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Abstract—Understanding time-related geospatial data is a 

very interesting and challenging task, but is necessary to support 

an efficient and intelligent urban environment. In this paper we 

model taxi trips in New York City from historical data and by 

using a recurrent neural network. The goal of the model is to 

gain a better understanding of the spatial-temporal patterns 

related to taxi travel in New York City, so that we can better 

predict demand.  This paper uses the taxi domain to explore the 

usage of different neural network models for this type of 

prediction task. In particular, three types of recurrent neural 

network cells are evaluated: vanilla cells, Long Short Term 

Memory cells, and Neural Turing Machine cells. The internal 

states of these models are also examined, during the learning 

process, to better understand the key features of the different cell 

structures. 
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I. INTRODUCTION  

According to 2016 New York City Taxi and Limousine 
Commission Factbook, in 2015 13,600 licensed yellow taxi 
cabs made between 300,000 and 400,000 trips per day. These 
yellow cabs, along with other for-hire vehicles like Boro taxis, 
black cars, Uber, and Lift, help to satisfy the tremendous of 
transportation needs of New Yorkers. 

Providing a reasonably accurate prediction of when and 
where passenger demand will occur is of great importance to 
taxi drivers and their companies, as this information can save 
time and fuel, and maximize profits. This information will also 
benefit passengers, since it would increase the availability of 
these transportation services, especially at busy hours and 
popular locations. It can also help to mitigate traffic 
congestion, reduce air pollution, and help inform other urban 
transportation systems (e.g., bike-sharing and ride-sharing 
services). 

One approach might be to use existing arrival process 
work, which is a well-studied topic. Using this approach, the 
number of times an event occurs is modeled as Poisson 
distribution described by following probability mass function: 

𝑃(𝑛; 𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!
, 𝑛 = 0, 1, 2, … 

In this equation 𝑛 is the number of occurrences of an event 
in an interval time and the arrival rate 𝜆 is the average times of 
occurrence. For a complex arrival process problem like taxi 

pick-ups or drop-offs, the arrival rate is often not constant, but 
rather depends on time and other complex factors.  

Several studies have applied this approach to spatial-
temporal datasets, prompted by the advent of sensor 
technologies like GPS and WiFi, which are easily incorporated 
into vehicles, or are available via the ride or car-sharing 
businesses that rely on smartphones. For example, Moreira-
Matias et al. [3] used a sliding-window ensemble framework 
with a time-varying Poisson model, weighted time-varying 
Poisson model, and ARIMA model, to predict the spatial 
distribution of taxi passengers. Li et al. [4] proposed an 
improved ARIMA model, which considers not only the nearest 
historical data, but also the periodicity of the data to forecast 
passenger quantities in city hotspots. Kaltenbrunner et al. [5] 
used an AutoRegression Moving Average (ARMA) model to 
learn cyclic mobility patterns in the community bicycle 
program in Barcelona, and made short term predictions for the 
number of available bikes in a selected station. Min and 
Wynter [6] proposed a refined version of Vector-ARMA model 
to forecast the traffic in a road network.  

The first two studies listed above only focused on modeling 
the time-dependent arrival rate (average passenger count) in 
fixed intervals as a single variable. While Kaltenbrunner et al. 
and Min et al. took spatial dependencies into account, they 
considered only limited number of neighboring locations. In a 
case like traffic prediction, high dependencies don’t necessary 
exist in neighboring locations. Many important factors like 
transportation hubs far away should also be considered.  

These studies all used ARMA models or variations of these 
models. These models describe the prediction as a weighted 
combination of a sequence of historical observations, and a 
sequence of errors following normal distribution, and only 
work with univariate data. However geographical data often 
requires the model to take input of variable-length and output a 
prediction of variable-length. To better model the process 
under a complicated urban environment, it is best to include the 
environment itself into the model. In other words, we should 
build a multivariate model taking account of taxi cab drop-offs 
in all locations, in order to predict the arrival rate in any 
particular location. In this paper, we present 3 types of RNN 
models that can handle multiple arrival processes 
simultaneously and learn the complicated relationship between 
them. 

The paper is organized as follows. Section II describes the 
New York City taxi data set, while Section III provides 



relevant background information on Recurrent Neural 
Networks and the three cell structures that are used in these 
models. Our experiments and results are then presented in 
Section IV. Section V discusses the internal state or memory of 
these models during the learning o the spatial-temporal patterns 
of taxi trips. Section VI then provides our conclusions and 
describes future work. 

II. NEW YORK CITY TAXI DATA SET 

The yellow taxi trips data set used in this study was 
collected and made available online by New York City Taxi 
and Limousine Commission [7]. The data set contains most of 
the yellow taxi trips in New York City from 2009 to 2017. The 
machines installed on each taxi logs, for each trip: the pickup 
and drop-off coordinates, timestamps, durations, distances, fare 
charged, and passenger count reported by the driver. For this 
study the drop-off GPS coordinates, drop-off timestamps and 
passenger counts were extracted and utilized. 

This data was then preprocessed as follows. The trips were 
aggregated by predefined GPS coordinate grids and drop-off 
hours. Fig. 1 shows a visual representation of the data, where 
the opacity of each grid represents the number of drop-offs in 
the grid. Fig. 1 corresponds to the first hour in 2009. The figure 
shows that yellow taxis are quite busy on New Year’s Eve, 
especially in Manhattan, with the exception of Harlem. The 
sizes of each grid and time interval were carefully chosen, 
since a size too large will lead to the loss of important local 
patterns, and a size too small will be unduly affected by noise 
and random patterns. One particular grid, grid 453 in Lower 
Manhattan near the Wall Street subway station, is highlighted 
because we designate this as the destination grid for our 
study—and focus on predicting the counts of passengers 
dropped off at this grid.  

As the preprocessed data if Fig 1. shows, the travelling 
demand varies significantly across time and location. Locally, 

each coordinate grid exhibits its own volume and pattern, while 
the whole system shows a certain degree of continuity in space 
and time.  Grid 453 has an intermediate level of volume and 
has a typical traffic pattern for an office area (when looking at 
data outside of New Year’s Eve). Fig. 2 shows the hourly 
pattern of all weeks in 2009 at grid 453. The plot starts from 
Thursday and ends at Wednesday, and the weekend is 
designated by light grey shading. The tenth and ninetieth 
percentiles, and the means at the same hours of each week, are 
plotted and compared with the 1

st
 week. We can see that the 

pattern from Friday night to Sunday evening are quite different 
from the other times, but in general, they follow a pattern over 
time.  

III. RECURRENT NEURAL NETWORK AND CELL STRUCTURE 

In this section we provide relevant background knowledge 
about Recurrent Neural Networks (RNNs), and the types of 
RNN cells that are used in our experiments. RNNs are 
powerful sequential data learning models, and consequently are 
widely used in domains like speech recognition and machine 
translation, especially when the input and output are variable-
length vectors. RNNS are a subclass of artificial neural 
networks (ANNs), and as such they inherit the capabilities of 
ANNs to learn hidden variables and layers of abstraction. As 
Fig. 3 shows, the inputs of an RNN are encoded as hidden 
variables, merged with information from previous time steps 
and lower layers and passed to later time steps and higher 
layers. The portion of an RNN involved in one time step is 
called a cell. The whole RNN can be seen as a cell unrolled 
along the time dimension. Each cell maintains an internal state 
(memory) to process inputs at the current time step. 

 
Fig.1.  grids shaded by passenger counts in 2009-01-01 00:00. 

 

 
Fig. 3.  Recurrent Neural Network model diagram. 

 

 
Fig. 2.  pattern of grid #453 in all weeks in 2009 compared with 1st week 



 

Fig. 5.  LSTM cell information flow diagram 

 

A. Vanilla Cell 

The Vanilla cell is the most basic type of RNN cell. As Fig. 
4 shows, in each time step, the cell performs following tasks: 

1. the preprocessed input data is concatenated with the 
cell memory from prior time step; 

2. the concatenated information is linearly projected back 
to the hidden layer size as new cell state; 

3. the new cell state is passed through a 𝑡𝑎𝑛ℎ activation 
function to squeeze values into range [-1, 1];  

4. the squeezed cell state is then passed to next time step 
or  ejected out as output from this time step. 

However, one well known problem of vanilla cell is that its 
cell state is directly exposed to the modification of input data 
so it is not stable and can explode or vanish when the RNN 
chain is long.  

B. LSTM (Long Short Term Memory) Cell 

The Long Short Term Memory (LSTM) proposed in 1997 
by Sepp Hochreiter and Jürgen Schmidhuber [8], and improved 
in 2000 by Felix Gers' team [9], attracted a lot of attention due 
to its state of art performance in many time series learning 
tasks. As can be seen in Fig. 5, LSTM is more complicated 
than the vanilla cell. Besides the global cell state (long term 
memory) that passes through the entire sequence, it also has the 
local cell state (short term memory) that is only passed one 
time step. And it employs "gate" components to control the 
amount of modification to cell state. In each time step: 

1. the preprocessed input is first concatenated with short 
term memory from the last time step; 

2. this concatenated information is then linearly projected 
to hidden layer size and passed through the activation 
function just like the vanilla cell as new input j; 

3. this concatenated information is also used to generate 
the forget gate f, add gate i, and output gate o, which 
controls how much information in long term cell state 
should be forgotten, how much of new information 
should be added, and how much information in new 
long term memory should be output as short term 
memory; 

4. finally both the long term and short term memory is 
passed to next time step. The short term memory is 
also ejected as output. 

The gates protect the internal state from direct modification 
of inputs. If the concatenated information is not helpful for 
final prediction, the forget gate and add gate will be closed and 

the long term memory remains unchanged. So the internal state 
is more consistent (smooth). 

C. NTM (Neural Turing Machine) Cell 

Although the LSTM cell provides a stable and consistent 
long term cell state, it still has a big limitation: it can only 
remember and update "the current situation." It would be better 
if it could temporarily save the situations it encountered, so that 
for new predictions it can check the current situation against 
this temporary knowledge base. From the Bayesian 
perspective, the temporary knowledge base serves the role of 
prior distribution; in each time step the prior distribution is 
updated by the current situation and the posterior value, as 
informed by the current situation, is outputted. The learned 
knowledge base should be passed between iterations and saved 
as part of learned model for future predictions—this is unlike 
the vanilla or LSTM cells that only pass learned model 
variables.  

The Neural Turing Machine cell proposed in 2014 by 
Graves, Wayne and Danihelka [10] provides the benefits just 
described. An NTM cell is composed of two parts: controller 
and memory. The controller can be any type of RNN cell, 
while the memory is an n by m array (n memory slots of size 
m) with one or more reading and updating heads. The memory 
maintains a distribution of hidden variables along time. The 
following operations are performed by heads in each time step: 

- update, performed by updating heads: The outdated 
knowledge is updated by first erasing then writing. The 

 
Fig. 4.  Vanilla cell information flow diagram 

 

 
Fig. 6.  NTM cell information flow diagram 

 



updating can be performed on multiple slots and by 
multiple heads simultaneously.       

- read, performed by reading heads: In next time step, 
the reading heads retrieve the relevant information 
from one or more slots in previous updated memory. 

The updating and reading operations performed by 
different heads are independent of each other, and the slots 
written to and read from, can be different as well. The slots to 
read and write is decided by a process called attention focusing 
which is discussed in Section VB. 

IV. EXPERIMENTS 

This section describes the experiments and results. 

A. Description of Experiments 

Experiments were performed to compare RNN models with 
the three different types of cells mentioned in Section III. 
These models were trained to learn the spatial and temporal 
dependencies in the taxi dataset described in Section II, and 
then make short term predictions of passenger drop-off counts 
at grid #453. The predictions are based on the historical 
observations of all 5625 grids for the previous 24 time steps. 
All of the trips from the 1000th hour to the 3000th hour in 
2009 were used for training, and the trips from the 3000th hour 
to 4000th hour were used for testing (i.e., evaluation). The first 
1000 hours were omitted because they correspond to the 
holiday season at the beginning of January and are expected to 
exhibit a different pattern.  

The three RNN models with different cell types were each 
trained for 150 iterations. They used different hidden layer 
widths and depths, but as mentioned earlier utilized the same 
training data. As illustrated in Fig. 7, in each training iteration, 
the inputs were rescaled into the range [-1, 1] and then fed into 
the RNN cell. Predictions were compared to the real data in the 
25th hour, and the root mean squared error of training batch 
was calculated as loss value. It represents the difference of 
passenger counts between the predicted and actual value. Each 
induced model was evaluated using the testing data to predict 
the same 100 randomly selected time intervals. The mean and 
standard deviation of errors of these 100 predictions are 
calculated to show the accuracy and stableness of these 
models. 

For the RNN models with NTM cell, we chose the LSTM 
cell as controller and connect the update heads of memory to 

the long term cell state and read heads to short term cell state 
as Fig. 8 shows. The long term cell state (current situation) is 
not only passed to next time step directly, but also written to 
the memory; in the next time step, the similar situations are 
read from the memory as an additional input for the cell 
together with long/short term cell state and data input. The 
number of memory slots is set to 128, and the size of the 
memory slot is the same as hidden layer size of the controller.  

B. Experment Results 

In this section we first compare the performance of the 
three types of cells in the training phase and testing phase using 
1 hidden layer of size 100. Then we compare the performance 
of different hidden layer widths and depths.  

Fig. 9 shows the batch losses for 3 types of cells in the 
training phase. As mentioned before, the loss is the error of 
prediction for grid #453. The batch loss is the average of losses 
in a training batch of size 20. For each model, we performed 20 
repetitions using the same training set and testing set. The 
batch losses of each iteration of 20 repetitions is recorded. The 
10

th
 and 90

th
 percentile for each cell are calculated and plotted 

in the figure.  

 
Fig. 7.  RNN constructed for experiments 

 

 
Fig. 8.  Controller and memory of NTM cell used in experiment 

 

 
Fig. 9.  Performance of training iterations (loss value). 

 



As can be seen in Fig. 9, in 300 training iterations the 
LSTM cell outperformed the vanilla cell—it converged faster 
and achieved a lower mean batch loss. The NTM cell is too 
unstable for this learning task and constantly give bad 
predictions. The results on the test set are provided in Fig. 10. 
Based on these results, the LSTM cell yields the most accurate 
predictions and the stable predictions.  

Table 1 describes the performance of the three types of 
models with different hidden layer widths and depths. In 
general, adding more hidden layers does not necessarily 
improve performance. For the models with 1 hidden layer, an 
appropriate size is needed to generate good results (neither too 
large nor too small). The appropriate size depends on the type 
of cell: for vanilla cells the best size is around 50. Using a layer 
wider than 800 dramatically increases the error. For the LSTM 
cells, the ideal size is between 300 and 1000 (indicating more 
flexibility).  

V. INTERNAL STATE OF MODELS 

In this section we examine the internal state of all 3 types 
of cells and the state of memory component in NTM cell 
during the training phase. 

A. State of cells 

All processes learned by models are encoded as hidden 
variables in the internal cell state. They were investigated in 
terms of following: 

1. The best groupings of grids—hidden variables in cell 
states—that have most predictable periodic patterns. 
Each can represent the traffic flow for a certain 
function, like an office building in the destination grid. 
If the model has more than one hidden layer, multiple 
layers of groupings will be used. 

2. The optimal amplitude, frequency and phase of 
periodicity of each hidden variable. The model should 
be able to learn the periodicity of each individual 
hidden variable and fit the input sequence in the 
learned cycle.  

Fig. 11 shows how the state of #15 hidden variable (one of 
many hidden variables with visible intensity pattern) of 3 types 
of cells were built up along time steps and modified in training 
iterations. It uses x axis as time step, y axis as iteration index 
and brightness to show intensity. Along the x axis, we can see 
in the first few time steps, all 3 models were building the cell 
state by adjusting the intensity level of this hidden variable. 
Both NTM cells and LSTM cells showed a nice learning 
process. The #15 hidden variable was first given high intensity 
and then gradually lowered to reduce the loss value. The 
vanilla cells struggled to find a stable level. The variable state 
fluctuated at the beginning due to the direct impact of noisy 
inputs. Along the y axis, LSTM cells found reasonable 
parameters for cell components almost right away. Vanilla 
cells took a few more iterations, and NTM cells costed around 
80 iterations.   

In Fig. 12, we show the weighting of all hidden variables in 
the last training iteration. Among 100 hidden variables used, 
only a portion of them are important for prediction—the  others 
are ignored and thus have low intensities. The number of useful 
hidden variables in the 3 types of cells are all different. Vanilla 
cells use the least number of hidden variables while LSTM 
cells used more. Also, in the beginning time steps, we observe 
that the intensity adjustment process mentioned previously is 
not unique to #15 hidden variable. 

 
Fig. 10.  Performance of testing iterations (predictions). 

 

TABLE I.  PERFORMANCES OF DIFFERENT HIDDEN LAYER SIZES  

Cell Hidden Layer Sizes Mean STD 

Vanilla 

Cell  

 

[25] 23.536 16.651 

[50] 12.942 10.197 

[100] 13.693 11.253 

[200] 15.981 12.318 

[400] 17.358 11.782 

[800] 5598.69 18.149 

[1600] 2240.872 2744.938 

[100, 100] 25.338 14.274 

[100, 100, 100] 12.179 8.953 

LSTM 

Cell 

[25] 21.012 16.095 

[50] 13.877 9.819 

[100] 12.367 10.529 

[200] 12.694 10.315 

[400] 11.072 7.775 

[800] 11.069 8.019 

[1600] 15.317 10.638 

[100, 100] 12.513 8.819 

[100, 100, 100] 17.396 11.824 

NTM 

Cell 

[25] 105.105 58.282 

[50] 28.373 5.612 

[100] 54.762 25.908 

[200] 23.969 6.527 

[400] 94.89 75.704 

[800] 5667.148 4.794 

[1600] 90.136 18.425 

[100, 100] 320.039 222.159 

[100, 100, 100] 523.032 31.834 

 



B. State of memory component in NTM cell  

The state of the memory component in the NTM cell in an 
intermediate training iteration is shown in Fig. 13. In it we can 
see the distribution of hidden variables spanning across 
memory slots. The newly updated slots in this iteration has 
higher contrast than other slots. Which slots to be updated or 
read are decided by attention focusing processes performed by 
read and update heads. The focus processes for different heads 
are similar except the long term cell state is used as key vector 
in updating and short term cell state from last time step is used 
as key vector for reading. Both of them are made of 2 steps: 

a) focus by content: 

1. A cosine similarity vector is generated by comparing 
the key vector to each memory slot (cosine similarity 
is independent of magnitude of signal, so similar 
information is picked up even if the signal is weak). 

2. This similarity vector is then sharpened so the most 
relevant information has higher probability to be read 
or updated. 

3. Finally, the sharpened similarities are normalized as a 
probability distribution. 

b) focus by location:   

1. The distribution from focus by content is then linearly 
combined with weights at previous step controlled by 
a gate value. This step is used to prevent heads 

 
Fig. 11.  State of #15 hidden variable in first 150 iterations 

 

 

 
Fig. 13.  NTM memory state in #149 iteration at last time step 

 

 
Fig. 12.  State of all hidden variables in the last iteration 

 

 



jumping around too easily. Time steps are continuous, 
the slots chosen in this time step should be close to 
where the memories are written in the past as well. 

2. This linearly combined distribution is convoluted with 
a kernel decided by key vector. This step is used to 
take account of a few neighboring locations in 
distribution and shift the heads forward to other 
memory slots.  

3. Finally, the convoluted distribution is sharpened again 
and normalized as final weights. The sharpening is 
also used for choosing the most relevant information. 

Focusing by location can be seen as a procedure of heads 
designed for time series models. As time move 1 step forward, 
the heads are shifted forward as well. And the focusing by 
content is used to correct this procedure based on similarity. 
Fig. 14 shows the weights of all memory slots when 
performing reading and updating in each time step at last 
iteration. We can see both reading head and update head found 
3 similar situations and gave weights corresponding to the 
similarity in each time step. Due to the focusing by location, 
the heads are shifting along time steps reading the "next scene” 
it remembers. Due to the focusing by content, the leftmost 
situation is adjusted leftward at around time step 3. The 
sharpening strength in both steps needs to be tuned. If the 
strength is too high, the heads will only pick up the most 
similar case. If the strength is too low, too many cases will be 
read or updated thus the memory will act like only has one slot.  

VI. CONCLUSION AND FUTURE WORK 

In this paper we evaluated 3 types of RNN models for 
multivariate arrival process learning. They incorporate the time 

series data of all geospatial locations and learn the relationship 
between them by encoding them as small number of hidden 
variables. Although we only used them to predict one location 
in experiments, the models can be used to predict the arrival 
rates of any number of locations without modification. Among 
them, the models with LSTM cells are most stable and give the 
most accurate predictions due to the protection of gate 
components. The noise in inputs are filtered away when they 
go through the gates and the cell state has more clear 
periodicity comparing to other models. 

The models in this paper are off-line models that cannot be 
updated using a small amount of new data, i.e., one hour. In the 
future, we plan to modify them to be online models so that they 
do not always need to be trained with full-length sequence. In 
addition, the models only predict one time step into the future, 
which is of limited use for the goal of optimizing distribution 
of taxis. We plan to modify the models so that they can treat 
the predictions as observations and forecast more time steps 
into the future. The boundaries of the grids used in the 
experiments are arbitrarily decided and it should be possible to 
find more meaningful grids using clustering techniques. 
Finally, the time interval is set to one hour and the number of 
historical observations used in training is set to 24. We will 
perform more experiments on smaller time intervals and try 
different sequence lengths, to determine the effect of the 
granularity of time intervals and to determine how much 
history is needed to best predict the current time step. 
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Fig. 14.  Weights of memory slots in the last iteration 
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