
 

 

 

 

Abstract—Data mining is an important discipline that helps ex-

tract useful knowledge from data in business, science, health, and 

engineering domains.  Classification is one of the most common 

and important data mining tasks. Achieving good classification 

performance is critical and performance is known to be linked to 

the amount of available training data. Learning curves, which 

describe the relationship between training set size and classifier 

performance, can be used to help determine the optimal amount of 

training data to use when there are costs associated with procur-

ing labeled data. For learning curves to be helpful, they should be 

good predictors of future performance, which means that they 

should be “well-behaved” (i.e., smooth and monotonically non-

decreasing). This paper describes how various factors, such as the 

classification algorithm and experiment methodology (e.g., random 

sampling vs. cross validation), affect the behavior of learning 

curves.  
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1. Introduction 

Classification is one of the most important and common 

data mining tasks. It is well known that classification per-

formance improves with increasing amounts of training data. 

This can be visually demonstrated via a learning curve, 

which plots training set size on the x-axis and classifier per-

formance (e.g., accuracy) on the y-axis.  The prototypical 

learning curve is described as follows: performance im-

proves quickly at the start when there is not sufficient data to 

properly learn the underlying concept well, then the learning 

curve’s slope begins to decrease as an adequate amount 

training data becomes available, then in the last phase the 

curve begins to flatten out and the slope approaches 0, as 

additional training data provides little additional information. 

However, as was shown in prior research, even in this last 

phase, small improvements in classifier performance can 

persist for quite a long time [3]. 

Data mining work often assumes that there is a fixed 

amount of training data, available at no cost, and that addi-

tional data cannot be procured. This situation undoubtedly 

fits some real-world situations, but not all. In reality, it is 

often possible to procure additional training data, but at a 

cost. This cost could be related to the cost of procuring the 

data itself, labeling the data (requiring a human and often a 

human domain expert), or both. In such a situation, a learn-

ing curve can be utilized to assess the costs and benefits of 

obtaining additional training data, and then make the optimal 

decision. Of course, in practice one cannot form a learning 

 
 

curve without first obtaining training data, so one will always 

have to predict future learning curve behavior based on the 

current available training data. In order to make such predic-

tions accurate, it is best if the learning curve is well-

behaved—smooth and monotonically non-decreasing. 

There has been relatively little related work on utilizing 

learning curves or generating well-behaved learning curves. 

Provost, Jensen and Oates [2] evaluated progressive sam-

pling strategies in order to efficiently identify the point 

where learning curve performance begins to plateau. Weiss 

and Tian [3] looked at how learning curves can be used to 

optimize classifier utility when the utility includes classifier 

performance, CPU time, and data acquisition costs. Both of 

these research studies would benefit from well-behaved 

learning curves. Weiss and Tian [3] specifically acknowl-

edged this in their paper when they said, “Because the anal-

yses are all driven by the learning curves, any method for 

improving the quality of the learning curves (i.e., smooth-

ness, monotonicity) would improve the quality of our results, 

especially the effectiveness of the progressive sampling 

strategies.” The work in this paper can be viewed as address-

ing this prior research challenge. 

In this paper, we will generate learning curves for six data 

sets, using four different classification algorithms, and two 

methodologies for partitioning the data and running the ex-

periments (random sampling and cross-validation). We will 

visually inspect several of the learning curves to check for 

monotonicity, but will also look at the variance of the classi-

fication performance results. Our hope is that this work will 

bring attention to the importance of learning curves and will 

show which factors tend to produce good learning curves and 

consistent results with low variance. Classification algo-

rithms are currently judged on a number of factors: quality of 

results, speed of model generation, speed of model applica-

tion, scalability, and the understandability of the induced 

model. We would like the consistency (i.e., variance) of the 

results, which impacts the quality of the learning curves, to 

be considered as an additional characteristic when evaluating 

learning methods and learning methodologies. 

2. Experiment Methodology 

The experiments in this paper are used to assess how vari-

ous factors impact the quality of generated learning curves. 

Learning  curves  are generated  by varying the training set 
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sizes for the data sets listed in Table I. Most of these data 

sets are fairly large, which enables us to generate learning 

curves that span a large range of training set sizes—which 

will help with the evaluation of the quality of the learning 

curves. Training set sizes are sampled at regular 2% inter-

vals, based on the total amount of data available for training. 

For 10-fold cross validation, the total amount of data availa-

ble for training is 90% of the total in Table I, while for ran-

dom sampling 75% of the total is available, since for all of 

our experiments random sampling initially allocates 75% of 

the data for training and 25% for testing. 

The Adult, Kr-vs-kp, German, and Arrhythmia datasets 

are from the UCI Machine Learning Repository [1] while the 

Coding, Blackjack, \Boa1, Network1, and Move data sets 

were obtained from researchers at AT&T and can be ob-

tained from the authors. 

TABLE I 

DESCRIPTION OF DATA SETS  

Dataset # Examples #  Classes # Attributes 

Adult   32,561 2 14 

Coding   20,000 2 15 

Blackjack   15,000 2 4 

Boa1 

Network1 

  11,000 

    3,577 

2 

2 

68 

30 

Kr-vs-Kp 

Move 

German 

    3,196 

    3,029 

    1,000 

2 

2 

2 

36 

10 

20 

Arrhythmia        452 2 279 

Learning curves are generated using three classification 

algorithms from the WEKA data mining suite [4]: J48, Ran-

dom Forest (RF), and Naïve Bayes (NB). J48 is a WEKA 

implementation of the C4.5 decision tree algorithm. Weka’s 

experimenter mode, as described in an online tutorial [4], 

was utilized to facilitate the generation of the learning 

curves. Unless otherwise specified, all results in this paper 

are based on 10 runs. 

3. Results 

In this section we evaluate the quality of the learning curves 

with respect to learning algorithm and experiment methodol-

ogy (i.e., partitioning strategy). However, well-behaved 

learning curves are not very useful if classifier performance 

is not good. Thus, it is important to also know how well the 

learning methods perform. While the learning curves encode 

classifier performance, because we use a different graph for 

each classification algorithm, the relative performance of 

each learning method may not be apparent from the learning 

curves. Therefore we display the classifier accuracy for each 

learning algorithm, at the maximum training set size, in Ta-

ble II (for 10-fold cross validation). The results show that 

Random Forest and J48 have the highest average accuracies 

and significantly outperform Naïve Bayes (Random Forest 

has a slight overall advantage over J48 even though J48 

performs best on 4 of 9 data sets). 

TABLE II 

ACCURACY WITH LARGEST TRAINING SIZE 

Dataset J48 Random 

Forest 

Naïve 

Bayes 

Adult  86.3 84.3 83.4 

Coding 72.2 79.3 71.2 

Blackjack  72.3 71.7 67.8 

Boa1  

Network1 

54.7 

77.3 

56.0 

77.6 

58.0 

74.8 

Kr-vs-kp 

Move 

German 

99.4 

76.0 

71.1 

98.7 

80.3 

74.1 

87.8 

65.2 

75.2 

Arrhythmia 65.4 65.2 62.0 

Average 75.0 76.4 71.7 

The quality, or monotonicity, of a learning curve can be 

assessed visually, but a more objective and easily summa-

rized measure is the “variance” of the learning curve.  The 

variance of a learning curve is computed by determining the 

variance in classifier performance for each evaluated training 

set size (based on multiple runs) and then averaging these 

individual variances. The results of the learning curve vari-

ances, using 10 runs of 10-fold cross validation, are dis-

played in Table III. 

The results in Table III clearly show that Naïve Bayes 

generates the lowest variance overall, although for the Boa1 

data set it actually has the highest variance (but all values are 

so low that this may not be too meaningful). Overall J48 and 

Random Forest seem to perform similarly. Given that the 

data in Table II showed that J48 and Random Forest pro-

duced the most accurate results, J48 would seem to be the 

best classifier when factoring in accuracy and consistency of 

results. It should be pointed out that because variance 

measures the consistency of results for a given training set 

size, it is theoretically possible to have low variance but have 

a curve that is not smooth. However, this is very unlikely 

given that consistent results should lead to the expected 

behavior—a learning curve that is monotonically non-

decreasing. 

TABLE III 

VARIANCES FOR LEARNING CURVES USING 10-FOLD CV 

Dataset J48 
Random 

Forest 

Naïve 

Bayes 

Adult   0.51     0.32    0.01 

Coding   9.78   17.08    0.19 

Blackjack   0.36     2.81    0.01 

Boa1 

Network1 

  0.20 

  2.37 

    0.31 

    2.19 

   0.73 

   0.10 

Kr-vs-kp 

Move 

German 

 3.54 

28.65 

 4.38 

   12.08 

   24.73 

    1.97 

   4.34 

   1.02 

   3.48 

Arrhythmia  41.46    15.87    9.90 

Our first set of learning curves, comprising the four largest 

data sets, is presented in Figure 1. The curves seem to be 

well-behaved in that they all appear to be monotonically 

non-decreasing. Although most of the curves seem quite 

smooth, the curves for Naïve Bayes appear to be smoother. 



 

 

 

 
(a) J48 

 

 

 

 

 

 

 

 

 

(b) Random Forest 

 

(c) Naïve Bayes 

Figure 1.  Learning curves generated using 10-fold cross validation on the 

four large data sets. Each chart (a-c) shows the results for a different learn-

ing algorithm. 

Since J48 and Random Forest are close in variance and 

accuracies, it is worth taking a more detailed look at each for 

a specific dataset. In Figure 2 we compare these two algo-

rithms for the adult data set. The results clearly show that 

J48 generates more accurate results, but also a much better 

behaved learning curve—with far fewer “blips” where a 

larger training set size yields a decrease in accuracy.  

 
Figure 2. Comparison of J48 and RF cross-validation learning curves for 

Adult data set. 

Next we take a look at the two smaller data sets: Kr-vs-kp 

and Arrhythmia. We focus on the learning curves for J48 and 

Random Forest. The results are displayed in Figure 3. We 

see that for the Kr-vs-kp data set J48 appears to provide a 

smoother learning curve, which is consistent with the results 

in Table III that shows that J48 has lower variance. The 

results for the Arrhythmia data set are not so clear: the re-

sults in table III suggest that Random Forest produces better 

learning curves but based on Figure 3b this is unclear. How-

ever, the difference could be explained by the fact that J48 

performs extremely poorly for very low training set sizes 

(worse than guessing the majority class) and the poor per-

formance permits increased variance in results. In the future 

such small data sets perhaps should be omitted, or the train-

ing set sizes should not be permitted to become so small—

the smallest evaluated training set size in Figure 3b corre-

sponds to a training set with just nine examples.  

 

(a) Kr-vs-kp  data set 

 
(b) Arrhythmia data set 

Figure 3. Comparison of J48 and RF cross validation learning curves. 

Thus far we have only examined learning curves generated 

via 10-fold cross validation. The learning curves generated 

for Random Sampling are generally not as well behaved as 

those generated using cross-validation (CV).   Due to space 

concerns we do not show the learning curves for every data 

set, but instead focus on the Blackjack data set. The learning 

curves for this data set, shown in Figure 4, indicate that for 

both J48 and Random Forest, the learning curves generated 

using cross validation are better behaved. 



 

 

 

 

(a) J48 algorithm 

 

(b) Random Forest algorithm 

Figure 4. Cross validation versus random sampling for Blackjack data set 

The results in Figure 4 support our general claim that 

cross validation produces better-behaved curves, although in 

this case for a given training set size they produce slightly 

lower accuracies. However, the variance results, displayed in 

Table IV, are not quite so clear. The variance results show 

that cross validation is consistently better than random sam-

pling when the models are induced using J48, but that when 

the models are induced using Random Forest, the two sam-

pling schemes yield similar, although inconsistent, results.  

TABLE IV 

VARIANCES FOR CROSS VALIDATION  AND RANDOM SAMPLING 

METHODOLOGIES FOR J48 AND RANDOM FOREST  ALGORITHMS 

Dataset 
    J48 

    CV 

J48 

       RS 

  RF 

  CV 

RF 

RS 

Coding  9.78   9.47 17.08 12.97 

Adult  0.51   0.53   0.32 15.81 

Blackjack  0.36   0.38   2.81   0.33 

Boa1   0.20   0.29   0.31   3.80 

Arrhythmia 41.46  51.37 15.87   0.19 

Kr-vs-kp 

Network1 

Move 

German 

  3.54 

  2.37 

 28.65 

   4.38 

  5.36 

   2.37 

 31.74 

   4.51 

12.08 

  2.19 

24.73 

  1.97 

15.49 

 1.78 

27.05 

  3.05 

4. Conclusion 

In this paper we examined how various factors impact how 

“well behaved” a learning curve is, based on monotonicity 

and low variance in classification performance. We focused 

on the how different classification algorithms and experiment 

methodologies impact the learning curves and then drew 

some conclusions based on our empirical results.  

Of the learners that we evaluated, Naïve Bayes seems to 

produce the best-behaved learning curves. However, we do 

not recommend Naïve Bayes for two reasons: 1) based on 

Table II its accuracy is not competitive with J48 and Ran-

dom Forest and 2) examination of the learning curves in 

Figure 1c indicates that Naïve Bayes’ learning curves reach a 

plateau much earlier than the other methods, suggesting that 

perhaps the low variance is a consequence of achieving a 

consistent (but poor) level of performance. While we cannot 

prove this latter point, it makes sense that once additional 

data does not improve results, the exact subset of examples 

used for training may not matter. Given the issues with Naïve 

Bayes, our recommendation is to use J48 and Random For-

est. The comparison of variance results for these two meth-

ods is inconsistent: in some cases J48 performs best and in 

others Random Forest performs best. Therefore based on the 

results in this paper over a limited number of data sets, we 

cannot conclude which method generates the best-behaved 

learning curves. In terms of methodology, the learning 

curves indicate that cross validation yields better-behaved 

learning curves than random sampling, as supported by the 

results in Figure 4. However, the variance results in Table IV 

are not nearly as conclusive.  Thus, this also bears further 

investigation. 

 There are various areas for future research that we intend 

to pursue. First, we intend to analyze more data sets so that 

we can form stronger conclusions based on a larger sample 

size. We also plan to analyze a few additional learning algo-

rithms. Better metrics can also help by measuring the “well-

behavedness” of learning curves and we have some ideas on 

how to construct such metrics.  Finally, we will vary the 

number of runs to see how this impacts the learning curves. 

Once some of these extensions have been implemented, we 

feel it is likely that stronger conclusions will be possible.  
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