejects (doesn’t halt), reject

3. If R accepts, simulate M on w until it halts

4. If M has accepted, accept; If M has rejected, reject”


