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Complexity 

 A decidable problem is computationally solvable 

 But what resources are needed to solve the problem? 

 How much time will it require? 

 How much memory will it require? 

 In this chapter we study time complexity 

 Chapter 8 covers the space complexity of a problem 

 Space corresponds to memory 

 We do not cover space complexity (this topic is rarely 

covered in introductory theory courses) 
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Goals 

 Basics of time complexity theory 

 Introduce method for the measuring time to solve a 

problem 

 Show how to classify problems according to the 

amount of time required 

 Show that certain classes of problems require 

enormous amounts of time 

 We will see how to determine if we have this type of 

problem 
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Chapter 7.1 

Measuring Complexity 
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An Example of Measuring Time 

 Take the language A = {0k1k|k ≥ 0} 

 A is clearly decidable 

 we can write a program to recognize it 

 How much time does a single-tape Turing machine, 

M1, need to decide A? 

 Do you recall the main steps involved? 
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Turing Machine M1 

M1 = On input string w: 

1. Scan across the tape and reject if a 0 is found to the 

right of a 1 

2. Repeat if both 0s and 1s remain on the tape 

3. Scan across the tape, crossing off a single 0 and a single 1 

4. If 0s still remain after all the 1s have been crossed 

off, or if 1s still remain after all the 0s have been 

crossed off, reject. Otherwise, if neither 0s nor 1s 

remain, accept. 
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Time Analysis of a TM 

 The number of steps that an algorithm/TM requires may 
depend on several parameters 

 If the input is a graph, then the number of steps may depend 
on: 
 Number of nodes, number of edges, maximum degree of the graph 

 For this example, what does it depend on? 

 The length of the input string 

 But also the value of the input string (1•010,000•110,000) 

 For simplicity, we compute the running time of an algorithm as 
a function of the length of the string that represents the input 
 In worst-case analysis, we consider the longest running time of all inputs 

of a particular length (that is all we care about here) 

 In average-case analysis, we consider the average of all running times of 
inputs of a particular length 
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Running Time/Time Complexity 

 Definition: Running time or time complexity: 

 If M is a TM that halts on all inputs, the running 

time of M is the function f: N → N, where f(n) is the 

maximum number of steps that M uses on any input 

of length n. 

 We say that M runs in time f(n) and that M is an f(n) time 

Turing machine. 

 Custom is to use n to represent the input length 
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Big-O and Small-O Notation 

 We usually just estimate the running times 

 In asymptotic analysis, we focus on the 

algorithm’s behavior when the input is large 

 We consider only the highest order term of the 

running time complexity expression 

 The high order term will dominate low order terms when 

the input is sufficiently large 

 We also discard constant coefficients 

 For convenience, since we are estimating 
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Examples of using Big-O Notation 

 If the time complexity is given by the f(n) below: 

 f(n) = 6n3 + 2n2 + 20n + 45 then 

 Then f(n) = O(?) 

 An answer, using what was just said, is: 

 F(n) = O(n3) 
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Definition of Big-O 

 Let f and g be functions f, g: N → R+. Say that 
f(n) = O(g(n)) if positive integers c and no exist 
such that for every integer n ≥ no 

 f(n) ≤ c g(n) 

 When f(n) = O(g(n)) we say that g(n) is an 
asymptotic upper bound for f(n), to emphasize that 
we are suppressing constant factors 

 Intuitively, f(n) = O(g(n)) means that f is less 
than or equal to g if we disregard differences up 
to a constant factor.  
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Example 

 From earlier, we said if the time complexity is:  

 f(n) = 6n3 + 2n2 + 20n + 45, then 

 f(n) = O(n3) 

 Is f(n) always less than c g(n) for some n? 

 That is, is f(n) ≤ c g(n)? 

 Try n=0; we get 45 ≤  0 (c x 0) 

 Try n=10; we get 6000 + 200 + 200 + 45 ≤ c 1000 

 6445 ≤ 1000c. Yes, if c is 7 or more. 

 So, if c = 7, then true whenever no ≥ 10 
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Example continued 

 What if we have:  

 f(n) = 6n3 + 2n2 + 20n + 45, then 

 f(n) = O(n2)? 

 Let’s pick n = 10 

 6445 ≤ 100c 

 True if c = 70. But then what if n is bigger, such as 100 

 Then we get 6,022,045 ≤ 10,000c 

 Now c has to be 603 

 So, this fails and hence f(n) is not O(n2). 

  Note that you must fix c and no. You cannot keep changing c. If you 

started with a larger c, then you would have to get a bigger n, but 

eventually you would always cause the inequality to fail. 

 If you are familiar with limits (from calculus), then you should already 

understand this 
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Another way to look at this 

 Imagine your graph y1=(x2) and y2=(x3) 

 Clearly y2 would be bigger than y1 if x > 0. 

 However, we could change y1 so that it is equal to 

cx2 and then y1 could be bigger than y2 for some 

values of x 

 However, once x gets sufficiently large, for any value of c, 

then y2 will be bigger than y1 
 



15 

Example Continued 

 Note that since f(n) = O(n3), then it would 

trivially hold for O(n4), O(n5), and 2n  

 The big-O notation does not require that the 

upper bound be “tight” (i.e., as small as 

possible) 

 For the perspective of a computer scientist who 

is interesting in characterizing the performance 

of an algorithm, a tight bound is better 
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A Brief Digression on Logarithms 

 As it turns out, log2n and log10n and logxn differ from 

each other by a constant amount 

 So if we use logarithms inside the O(log n), we can ignore the 

base of the logarithm 

 Note that log n grows much more slowly than a 

polynomial like n or n2. An exponential like 2n or 5n or 

72n grows much faster than a polynomial. 

 Recall from “basic” math that a logarithm is essentially the 

opposite of an exponential 

 Example, log216 = 4 since 24=16. In general, log2
2n = n 
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Small-O Notation 

 Big-O notation says that one function is asymptotically 
no more than another 
 Think of it as ≤. 

 Small-O notation says that one function is asymptotically 
less than another 
 This of it as < 

 Examples: Come up with small-o  
 If f(n) = n, then f(n) = o(?) 

 f(n) = o(n log n) or o(n2)  

 If f(n) = n2 then f(n) = o(?) 
 f(n) = o(n3) 

 A small-O bound is always also a big-O bound (not vice-versa) 
 Just as if x < y then x ≤ y (x ≤ y does not mean that x < y) 
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Formal Definition of Small-O 

 Let f and g be functions f, g: N → R+. Say that 

f(n) = o(g(n)) if: 

 Limit as n→ ∞ f(n)/g(n) = 0 

 

 This is equivalent to saying that f(n) = o(g(n)) then, 

for any real number c > 0, a number no exists where 

f(n) < cg(n) for all n ≥ no. 
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Now Back to Analyzing Algorithms 

 Take the language A = {0k1k|k ≥ 0} 

    M1 = On input string w: 

1. Scan across the tape and reject if a 0 is found to the 
right of a 1 

2. Repeat if both 0s and 1s remain on the tape 

3. Scan across the tape, crossing off a single 0 and a single 1 

4. If 0s still remain after all the 1s have been crossed off, 
or if 1s still remain after all the 0s have been crossed 
off, reject. Otherwise, if neither 0s nor 1s remain, 
accept. 
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How to Analyze M1 

 To analyze M1, consider each of the four stages 

separately 

 How many steps does each take? 
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Analysis of M1 
M1 = On input string w: 

1. Scan across the tape and reject if a 0 is found to the right of a 1 

2. Repeat if both 0s and 1s remain on the tape 
3. Scan across the tape, crossing off a single 0 and a single 1 

4. If 0s still remain after all the 1s have been crossed off, or if 1s still remain 
after all the 0s have been crossed off, reject. Otherwise, if neither 0s nor 1s 
remain, accept. 

 Stage 1 takes: ? steps 
 n steps so O(n) 

 Stage 3 takes: ? Steps 
 n steps so O(n) 

 Stage 4 takes: ? Steps 
 n steps so O(n) 

 How many times does the loop in stage 2 cause stage 3 to repeat? 
 n/2 so O(n) steps 

 What is the running time of the entire algorithm? 
 O(n) + n/2 x O(n) + O(n) = O(n2/2) = O(n2) 
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Time Complexity Class 

 Let t: N → R+ be a function. We define the 

time complexity class, TIME(t(n)), to be the 

collection of all languages that are decidable by 

an O(t(n)) time Turing machine. 

 Given that language A was accepted by M1 which 

was O(n2), we can say that A  TIME(n2) and that 

TIME(n2)  contains all languages that can be decided 

in O(n2) time.  
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Is There a Tighter Bound for A? 

 Is there a machine that will decide A asymptotically more 
quickly? 

 That is, is A in TIME(t(n)) for t(n) = o(n2)? 
 If it is, then there should be a tighter bound 

 The book gives an algorithm for doing it in O(nlogn) on page 252 
by crossing off every other 0 and 1 at each step (assuming total 
number of 0s and 1s is even) 
 Need to look at the details to see why this works, but not hard to see why 

this is O(n log n). 

 Similar to M1 that we discussed except that the loop is not repeated n/2 times. 

 How many times is it repeated? 

 Answer log2n (but as we said before the base does not matter so log n) 

 So, that yields nlogn instead of n2 
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Can we Recognize A even Faster? 

 If you had to program this, how long would it 

take (don’t worry about using a Turing machine)? 

 I can do it in O(n) time by counting the number of 0s 

and then subtracting each 1 from that sum as we see it 

 Can you do it in O(n) with a Turing Machine? 

 Not with a single tape Turing Machine 

 But you can with a 2-tape Turing Machine 

 How? 
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A TM M3 to Recognize A in O(n) 

 M3 = On input string w: 
1. Scan across the tape and reject if a 0 is found to the right side of a 1. 

2. Scan across the 0s on tape 1 until the first 1 is seen. As each 0 is 
seen, copy a 0 to tape 2 (unary counting) 

3. Scan across the 1s on tape 1 until the end of the input. For each 1 
read on tape 1, cross off a 0 on tape 2. If all 0s are crossed off before 
all 1s are read, reject. 

4. If all the 0s have now been crossed off, accept. If any 0s remain, reject. 

 What is the running time: 
 1: O(n)  2: O(n)   3: O(n)    4:  O(n) 

 Is it possible to do even better? 
 No, since the input is O(n). Could only do better for a 

problem where it is not necessary to look at all of the input, 
which isn’t the case here. 
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Implications 

 On a 1-tape TM first we came with a O(n2) algorithm 
and then a O(nlogn) algorithm 
 So, the algorithm you choose helps to decide the time 

complexity 
 Hopefully no surprise there 

 As it turns out, O(nlogn) is optimal for a 1-tape TM 

 On a 2-tape TM, we came up with a O(n) algorithm 
 So, the computational model does matter 

 A 2-tape and 1-tape TM are of equivalent computational power with 
respect to what can be computed, but have different time complexities 
for same problem 

 How can we ever say anything interesting if everything is so model 
dependent? 

 Recall that with respect to computability, TMs are incredibly robust in 
that almost all are computationally equivalent. That is one of the things 
that makes TMs a good model for studying computability 
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A Solution 

 One solution is to come up with a measure of 

complexity that does not vary based on the 

model of computation 

 That necessarily means that the measure cannot be 

very fine-grained 

 We will briefly study the relationships between 

the models with respect to time complexity 

 Then we can try to come up with a measure that is 

not impacted by the differences in the models 
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Complexity Relationships between Models 

 We will consider three models: 

 Single-tape Turing machine 

 Multi-tape Turing machine 

 Nondeterministic Turing machine 
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Complexity Relationship between 

Single and Multi-tape TM 

 Theorem:  

 Let t(n) be a function, where t(n) ≥ n. Then every 
t(n) time multitape Turing machine has an equivalent 
O(t2(n)) time single-tape TM 

 Proof Idea: 

 We previously showed how to convert any multi-tape TM 
into a single-tape TM that simulates it. We just need to 
analyze the time complexity of the simulation. 

 We show that simulating each step of the multitape TM 
uses at most O(t(n)) steps on the single-tape machine. 
Hence the total time used is O(t2(n)) steps. 
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Proof of Complexity Relationship 

 Review of simulation: 

 The single tape of machine S must represent all of the 

tapes of multi-tape machine M 

 S does this by storing the info consecutively and the 

positions of the tape heads is encoded with a special symbol 

 Initially S puts its tape into the format that represents the 

multi-tape machine and then simulates each step of M 

 A single step of the multi-tape machine must then be 

simulated 
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Simulation of Multi-tape step 
 To simulate one step: 

 S scans tape to determine contents under tape heads 

 S then makes second pass to update tape contents and move tape heads 

 If a tape heads moves right into new previously unused space (for the 
corresponding tape in M), then S must allocate more space for that tape 

 It does this by shifting the rest of the contents one cell to the right 

 Analysis of this step: 
 For each step in M, S makes two passes over active portion of the tape. 

First pass gets info and second carries it out. 

 The shifting of the data, when necessary, is equivalent to moving over the 
active portion of the tape 

 So, equivalent to three passes over the active contents of the tape, which is 
same as one pass. So, O(length of active contents). 

 We now determine the length of the active contents 
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Length of Active Contents on Single-Tape TM 

 Must determine upper bound on length of active tape 
 Why an upper bound? 

 Answer: we are looking a worst-case analysis 

 Active length of tape equal to sum of lengths of the k-tapes 
being simulated 
 What is the maximum length of one such active tape? 

 Answer: t(n) since can at most make t(n) moves to the right in t(n) steps 

 Thus a single scan of the active portion takes O(t(n)) steps 
 Why not O(k x t(n)) since k tapes in k-multitape machine M? 

 Answer: k is a constant so drops out 

 Putting it all together: 
 O(n) to set up tape initially and then t(n) steps to simulate 

each of the O(t(n)) steps. 

 This yields O(n) + O(t2(n)) = O(t2(n))  given that t(n) ≥ n. 
Proof done! 

 

 



33 

Complexity Relationship between Single-

tape DTM and NDTM 
 Definition: 

 Let N be a nondeterministic Turing machine that is a decider. 
The running time of N is: 
 Function f: N → N, where f(n) is the maximum number of steps that N 

uses on any branch of its computation on any input of length n 

 Doesn’t correspond to real-world computer 
 Except maybe a quantum computer?* 

 Rather a mathematical definition that helps to characterize the 
complexity of an important class of computational problems 

 As I said before, non-determinism is like always guessing 
correctly (as if we had an oracle). Given this, the running time 
result makes sense.  

* This is more related to this course than you might think. Lately many new methods for 
computation have arisen in research, such as quantum and DNA computing. These really 
do 1) show that computing is not about “computers” and 2) that it is useful to study 
different models of computation. Quantum computing is radically different. 
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Proof of Complexity Relationship 

 Theorem: 

 Let t(n) be a function, where t(n) ≥ n. Then every 

t(n) time nondeterministic single-tape Turing 

machine has an equivalent 2O(t(n)) time deterministic 

single-tape TM 

 Note that 2O(t(n)) is exponential, which means it 

grows very fast 

 Exponential problems considered “computationally 

intractable” 



Definition of NTM Running Time  

 Let N be a Nondeterministic Turing Machine 

that is a decider. The running time is the 

maximum number of steps that N takes on any 

branch of its computation on any input of 

length n. 

 Essentially the running time assumes that we always 

guess correctly and execute only one branch of the 

tree. The worst case analysis means that we assume 

that correct branch may be the longest one.  

35 
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Proof 

 Proof: 

 This is based on the proof associated with Theorem 3.16 

(one of the few in Chapter 3 that we did not do) 

 Construct a deterministic TM D that simulates N by 

searching N’s nondeterministic computation tree 

 Finds the path that ends in an accept state. 

 On input n the longest branch of computation tree is t(n) 

 If at most b transitions, then number of leaves in tree is at most bt(n) 

 Explore it breadth first 

 Total number of nodes in tree is less than twice number of leaves  

(basic discrete math) so bounded by O(bt(n)) 
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Proof continued 

 The way the computation tree is searched in the 

original proof is very inefficient, but it does not impact 

the final result, so we use it 

 It starts at the root node each time 

 So, it goes to bt(n) nodes and must travel O(t(n)) each time. 

 This yields bt(n) O(t(n)) steps = 2 O(t(n)) 

 Note that b is a constant ≥ 2 and for running time purposes can be 

listed as 2 (asymptotically equivalent).  

 The O(t(n)) does not increase the overall result, since exponential 

dominates the polynomial 

 If we traversed the tree intelligently, still must visit O(bt(n)) nodes 

 The simulation that we did not cover involves 3 tapes. But going 

from 3 tapes to 1 tape at worst squares the complexity, which has no 

impact on the exponential  
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Chapter 7.2 

The Class P 
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The Class P 

 The two theorems we just proved showed an 

important distinction 

 The difference between a single and multi-tape TM 

is at most a square, or polynomial, difference 

 Moving to a nondeterministic TM yields an 

exponential difference 

 A non-deterministic TM is not a valid real-world model 

 So we can perhaps focus on polynomial time 

complexity 
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Polynomial Time 

 From the perspective of time complexity, polynomial 
differences are considered small and exponential ones 
large 

 Exponential functions do grow incredibly fast and do grow 
much faster than polynomial function 

 However, different polynomials do grow much faster than 
others and in an algorithms course you would be crazy to 
suggest they are equivalent 
 O(n log n) sorting much better than O(n2). 

 O(n) and O(n3) radically different 

 As we shall see, there are some good reasons for 
nonetheless assuming polynomial time equivalence 



41 

Background 

 Exponential time algorithms arise when we 
solve problems by exhaustively searching a space 
of possible solutions using brute force search 

 Polynomial time algorithms require something 
other than brute force (hence one distinction) 

 All reasonable computational models are 
polynomial-time equivalent 

 So if we view all polynomial complexity algorithms 
as equivalent then the specific computational model 
does not matter 
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The Definition of the Class P 

 Definition: 

 P is the class of languages that are decidable in 

polynomial time on a deterministic single-tape 

Turing machine. We can represent this as: 

 P = k TIME(nk) 

 The k should be under the U, but what we mean is that the 

language P is the union over all languages that can be recognized 

in time polynomial in the length of the input, n 

 That is, n2, n3, … 
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The Importance of P 

 P plays a central role in the theory of computation 

because 

 P is invariant for all models of computation that are 

polynomial equivalent to the deterministic single-tape 

Turing machine 

 P roughly corresponds to the class of problems that 

are realistically solvable on a computer 

 Okay, but take this with a grain of salt as we said before 

 And even some exponential algorithms are okay 
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Another Way of Looking at P 

 If something is decidable, then there is a method to 

compute/solve it 

 It can be in P, in which case there is an “intelligent” algorithm 

to solve it, where all I mean by intelligent is that it is smarter 

than brute force 

 It may not be in P in which case it can be solved by brute force 

 If it is not in P then it can only be solved via brute force 

searching (i.e. trying all possibilities) 

 Note: NP does not mean “not in P” (as we shall soon see). In 

fact every problem in P is in NP (but not vice versa). 

 NP means can be solved in nondeterministic polynomial time 

(polynomial time on a non-deterministic machine).  



45 

Examples of Problems in P 

 When we present a polynomial time algorithm, we give a high 
level description without reference to a particular computational 
model 

 We describe the algorithms in stages 

 When we analyze an algorithm to show that it belongs to P, we 
need to: 
 Provide a polynomial upper bound, usually using big-O notation, on the 

number of stages in terms of an input of length n 

 We need to examine each stage to ensure that it can be implemented in 
polynomial time on a reasonable deterministic model 

 Note that the composition of a polynomial with a polynomial is a 
polynomial, so we get a polynomial overall 

 We choose the stages to make it easy to determine the complexity associated 
with each stage 
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The Issue of Encoding the Problem 

 We need to be able to encode the problem in polynomial 
time into the internal representation 
 We also need to decode  the object in polynomial time when 

running the algorithm 

 If we cannot do these two things, then the problem cannot be 
solved in polynomial time 

 Methods for encoding: 
 Standard methods for encoding things like graphs can be used 

 Use list of nodes and edges or an adjacency matrix where there is an 
edge from i to j if the cell (i,j) equals 1 

 Unary encoding of numbers not okay (not in polynomial time) 
 The decimal number 1,000 has string length 4 but in unary (i.e., 1,000 

1’s) would be of length 1,000. 10,000 would be 10,000 instead of 5,.. 
 The relationship between the two lengths is exponential (in this case 10n)  
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Example: Path Problem  P 

 The PATH problem is to determine if in a directed 

graph G whether there is a path from node s to node t 

 PATH = {<G,S,t>| G is a directed graph that has a directed 

path from s to t} 

 Prove PATH  P 

 Brute force method is exponential and doesn’t work 

 Assuming m is the number of nodes in G, the path cannot be more 

than m, since no cycle can be required 

 Total number of possible paths is around mm 

 Think about strings of length m. Each symbol represents a node. 

Actually less than mm since no node can repeat.  

 This is actually silly since tries paths that are not possible given the 

information in G 
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Path Problem  P 

 A breadth first search will work 

 Text does not consider this brute-force, but is close 

 M = On input <G, s, t> where G is a directed graph with nodes s and 
t (and there are m nodes): 

1. Place a mark on node s 

2. Repeat until no additional nodes are marked 

3. Scan all edges of G. If an edge (a,b) is found from a marked node a to an 
unmarked node b, mark node b 

4. If t is marked, accept. Otherwise, reject. 

 Analysis: 

 Stages 1 and 4 executed exactly 1 time each. Stage 3 runs at most m times 
since each time a node is marked. There are at most m+2 stages, which is 
polynomial in the size of G.  

 Stages 1 and 4 are easily implemented in polynomial time on any 
reasonable model. Stage 3 involves a scan of the input and a test of 
whether certain nodes are marked, which can easily be accomplished in 
polynomial time. Proof complete and PATH  P. 
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RELPRIME  P 

 The RELPRIME problem 

 Two numbers are relatively prime if 1 is the largest 

integer than evenly divides them both. 

 For example, 10 and 21 are relatively prime even though 

neither number is prime 

 10 and 22 are not relatively prime since 2 goes into both 

 Let RELPRIME be the problem of testing whether 

two numbers are relatively prime 

 RELPRIME = {<x,y>| x and y are relatively prime} 
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A Simple Method for Checking 

RELPRIME 

 What is the most straightforward method for determining 
if x and y are relatively prime? 

 Answer: Search through all possible divisors starting at 2. The 
largest divisor to check should be max(x,y)/2. 

 Does this straightforward method  P? 

 Answer: No. 
 Earlier we said that the input must be encoded in a reasonable way, in 

polynomial time. That means that unary encoding is no good. So, the 
encoding must be in something like binary (ternary, decimal, etc.) 

 The straightforward method is exponential in terms input string length 

 Example: let the larger of x and y be 1024. Then the binary encoding is 
length 10. The straightforward method requires 1024/2 steps.  

 The difference is essentially O(log2n) vs. O(n) which is an exponential 
difference 
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A More Efficient Algorithm 

 We can use the Euclidean algorithm for 

computing the greatest common divisor 

 If the gcd(x,y) = 1, then x and y are relatively prime 

 Example: gcd(18, 24) = 6 

 The Euclidean algorithm E uses the mod function, 

where x mod y is the remainder after integer division 

of x by y. 
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RELPRIME using Euclidean Algorithm 

 We will not prove this algorithm. It is well known. 

 E = On input <x,y>, where x and y are natural 
numbers in binary: 

1. Repeat until y = 0 

2. Assign x ← x mod y 

3. Exchange x and y 

4. Output x 

 R solves RELPRIME using E as a subroutine 
 R = On input <x,y> where x and y are a natural numbers 

in binary: 
1. Run E on <x,y> 

2. If the result is 1, accept. Otherwise reject. 
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An Example 

 Try E on <18,24> (x=18, y=24) 

 x = 18 mod 24 = 18 [line 2] 

 x=24, y = 18 [line 3] 

 x = 24 mod 18 = 6 [line 2] 

 x = 18, y = 6 [line 3] 

 x = 18 mod 6 = 0 [line 2] 

 y = 0, x = 6 [line 3] 

 Because y = 0, loop terminates and we output x 

value which is 6. 
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Continued 

 x = x mod y will always leave x < y 

 After line 2 the values are switched so next time thru the loop x 
>y  before the mod step is performed 

 So, except for the first time thru the loop, the x mod y will 
always yield a smaller value for x and that value will be < y 
 If x is twice y or more, then it will be cut by at least half (since the new x 

must be < y) 

 If x is between y and 2y, then it will also be cut in at least half 

 Why? Because x mod y in this case will be x – y 

 If x = 2y-1 this gives y-1 which cuts it in about half 

 Example y=10 so 2y=20 so x = 19. 19 mod 10 = 9. At least in half!! 

 If x = y+1, this gives 1 

 Example y = 10 so x = 11 so 11 mod 10 = 1. At least in half. 
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Analysis of Running Time of E 

 Given the algorithm for E, each time thru the 
loop x or y is cut in half 

 Every other time thru the loop both are cut in half 

 This means that the maximum number of times the 
loop will repeat is: 

 2log2max(x,y) which is  O(log2max(x,y)) 

 But the input is encoded in binary, so the input length is 
also of the same order (technically log2x + log2y) 

 So, the number of total steps is of the same order as the 
input string, so it is O(n), where n is the length of the 
input string. 
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Chapter 7.3 

The Class NP 
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The Class NP 

 We have seen that in some cases we can do better than 
brute force and come up with polynomial-time 
algorithms 

 In some cases polynomial time algorithms are not 
known (e.g., Traveling Salesman Problem) 

 Do they exist but we have not yet found the polytime 
solution? Or does one not exist? Answer this and you will be 
famous (and probably even rich). 

 The complexities of many problems are linked 

 If you solve one in polynomial time then many others are 
also solved 
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Hamiltonian Path Example 

 A Hamiltonian path in a directed graph G is a directed path that 
goes thru each node exactly once 
 We consider the problem of whether two specific nodes in G are connected 

with a Hamiltonian path 

 HAMPATH = {<G,s,t>|G is a directed graph with a Hamiltonian path from 
s to t} 

 



Brute Force Algorithm for HamPath 

 Use the brute-force path algorithm we used earlier in this chapter 
 List all possible paths and then check whether the path is a valid 

Hamiltonian path.  

 How many paths are there to check for n nodes? Pick one node and start 
enumerating from there.  
 The total would be n! which is actually exponential 

 Of course can do better that this with just a little smarts: you know starting 
and ending node so (n-2)! 
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Polynomial Verifiability 

 The HAMPATH problem does have a feature called 
polynomial verifiability 

 Even though we don’t know of a fast (polytime) way to 
determine if a Hamiltonian path exists, if we discover such a 
path (e.g., with exponential brute-force method), then we can 
verify it easily (in polytime) 
 The book says we can verify if by just presenting it, which in this case 

means presenting the Hamiltonian path 

 Clearly you can verify this in polytime from the input 

 If you are not trying to be smart, how long will the check take you? 

 At worst O(n3) since path at most n long and graph has at most n2 edges. 

 Verifiability is often much easier than coming up with a 
solution 
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Another Polynomial Verifiable Problem 

 A natural number is a composite if it is the product of two integers 
greater than 1 
 A composite number is not a prime number 

 COMPOSITES = {x|x = pq, for integers p,q > 1} 

 Is it hard to check that a number is a composite if we are given the 
solution? 
 No, we must multiply the numbers. This is in polytime 

 Interesting mathematical trivia: 
 Is there a brute-force method for checking primality of m? 

 Yes, see if x from 2 to n goes in evenly. Better: try 2 to square root of n. 

 Is there a polytime algorithm for checking primality? 

 Not when I took this course! 

 Proven in 2002 (AKS primality test, 2006 Gödel prize) 
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Some Problems are Not Polynomial 

Time Verifiable 

 Consider HAMPATH’, the complement of 

HAMPATH 

 Even if we tell you there is not a Hamiltonian 

path between two nodes, we don’t know how to 

verify it without going thru the same number of 

exponential steps to determine whether one exists 
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Definition of Verifier 

 A verifier for a language A is an algorithm V, where: 

 A = {w|V accepts <w,c> for some string c} 

 A verifier uses additional information, represented by the 

symbol c, to verify that a string w is a member of A. 

 This information is called a certificate (or proof) of membership in A 

 We measure the time of the verifier only in terms of the 

length of w, so a polynomial time verifier runs in 

polytime of w. 

 A language A is polytime verifiable if it has a polytime verifier 
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Definition Applied to Examples 

 For HAMPATH, what is the certificate for a 

string <G,s,t>  HAMPATH? 

 Answer: it is the Hamiltonian path  

 For the COMPOSITES problem, what is the 

certificate? 

 Answer: it is one of the two divisors 

 In both cases we can check that the input is in 

the language in polytime given the certificate 
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Definition of NP 

 NP is class of languages that have polytime verifiers 
 NP comes from Nondeterministic Polynomial time 

 Alternate formulation: nondeterministic TM accepts language 
 That is, if have nondeterminism (can always guess solution) then can 

solve in polytime 

 The class NP is important because it contains many 
practical problems 
 HAMPATH and COMPOSITES  NP 

 COMPOSITES  P, but the proof is difficult 

 Clearly if something is in P it is in NP. Why? 
 Because if you can find the solution in polytime then certainly 

can verify it in polytime (just run same algorithm) 

 So, P  NP 
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Nondeterministic TM for HAMPATH 

 Given input <G,s,t> and m nodes in G 

1. Write a list of m numbers, p1, …, pm. Each number is 
nondeterministically selected 

2. Check for repetitions in the list. If exists, reject. 

3. Check if s=p1 and t = pm. If either fails, reject. 

4. For each I between 1 and m-1, check that (pi, pi+1) is an 
edge in G. If not, reject; otherwise accept. 

 Running time analysis: 

 In stage 1 the nondeterministic selection runs in polytime 

 Stages 2, 3, and 4 run in polytime. 

 So, the entire algorithm runs in nondeterministic 
polynomial time. 
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Definition: NTIME 

 Nondeterministic time complexity, NTIME(t(n)) 

is defined similarly to the deterministic time 

complexity class TIME(t(n)) 

 Definitions: 

 NTIME(t(n)) = {L|L is a language decided by a 

O(t(n)) time nondeterministic Turing machine} 

 NP = kNTIME(nk) 

 The k is under the union. NP is the union of all languages 

where the running time on a NTM is polynomial 
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Example of Problem in NP: CLIQUE 

 Definitions: 
 A clique in an undirected graph is a subgraph, where every 

two nodes are connected by an edge. 
 A k-clique is a clique that contains k-nodes 

 The graph below has a 5 clique 



The Clique Problem 

 The clique problem is to determine whether a graph 
contains a clique of a specified size 
 CLIQUE: {<G,k>|G is an undirected graph with a k-clique} 

 Very important point not highlighted in the textbook: 
 Note that k is a parameter. Thus the problem of deciding whether 

there is a 3-clique or a 10-clique is not the CLIQUE problem 

 This is important because we will see shortly that CLIQUE is NP-
complete but HW problem 7.9 asks you to prove 3-clique  P 
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Prove that CLIQUE  NP 

 We just need to prove that the clique is a certificate 

 Proofs: 
 The following is a verifier V for CLIQUE: 

 V = On input <<G,k>, c>: 
1. Test whether c is a set of k nodes in G 

2. Test whether G contains all edges connected nodes in c 

1. This requires you to check at most k2 edges 

3. If both pass, accept; else reject 

 If you prefer to think of NTM method: 
 N = On input <G, k> where G is a graph 

1. Nondeterministically select a subset c of k nodes of G 

2. Test whether G contains all edges connected nodes in c 

3. If yes, accept, otherwise reject 

 Clearly these proofs are nearly identical and clearly each 
step is in polynomial time (in second case in 
nondeterministic polytime to find a solution) 

 



71 

Example of Problem in NP: Subset-Sum 

 The SUBSET-SUM problem: 

 Given a collection of numbers x1, …, xn and a target number t 

 Determine whether a collection of numbers contains a subset 

that sums to t 

 SUBSET-SUM = {<S,t>|S = {x1, …, xn} and for some {y1, 

…, yl}  {x1, …, xn} , we have ∑ yi = t} 

 Note that these sets are actually multi-sets and can have repeats 

 Does <{4,11,16,21,27}, 25>  SUBSET_SUM? 

 Yes since 21+4 = 25 
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Prove that SUBSET-SUM  NP 

 Show that the subset is a certificate 

 Proof: 

 The following is a verified for SUBSET-SUM 

 V = On input <<S,t>,c>: 

1. Test whether c is a collection of numbers that sum to t 

2. Test whether S contains all the numbers in c 

3. If both pass, accept; otherwise, reject. 

 Clearly in polynomial time 
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Class coNP 

 The complements of CLIQUE and SUBSET-

SUM are not obviously members of NP 

 Verifying that something is not present seems to be 

more difficult than verifying that it is present 

 The class coNP contains the languages that are 

complements of languages in NP 

 We do not know if coNP is different from NP 
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The P Versus NP Question 

 Summary: 

 P = the class of languages for which membership can 
be decided quickly 

 NP = the class of languages for which membership 
can be verified quickly 

 I find  the book does not explain this well 

  In P, you must be able to essential determine whether 
a certificate exists or not in polynomial time 

 In NP, you are given the certificate and must check it 
in polynomial time 
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P Versus NP cont. 

 HAMPATH and CLIQUE  NP 

 We do not know if they belong to P 

 Verifiability seems much easier than decidability, so we would 
probably expect to have problem in NP but not P 

 No one has ever found a single language that has proved to be in 
NP but not P 

 We believe P ≠ NP 
 People have tried to prove that many problems belong to P (e.g., 

Traveling Salesman Problem) but have failed 

 Best methods for solving some languages in NP deterministically use 
exponential time 

 NP  EXPTIME = kTIME(2nk) 
 We do not know if NP is contained in a smaller deterministic time complexity 

class 
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Chapter 7.4 

NP-Completeness 
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NP-Completeness 

 An advance in P vs. NP came in 1970’s 

 Certain problems in NP are related to that of the 
entire class 

 If a polynomial time algorithm exists for any of these 
problems, then all problems in NP would be 
polynomial time solvable (i.e., then P = NP) 

 These problems are called NP-complete 

 They are the hardest problems in NP 

 because if they have a polytime solution, then so do all 
problems in NP 
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Importance of NP Complete 

 Theoretical importance of NP-complete 

 If any problem in NP requires more than polytime, 
then so do the NP-complete problems.  

 If any NP-complete problem has a polytime 
solution, then so do all problems in NP 

 Practical importance of NP-Complete 

 Since no polytime solution has been found for an 
NP-complete problem, if we determine a problem is 
NP-complete it is reasonable to give up finding a 
general polytime solution 
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Satisfiability: An NP-complete Problem 

 Background for Satisfiability Problem 

 Boolean variables can take on values of TRUE or 
FALSE (0 or 1) 

 Boolean operators are  (and),  (or) and  (not) 

 A Boolean formula is an expression with Boolean 
variables and operators 

 A Boolean formula is satisfiable if some assignment of 0s and 
1s to the variables makes the formula evaluate to 1 (TRUE). 

 Example: (x  y)  (x  z). 
 This is satisfiable in several ways, such as x=0, y=1, z=0 
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Cook-Levin Theorem 

 The Cook-Levin Theorem links the complexity 

of the SAT problem to the complexities of all 

problems in NP 

 SAT is essentially the hardest problem in NP since if 

it is solved in P then all problems in NP are solved 

in P 

 We will need to show that solution to SAT can be 

used to solve all problems in NP 

 Theorem: SAT  P iff P = NP 
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Polynomial Time Reducibility 

 If a problem A reduces to problem B, then a solution to 
B can be used to solve A 

 Note that this means B is at least as hard as A 
 B could be harder but not easier. A cannot be harder than B. 

 When problem A is efficiently reducible to problem B, an 
efficient solution to B can be used to solve A efficiently 

 “Efficiently reducible” means in polynomial time 

 If A is polytime reducible to B, we can convert the problem of 
testing for membership in A to a membership test in B 

 If one language is polynomial time reducible to a language 
already known to have a polynomial time solution, then the 
original language will have a polynomial time solution 



82 

Polynomial Time Reducibility cont. 

 Note that we can chain the languages 

 Assume we show that A is polytime reducible to B 

 Now we show that C is polytime reducible to A 

 Clearly C is polytime reducible to B 

 We can build up a large class of languages such that 

if one of the languages has a polynomial time 

solution, then all do.  
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3SAT 

 Before demonstrating a polytime reduction, we introduce 
3SAT 
 A special case of the satisfiability problem 

 A literal is a Boolean variable or its negation 

 A clause is several literals connected only with s 

 A Boolean formula is in conjunctive normal form (cnf) if it has 
only clauses connected by s 

 A 3cnf formula has 3 literals in all clauses 

 Example: 
 (x1  x2   x3)  (x3   x5  x6)  (x3   x6  x4)  (x4  x5  x6) 

 Let 3SAT be the language of 3cnf formulas that are satisfiable 
 This means that each clause must have at least one literal with a value of 1 
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Polytime Reduction from 3SAT to CLIQUE 

 Proof Idea: convert any 3SAT formula to a 
graph, such that a clique of the specified size 
corresponds to satisfying assignments of the 
formula 

 The structure of the graph must mimic the behavior 
of the variables in the clauses 

 How about you take a try at this now, assuming 
you have not seen the solution. Try the example 
on the previous page. 
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Polytime Reduction Procedure 

 Given a 3SAT formula create a graph G 
 The nodes in G are organized into k groups of three nodes 

(triples) called t1, … , tk 

 Each triple corresponds to one of the clauses in the formula and 
each node in the triple is labeled with a literal in the clause 

 The edges in G connect all but two types of pairs of nodes in G 
 No edge is between nodes in the same triple 

 No edge is present between nodes with contradictory labels (e.g., x1 and 
x1) 

 See example on next slide 



The Reduction of 3SAT to CLIQUE 
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Formula is satisfiable if  

graph has a k-clique 

(k=3 for the 3 clauses) 

 

If  CLIQUE solvable in 

polytime so is 3SAT 
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Why does this reduction work? 

 The satisfiability problem requires that each clause has at 
least one value that evaluates to true 
 In each triple in G we select one node corresponding to a true 

literal in the satisfying assignment 
 If more than one is true in a clause, arbitrarily choose one 

 The nodes just selected will form a k-clique 
 The number of nodes selected is k, since k clauses 

 Every pair of nodes will be connected by an edge because they do not 
violate one of the 2 conditions for not having an edge 

 This shows that if the 3cnf formula is satisfiable, then there 
will be a k-clique 

 The argument the other way is essentially the same 
 If k-clique then all in different clauses and hence will be satisfiable, 

since any logically inconsistent assignments are not represented in G 
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Definition of NP-Completeness 

 A language B is NP-complete it if satisfies two conditions: 
1. B is in NP and 

2. Every A in NP is polynomial time reducible to B 

 Note: in a sense NP-complete are the hardest problems in NP (or equally hard) 

 Theorems: 

 if B is NP-complete and B  P, then P = NP 

 If B is NP-complete and B is polytime reducible to C for C in NP, then 
C is NP-complete 

 Note that this is useful for proving NP-completeness. 

 All we need to do is show that a language is in NP and polytime reducible 
from any known NP-complete problem 

 Other books use the terminology NP-hard. If an NP-complete problem is 
polytime reducible to a problem X, then X is NP-hard, since it is at least as 
hard as the NP-complete problem, which is the hardest class of problems 
in NP. We then show X  NP to show it is NP-complete. Note that it is 
possible that X NP (in which case it is not NP-complete). 
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The Cook Levin Theorem 

 Once we have one NP-complete problem, we may obtain 
others by polytime reduction from it.  

 Establishing the first NP-complete problem is difficult 

 The Cook-Levin theorem proves that SAT is NP-complete 
 To do this, we must prove than every problem in NP reduces to it 

 This proof is 5 pages long (page 277 – 282) and quite involved. 
Unfortunately we don’t have time to go thru it in this class. 

 Proof idea: we can convert any problem in NP to SAT by having the 
Boolean formula represent the simulation of the NP machine on its input 

 Given the fact that Boolean formulas contain the Boolean operators used to 
build a computer, this may not be too surprising.  

 We can do the easy part, though. The first step to prove NP-complete is 
to show the language  NP. How? 

 Answer: guess a solution (or use a NTM) and can easily check in polytime. 
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Reminder about CLIQUE Problem 

 Definitions: 
 A clique in an undirected graph is a subgraph, where every 

two nodes are connected by an edge. 
 A k-clique is a clique that contains k-nodes 

 The clique problem is to determine whether a graph 
contains a clique of a specified size 
 CLIQUE: {<G,k>|G is an undirected graph with a k-clique} 

 Very important point not highlighted in the textbook: 
 Note that k is a parameter. Thus the problem of deciding whether 

there is a 3-clique or a 10-clique is not the CLIQUE problem 

 This is important because we will see shortly that CLIQUE is NP-
complete but HW problem 7.9 asks you to prove 3-clique  P 
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Proving CLIQUE NP-complete 

 To prove CLIQUE is NP-complete we need to show: 
 Step 1: CLIQUE is in NP 

 Step 2: An NP-Complete problem is polytime reducible to it 
 The book proved SAT is NP-complete and also that 3SAT is NP-complete, so 

we can just use 3SAT 

 We need to prove that 3-SAT is polytime reducible to CLIQUE 
 We already did this! 

 Step 1: CLIQUE is in NP because its certificate can easily be 
checked in polytime 
 Given a certificate, we need to check that there is an edge between all k 

nodes in the clique 

 Simply look at each node in turn an make sure it has an edge to each of the 
k-1 other nodes. Clearly this is O(n2) at worst (assuming k=n). 

 When trying to prove a problem NP-complete, you can “use” any 
problem you know is already NP-complete 
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The Hard Part 

 The hard part is always coming up with the 

polynomial time reduction 

 The one from 3SAT to CLIQUE was actually not that bad 

 Experience and seeing lots of problems can help 

 But it certainly can be tricky 

 Chapter 7.5 has several examples. All are harder than the 

reduction of 3SAT to CLIQUE 

 We will do one of them  

 You are responsible for knowing how to prove CLIQUE 

NP-complete 
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Chapter 7.5 

Additional NP-Complete Problems 
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The Vertex-Cover Problem 

 If G is an undirected graph, a vertex cover of G 
is a subset of the nodes where every edge of G 
touches one of the nodes. 

 The vertex cover problem asks whether a graph 
contains a vertex cover of a specified size 

 I think if we just ask if it has a vertex cover or not, 
w/o specifying a size, that is easy to answer. Why? 

 Just select all nodes in G. Since an edge must be between 
two nodes, it must be a vertex cover. At worst we just 
check that we have a valid graph. 
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Vertex Cover is NP-complete 

 What is the first thing we must do? 

 Show that Vertex Cover  NP 

 How do we do this? 

 A certificate for a k-vertex cover is a set of k nodes.  

 We can verify this is a valid vertex-cover in polytime 

 Now we need to show that an NP-complete problem 
can be reduced to vertex-cover in polytime 

 What would you choose? 
 3SAT is a reasonable choice 

 Will anything else work? 

 Assuming VERTEX-COVER is NP-complete, all other NP-complete 
problems will have a polytime reduction to it. But the reduction may be 
difficult 
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Reduction from 3SAT to Vertex Cover 

 We start with a 3CNF expression, expressed as: 

 U = (u1,1  u1,2  u1,3)   …  (um,1  um,2  um,3) 

 Where we have m clauses over the set V ={x1, ..., xn} 

Boolean variables (i.e., n variables) 

 The reduction will work so that the vertex cover is for 

k = n + 2m 

 That is, k equals the number of variables plus 2 times the 

number of clauses 

 Now let us work on the reduction 
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Reduction continued 

 First we need to decide on what the nodes in the 
graph we construct will represent 

 Imagine we have a CNF expression such as: 

 (x1  x1  x2)  (x1   x2   x2)  ( x1  x2  x2) 

 What might we label the each node with? 

 Probably makes sense to use the Boolean variables with 
both possible truth values 

 So in the above example we will have nodes labeled as x1, 
x1, x2 and x2 

 We still need to decide how to arrange them and then 
how to connect them with edges 
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Reduction continued 

 We need to think about making consistent 
variable assignments and also dealing with the 
clause structure 

 We will start with the consistent variable 
assignments 

 For each Boolean variable, add it to the graph 
and connect it by an edge to its complement 

 This leads to the following graph for our 
example 
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Reduction continued 

x1 x1 x2  x2 

3CNF formula: (x1  x1  x2)  (x1   x2   x2)  ( x1  x2  x2) 

Idea: we will pick k for the vertex cover so that one has to pick 

the vertices very carefully. We will pick k so that we must limit 

the nodes in this part of  the graph to n nodes, given n 

Boolean variables. Thus, for the partial graph above, we can 

only pick two nodes, which corresponds to a variable 

assignment. 

But now we need to add the clauses in. Lets start by putting 

the vertices together to mimic the clauses 
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Reduction continued 

x1 x1 x2  x2 

x1 

x1 

x2  x2 

 x1 

 x2 x2 

 x1 

x2 

3CNF formula: (x1  x1  x2)  (x1   x2   x2)  ( x1  x2  x2) 

Now what? Any idea what nodes you might want to connect to begin with? 

Hint: how about indicating what variables in the clauses are satisfied given 

the variable assignments at top 
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Reduction continued 

x1 x1 x2  x2 

x1 

x1 

x2  x2 

 x1 

 x2 x2 

 x1 

x2 

Now where are we? If  we pick good variable assignments, then at least 

one variable in each clause is satisfied. That is good, but it is not a 

vertex cover problem yet. Note that x1=False and x2=True satisfies 

the formula but does not cover every edge.  

3CNF formula: (x1  x1  x2)  (x1   x2   x2)  ( x1  x2  x2) 
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Reduction Continued 

x1 x1 x2  x2 

x1 

x1 

x2  x2 

 x1 

 x2 x2 

 x1 

x2 

3CNF formula: (x1  x1  x2)  (x1   x2   x2)  ( x1  x2  x2) 

If  we link all 3 variables in each clause, now we can cover all edges if  we 

require that the variables in the clause not associated with the satisfied 

variables are included in the vertex cover. This covers the edges in the clause 

and the ones to the top vertices. This only works if  the 3CNF was satisfiable 

Any 2 of  the 3 

nodes here will 

work 

Note: k = n + 2m 

= 2 + 2x3 = 8 
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Reduction Continued 

 We will not formally prove this, but if the original 
3CNF expression is satisfiable then there will be a 
vertex cover and only in this case. 

 First, if we pick variable assignments for the top such that 
they satisfy the 3CNF formula, then we can satisfy the 
covering by picking the clause variables that cover the edges 
not linked to the satisfied variables 
 Based on the way we constructed things, this will be a vertex cover 

 So, 3SAT  Vertex cover 

 If it is not 3SAT, then there will be no vertex cover 

 If it is not satisfiable, then one of the clauses would require 3 nodes to 
be marked, not 2 and to handle the value of k, we can only mark two of 
the clause nodes. See the following graph: 
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Reduction Continued 

x1 x1 x2  x2 

x1 

x1 

x2  x2 

 x1 

 x2 x2 

 x1 

x2 

We can only afford to pick 2 nodes in this clause to include in the cover. Any two 

will cover the 3 edges connecting the clauses. However, each of  the 3 nodes is 

connected by an edge to unsatisfied variables at the top. Whichever node is not 

picked will have that associated edge uncovered 
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Vertex Cover NP-Complete 

 So Vertex Cover is NP-Complete 

 It is in NP 

 An NP-Complete problem, 3-SAT, is reducible to it 


