Computer Language
Theory

Chapter 4: Decidability

Last modified 4/7/21



Limitations of Algorithmic Solvability

m In this chapter we investigate the power of algorithms
to solve problems

= Some can be solved algorithmically and some cannot

m Why we study unsolvability

m Useful because then can realize that searching for an
algorithmic solution is a waste of time

m Perhaps the problem can be simplified
® Gain an perspective on computability and its limits

= [n my view also related to complexity (Chapter 7)

m [irst we study whether there is an algorithmic solution and then we
study whether there is an “efficient” (polynomial-time) one



Chapter 4.1

Decidable LLanguages



Decidable Languages

m We start with problems that are decidable

m We first look at problems concerning regular
languages and then those for context-free languages



Decidable Problems for Regular Languages

m We give algorithms for testing whether a finite automaton
accepts a string, whether the language of a finite automaton 1s
empty, and whether two finite automata are equivalent

m We represent the problems by languages (not FAs)

Let Appa={(B, w) | B is a DFA that accepts string w}

The problem of testing whether a DFA B accepts a specific

input w is the same as testing whether (B,w) 1s a member of the
language Appa.

Showing that the language is decidable is the same thing as
showing that the computational problem 1s decidable

So do you understand what Ay, represents? If you had to list
the elements of Ay, what would they be?



Appa 1s @ Decidable Language

m  Theorem: App, 1S a decidable language

m  Proof Idea: Present a TM M that decides Appa
= M = On input (B,w), where B 1s a DFA and w 1s a string:

1. Simulate B on input w

2. If the simulation ends 1n an accept state, then accept; else

re]ect



Outline of Proof

m Must take B as input, described as a string, and then simulate it

= This means the algorithm for simulating any DFA must be embodied in
the TM’s state transitions

= Think about this. Given a current state and input symbol, scan the tape
for the encoded transition function and then use that info to determine
new state

m The actual proof would describe how a TM simulates a DFA
m Can assume B is represented by its 5 components and then we have w
m Note that the TM must be able to handle any DFA, not just this one
m Keep track of current state and position in w by writing on the tape
m Initially current state is q0 and current position is leftmost symbol of w
m The states and position are updated using the transition function 6
m TM M’s 6 not the same as DFA B’s &

= When M finishes processing, accept if in an accept state; else reject. The
implementation will make it clear that will complete in finite time.



Anpa 1s @ Decidable Language

B Proof Idea:

= Because we have proven decidability for DFAs, all we need to do
is convert the NFA to a DFA.

m N = On input (B,w) where B is an NFA and w is a string

1. Convert NFA B to an equivalent DFA C, using the procedure for
conversion given in Theorem 1.39

2. Run TM M on input (C,w) using the theorem we just proved

5. If M accepts, then accept; else reject

=  Running TM M in step 2 means incorporating M into the design
of N as a subroutine

= Note that these proofs allow the TM to be described at the
highest of the 3 levels we discussed in Chapter 3 (and even then,
without most of the details!).



Computing whether a DFA accepts any String

B Eppy = {<A>] Aisa DFA and L(A) = ©) is a decidable language
= Proof:

m A DFA accepts some string iff it is possible to reach the accept state from
the start state. How can we check this?

= We can use a marking algorithm similar to the one used in Chapter 3.
= T = Oninput (A) where A 1s a DFA:
1. Mark the start state of A

P Repeat until no new states get marked:

5. Mark any state that has a transition coming into it from any state already marked
4. If no accept state is marked, accept; otherwise reject
= In my opinion this proof is clearer than most of the previous ones because

the pseudo-code above specifies enough details to make 1t clear how to
implement it



EQpga 18 2 Decidable Language

B EQpp,={(AB)| A and B are DFAs and L(A)=1.(B) }

m Proofidea

m  Constructa DFA C from A and B, where C accepts only those strings
accepted by either A or B but not both (symmetric difference)

m [f A and B accept the same language, then C will accept nothing and we can
use the previous proof (for Hppy, to check for this.

m  So, the proof is:
= I = On input (A,B) where A and B are DFAs:

1. Construct DFA C that is the symmetric difference of A and B
(details on how to do this on next slide)

2. Run TM T from the proof from last slide on input (C)
5. If T accepts (sym. diff=9) then accept. If T rejects then reject

10



How to Construct C

Complement symbol

= L(C) = L) NLB)) W @A) N LB))
= We used proofs by construction that regular
languages are closed under U , N , and complement

m We can use those constructions to construct a FA
that accepts L(C)

m Wait a minutel The book 1s quite cavaliet! We never
proved regular languages are closed under N

11



Regular Languages Closed under Intersection

m [f [L and M are regular languages, then so is L. N M

m Proof: Let A and B be DFAs whose regular languages are
L. and M, respectively

m Construct C, the “product automation” of A and B

= More on this in a minute, but essentially C tracks the states in A

and B (just like when we did the proof of union without using
NFAs)

m Make the final states of C be the pairs consisting of final
states of both A and B

® In the union case we the final state any state with a final state in

A or B

12



: Product DFA for
Intersection

A,C]




Acgc 1s a Decidable Language

m Proof Idea:

= For CFG G and string w want to determine whether G
generates w. One 1dea is to use G to go through all
derivations. This will not work, why?

m Because this method a best will yield a TM that 1s a recognizer, not a

decider. Can generate infinite strings and if not in the language, will
never know it.

m But since we know the length of w, we can exploit this. How?

m A string w of length n will have a derivation that uses 2n-1 steps if the
CFG is in Chomsky-Normal Form.

m So first convert to Chomsky-Normal Form

® Then list all derivations of length 2n-1 steps. If any generates w, then
accept, else reject.

m This is a variant of breadth first search, but instead of extended the

depth 1 at a time we allow it to go 2n-1 at a time. As long as finite depth
extension, we are okay

14



Erc 1S 2 Decidable Language

m How can you do this? What is the brute force
approach?
= Try all possible strings w. Will this work?
®m The number is not bounded, so this would not be decidable

m [nstead, think of this as a graph problem where you want
to know if you can reach a string of terminals from the
start state

m Do you think it is easier to work forward or backwards?

m Answer: backwards

15



Erc 1s a Decidable Language (cont)

m Proof Idea;

= Can the start variable generate a string of terminals?

m Determine for each variable if it can generate any
string of terminals and if so, mark it

m Keep working backwards so that if the right-side of
any rule has only marked items, then mark the LHS

m For example, if X2 YZ and Y and Z are marked, then
mark X

m [f you mark S, then done; if nothing else to mark and S
not marked, then reject

® You start by marking all terminal symbols

16



EQ g 1s not a Decidable Language

m We cannot reuse the reasoning to show that
EQpp, 1s 2 decidable language since CEGs are
not closed under complement and intersection

m As it turns out, EQ . 1s not decidable!

m We will learn 1n Chapter 5 how to prove things
undecidable

17



Every Context-Free Language is Decidable

m Note that a few slides back we showed A g is decidable.

m This is almost the same thing
m We want to know if A, which i1s a CFL, is decidable.

= A will have some CFG G that generates it

= When we proved that A 1s decidable, we constructed a TM S that would tell us 1f
any CFG accepts a particular input w.

= Now we use this TM and run it on input <G,w> and if it accepts, we accept, and if
it rejects, we reject.

m This is so close to the prior proof it is confusing. It comes from the fact that a

CFL is defined by a CFG.

m This leads us to the following picture of the hierarchy of
languages

18



Hierarchy of Classes of Languages

We proved Regular ¢ Context-free since
we can convert a FA into a CFG

We just proved that every Context-free
language 1s decidable

From the definitions in Chapter 3 it is
clear that every Decidable language is
trivially Turing-recognizable. We hinted
that not every Turing-recognizable
language is Decidable. Next we prove
that!

Context-Free
Decidable

Turing-recognizable

19



Chapter 4.2

The Halting Problem

20



The Halting Problem

B One of the most philosophically important theorems in
the theory of computation

m There is a specific problem that 1s algorithmically unsolvable.

® In fact, ordinary/practical problems may be unsolvable
m Software verification

= Given a computet program and a precise specification of what the
program is supposed to do (e.g., sort a list of numbers)

= Come up with an algorithm to prove the program works as required
m This cannot be donel!
® But wait, can’t we prove a sorting algorithm works?
m Note: the input has two parts: specification and task. The proof is
not only to prove it works for a specific task, like sorting numbers.

® Our first undecidable problem:

® Does a TM accept a given input string?

m Note: we have shown that a CFL is decidable and a CFG can be
simulated by a TM. This does not yield a contradiction. TMs are more
expressive than CEFGs.

21



Halting Problem 11

B A= {M,w)|MisaTM and M accepts w}

m A, 1s undecidable
= [t can only be undecidable due to a loop of M on w.

= [f we could determine if it will loop forever, then could reject.
Hence Ay is often called the halting problem.

m As we will show, it is impossible to determine if a TM will always halt
(L.e., on every possible input).

= Note that this 1s Turing recognizable:

m Simulate M on input w and 1if it accept, then accept; if it ever rejects,
then reject

= We start with the diagonalization method

22



Diagonalization Method

m In 1873 mathematician Cantor was concerned with the
problem of measuring the sizes of infinite sets.

= How can we tell if one infinite set i1s bigger than another or if
they are the same size?

m We cannot use the counting method that we would use for finite sets.
Example: how many even integers are there?

m What is larger: the set of even integers or the set of all strings over
{0,1} (which is the set of all integers)

= Cantor observed that two finite sets have the same size if each
clement in one set can be paired with the element in the other

m This can work for infinite sets

23



Function Property Definitions

m From basic discrete math (e.g., CS 1100)
= Given a set A and B and a function ffrom A to B

m /is one-to-one if it never maps two elements in A to the
same element in B

m The function add-two is one-to-one whereas absolute-value 1s not

m fis onto 1if every item in B is reached from some value in a
(i.e., f(a) = b for every b € B).
= For example, if A and B are the set of integers, then add-#wo 1s onto

but if A and B are the positive integers, then it is not onto since b
= 1 is never hit.

m A function that is one-to-one and onto has a (one-to-one)
correspondence

= This allows all items in each set to be paired

24



An Example of Pairing Set Items

m Let N be the set of natural numbers {1, 2, 3, ...} and
let E be the set of even natural numbers {2, 4, 6, ...}.

m Using Cantor’s definition of size we can see that N and
E have the same size.

® The correspondence f from N to E is f(n) = 2n.
m This may seem bizarre since E is a proper subset of N,
but it 1s possible to pair all items, since f(n) is a 1:1
correspondence, so we say they are the same size.
m Definition:

m A set is countable if either it is finite or it has the same size as
N, the set of natural numbers

25



Example: Rational Numbers

B let Q= {m/n: mn € N}, the set of positive
Rational Numbers
m Q seems much larger than N, but according to
our definition, they are the same size.
m Here is the 1:1 correspondence between Q and N

m We need to list all of the elements of Q and then label
the first with 1, the second with 2, etc.

m We need to make sure each element in Q 1s listed only once

26



Correspondence between N and Q

m To get our list, we make an infinite matrix containing all the
positive rational numbers.

= Bad way is to make the list by going row-to-row. Since 1°* row 1s
infinite, would never get to the second row
= Instead use the diagonals, not adding the values that are equivalent
m So the orderis 1/1,2/1, Y2, 3/1,1/3, ...
m This yields a correspondence between Q and N

m That is, N=1 corresponds to 1/1, N=2 corresponds to 2/1, N=3
corresponds to Y2 etc.

x x e / x

e

A\

171
Teni
V571 1372 1373 |3/4 [3/5
471
571

27

\




Theorem: R is Uncountable

B A real number 1s one that has a decimal
representation and R 1s set of Real Numbers

® Includes those that cannot be represented with a
finite number of digits, like P1 and square root of 2

m Will show that there can be no pairing of
elements between R and N

= Will tind some x that is always not in the pairings
and thus a proof by contradiction

28



Finding a New Value x

m  To the right is an example mapping

=  Assume that it is complete n f(n)
m | now describe a method that will be guaranteed to 1 314159,
generate a value x not already in the infinite list —
m  Generate x to be a real number between 0 and 1 as z 99.5555...
follows 3 0.12345...
® To ensure that x # f(1), pick a digit not equal to the 4 0.500000
first digit after the decimal point. Any value not equal S
to 1 will work. Pick 4 so we have .4

m Tox 7 f(2), pick a digit not equal to the second digit.
Any value not equal to 5 will work. Pick 6. We have .46

= Continue, choosing values along the “diagonal” of
digits (i.e., if we took the f(n) column and put one digit
in each column of a new table).

m  When done, we are guaranteed to have a value x not
already in the list since 1t differs in at least one
position with every other number in the list.

AS



Implications

m The theorem we just proved about R being
uncountable has an important application in the
theory of computation

m [t shows that some languages are not decidable or
even Turing-recognizable, because there are
uncountably many languages yet only countably
many Turing Machines.

m Because each Turing machine can recognize a single
language and there are more languages than Turing

machines, some languages are not recognized by any
Turing machine.

m Corollary: some languages are not Turing-recognizable

30



Some Languages are Not Turing-recognizable I

m The set of all strings > * 1s countable

= A finite number of strings of each length, so we can
list them by increasing length and hence they are
countable

= The set of all Turing Machines M Is countable
since each TM M has an encoding into a string
<M>
= Order by length and omit strings that do not represent

valid TM’s and we have a countable list of Turing
Machines

31



Some Languages are Not Turing-recognizable II

m The set of all languages L over )_ 1s uncountable

= Recall a language Is made up of a set of strings, so different from what
we just counted on last slide.

= Each language Is represented by an infinite binary sequence B, where
each position in the sequence corresponds to a string

m Assume ) * = {s;, S,, S; ... . We can encode any language as a characteristic binary
sequence, where the bit indicates whether the corresponding s; is @ member of the
language. Thus, there is a 1.1 mapping.

m The set of all infinite binary sequences B is uncountable
m Can prove uncountable using same proof used to prove real numbers not countable

= L Is uncountable because It has a correspondence with B

= Since B Is uncountable and L and B are of equal size, L Is
uncountable

m So set of TMs is countable and the set of languages Is not
= Means we cannot put set of languages into a correspondence with set of TMs.
m Therefore some languages do not have a corresponding Turing machine
m Thus some languages not Turing-Recognizable

32



Common Sense Explanation

m Comparing languages, a potentially infinite set of
strings, versus number of strings

m Hach language is represented by a sequence of
infinite length whereas each individual string is
of finite (but unbounded) length

m String 1s to Language as Natural number is to
Real Number

33



Halting Problem is Undecidable

m Prove that halting problem is undecidable
m We started this a while ago ...
B et Ay = {<M,w>| M is a TM and accepts w

m Proof Technique:
m Assume Ay, 1s decidable and obtain a contradiction

® A diagonalization proof

34



Proof: Halting Problem is Undecidable

m Assume Ay, is decidable
m [et H be a decider for Ay,

= On input <M,w>, where M is a TM and w is a string, H halts and accepts
it M accepts w; otherwise it rejects
m Constructa TM D using H as a subroutine

m D calls H to determine what M does when input string 1s its own
description <M>.

m Like running a C++ program where input is the program represented as a string
= D then outputs the opposite of H’s answer
m D(<M?>) accepts if M does not accept <M> and rejects if M accepts <M>

= Now run D on its own description
= D(<D>) = accept if D does not accept <D> and reject if D accepts <D>

= No matter what D does it is forced to do the opposite, which is a
contradiction. Thus, neither TM D ot TM H can exist. See next slide.

35



The Diagonalization Proof

<Ml1> | <M2> | <M3> | <M4> <D>
M1 Reject | Accept | Reject Accept
\Y % Accept Accept | Accept Accept
M3 Reject | Reject | Reject | Reject Reject
M4 Accept | Accept | Reject Accept
D Accept ?

The TM D must invert the value on the diagonal. It can do this for <M1>, <M2>, etc, but not for

<D>. If the entry for D(<D>) was accept then it needs to be reject, and if it was reject then it

needs to be accept. Contradiction. Similar to proof that Real numbers not countable.

36




A More Satisfying Proof for CS Majors

m The last proof uses some mathematical tricks and is not
very intuitive
m Computer programs appear more concrete to most of us

m The halting problem naturally is about programs and
infinite loops

m After teaching this many times, I developed a proof that
most of you will find less arbitrary since it focuses
programs and infinite loops.

= But it is nonetheless follows the same steps as the prior proof

37



Slightly more Concrete Version

® You write a program, halts(P, X) in C™ that takes as
input any C " program, P, and the input to that
program, X
®= Your program halts(P, X) analyzes P and returns “yes” if P will
halt on X and “no” if P will not halt on X

® You now write a short procedure foo(X):
foo(X) { : if halts(X,X) then goto ; else halt}

This program does not halt if P halts on X (infinite loop via goto)
and it does 1f P does not halt on X

® Does foo(foo) halt?

m [t halts if and only if halts(foo,foo) returns no
m [t halts if and only if it does not halt. Contradiction.

m Thus we have proven that you cannot write a program to

determine if any arbitrary program will halt or loop



What does this mean?

m Recall what was said earlier
m The halting problem is not some contrived problem

= The halting problem asks whether we can tell if some TM M
will accept an input string

m We are asking if the language below is decidable
B Ay = {Mw)|MisaTM and M accepts w}
m [t is not decidable

m But as I keep emphasizing, M is an input variable too!
= Of course, some algorithms are decidable, like sorting algorithms
= Halting problem is Turing-recognizable (we discussed this)
m Simulate the TM on w and if it accepts/rejects, then accept/reject.
= The halting problem is special because it gets at the heart of

the matter (it is related to A in general)
39



Co-Turing Recognizable

m A language 1s co-Turing recognizable if it is the
complement of a Turing-recognizable language

m Theorem: A language is decidable if and only if it is
Turing-recognizable and co-Turing-recognizable

= Why? To be Turing-recognizable, we must accept in finite
time. If we don’t accept, we may reject or loop (it which case
it 1s not decidable).

m Since we can invert any “‘question’ by taking the complement, taking
the complement flips the accept and reject answers. Thus, if we invert

the question and it 1s Turing-recognizable, then that means that we
would get the answer to the original reject question in finite time.

40



More Formal Proof

m  Theorem: A language is decidable iff it is Turing-recognizable
and co-Turing-recognizable

m  Proof (2 directions)

=  TForward direction easy. If it is decidable, then both it and its complement
are Turing-recognizable

m Other direction:

m  Assume A and A’ are Turing-recognizable and let M1 recognize A and M2
recognize A’
The following TM will decide A
M = On input w
1. Run both M1 and M2 on input w in parallel
2. If M1 accepts, accept; if M2 accepts, then reject

m  Every string is in either A or A’ so every string w must be accepted by either
M1 or M2. Because M halts whenever M1 or M2 accepts, M always halts and
so 1s a decider.

m  TFurthermore, it accepts all strings in A and rejects all not in A, so M is also a
decider for A and thus A is decidable

41



Implication

m [or any undecidable language, either the
language or its complement 1s not Turing-
recognizable

42



Complement of A, is not Turing-recognizable

m A 1s not Turing-recognizable

m Proof:

= We know that A, 1s Turing-recognizable but not

decidable

m [f A, were also Turing-recognizable, then Ay, would
be decidable, which it is not

® Thus A, 1s not Turing-recognizable

® This should not be too surprising.

m [t 1s harder to determine that something is not in the language

43



Computer Language
Theory
Chapter 5: Reducibility

Due to time constraints we are only going to cover the first
3 pages of this chapter. However, we cover the notion of
reducibility in depth when we cover Chapter 7.

44



What is Reducibility?

® A reduction is a way of converting one problem
to another such that the solution to the second
can be used to solve the first

= We say that problem A is reducible to problem B

= Example: finding your way around NY City is
reducible to the problem of finding and reading a map

m [f A reduces to B, what can we say about the relative
difficulty of problem A and B?
m A can be no harder than B since the solution to B solves A
m A could be easier (the reduction 1s “inefficient” in a sense)

m [n example above, A is easier than B since B can solve any

routing problem
45



Practice on Reducibility

® In our previous class work, did we reduce NFAs

to DFAs or DFAs to NEAs?
m We reduced NFAs to DFAs

m We showed that an NFA can be reduced (i.e., converted)
to a DFA via a set of simple steps

m NFA can not be any more powerful than a DFA
m Based only on the reduction, NFA could be less powertul

m But since we know this is not possible, since an DFA is a
degenerate form of an NFA, we showed they have the
same expressive power

46



How Reducibility is used to Prove
Languages Undecidable

If A 1s reducible to B and B is decidable, what can we say?
= A is decidable (since A can only be “easier”)
m Also, B, which is decidable, can be used to solve A
If A 1s reducible to B and A is decidable, what can we say?
= Nothing— B may not be decidable (so this is not useful for us)

If A 1s undecidable and reducible to B, then what can we
say about B?
= B must be undecidable (B can only be harder than A)

m This 1s the most useful part for Chapter 5, since this is how
we can prove a language undecidable
m We can leverage past proofs and not start from scratch
To show something undecidable, show an undecidable
problem can be reduced to it.

a7



Example: Prove HALT'1,, is Undecidable I

m Need to reduce Ay to HALT , where Ay, already
proven to be undecidable

m Can use HALT,, to solve Aqy,

m Proof by contradiction

= Assume HALT |, is decidable and show this implies Ay 1s
decidable
m Assume TM R that decides HALT 1,
m Use R to construct S a TM that decides Ay
m Pretend you are S and need to decide Ay so if given input <M, w> must

output accept if M accepts w and reject if M loops on w or rejects w.

m First try: simulate M on w and if it accepts then accept and if rejects then
reject. But in trouble if it loops.

m This is bad because we need to be a decider 48



Example: Prove HALT ,, is Undecidable II

m Instead, use assumption that have TM R that decides

B Now can test if M halts on w

m [f R indicates that M does halt on w, you can use the
simulation and output the same answer

= [If R indicates that M does not halt, then reject since infinite
looping on w means it will never accept

m The formal solution on next slide

= We already discussed this case when we informally discussed
how the halting problem 1s related to Ay,

49



Solution: HALT,, is Undecidable

m  Assume TM R decides HALT 1,

B Construct TM S to decide Ay as follows
S = “On input <M, w>, an encoding of a TM M
and a string w:
. Run TM R on input <M, w>
2. If R rejects (doesn’t halt), reject
3. If R accepts, simulate M on w until it halts

4. It M has accepted, accept; It M has rejected, reject”

50



