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Abstract— Research on mobile sensor biometrics 

increased when mobile devices with powerful sensors, such as 

smartphones, became ubiquitous. However, existing studies 

are quite limited, especially with regard to the physical 

activities that are used to provide the biometric signature—

many studies only consider a single activity. In this study, we 

provide the most comprehensive analysis of mobile 

biometrics to date. We evaluate eighteen physical activities 

and nine sensor combinations for their biometric efficacy 

(the accelerometer and gyroscope sensors from a smartphone 

and smartwatch are used). Our mobile biometric models are 

evaluated with respect to identification and authentication 

performance and are shown to achieve excellent results in 

both cases. Furthermore, our models perform well even when 

built from all eighteen activities without activity labels, which 

represents a big step towards achieving the goal of 

continuous biometrics using only a smartwatch and 

smartphone. 
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I. INTRODUCTION 

This paper provides a comprehensive evaluation of 

motion-based mobile biometrics. The accelerometer and 

gyroscope sensors on commercially available Android 

smartphones and smartwatches [1] are used to capture a 

user’s movements, while the user performs eighteen 

common daily activities.  Classification algorithms are 

then used to induce biometric identification and 

authentication models from the sensor data from each of 

the eighteen individual activities—and from the combined 

activities—and these models are evaluated. Our results 

show that these models achieve good overall performance. 

Of particular note, the model induced from eighteen 

activities, even without activity labels, performs well, 

which represents a significant step toward achieving 

continuous biometrics in an unstructured environment. 

Our results also allow us to evaluate the relative 

effectiveness of the eighteen activities for their utility as 

biometric signatures.  

This study extends prior research by our lab on gait-

based biometrics [2]. Our previous work looked at a single 

activity (walking) and used data from three sensors. 

However, this study looks at eighteen activities using data 

from four sensors. The activities were originally selected 

for activity recognition research that we conducted, which 

we leveraged for this biometrics research [3, 4]. 

This paper makes several very significant contributions. 

First, it evaluates a large number of daily activities (18) to 

assess their ability to serve as biometric signatures. It also 

evaluates the combination of these activities as a biometric 

signature, which is a key step toward achieving the very 

ambitious goal of continuous biometrics, where a user is 

identified by their motion while performing normal daily 

tasks. Our study also evaluates more sensors and devices 

than most other research, by considering the accelerometer 

and gyroscope sensors on both the smartphone and 

smartwatch, separately and together (a total of nine sensor 

configurations are evaluated).  The research in this paper 

also relies only on commonly available commercial 

devices, which means that this work can be used to build 

cost-effective biometric systems. Our study also includes 

more test subjects (51) than many prior research studies 

[5]. In summary, this paper provides one of the most 

comprehensive studies of mobile biometrics to date. 

II. DATA COLLECTION AND TRANSFORMATION 

This section describes the data collection process, as 

well as the data transformation process used to convert the 

raw time-series data into labeled examples, which can be 

used to build our biometric identification and 

authentication models. The study includes 51 test subjects. 

Each subject spent three minutes performing each of the 

18 activities. Accelerometer and gyroscope data were 

collected from the smartwatch and smartphone that were 

worn by the subjects. 

A. Overview of Data Collection Process 

The majority of the test subjects were undergraduate or 

graduate university students. Because the study used 

human subjects, it was approved by the university’s 

Institutional Review Board (IRB) and each subject was 

required to give written informed consent before 

participating in the study. 

The 51 test subjects were asked to perform 18 routine 

activities for 3 minutes each. Prior to performing the 

activities, the subject placed an Android smartphone in 

their front right pocket and strapped a Bluetooth-paired 

Android smartwatch on their dominant hand. The study 

used the Google Nexus 5/5X and Samsung Galaxy S5 

smartphones running Android 6.0 (Marshmallow) and the 



 

 

 

LG G Watch running Android Wear 1.5. For consistency, 

the participant was instructed to have the phone oriented 

upright with the screen facing away from them. Data 

collection was stopped between each activity, and it took 

the subjects about 70 minutes to complete the entire data 

collection process.  

The time-series sensor data was collected by an 

Android application that our research group developed, 

which collected accelerometer and gyroscope data from 

both the smartphone and smartwatch at a rate of 20 Hz. At 

the end of a data collection session the raw time-series 

sensor data was transferred from the smartphone to our lab 

machine via a USB connection. 

B. Monitored Activities 

This study includes 18 routine activities. The purpose of 

using these activities is to determine the efficacy of 

specific activities for biometrics, although we also wanted 

to determine if a collection of normal daily activities could 

collectively form a useful biometric signature—and 

ultimately be used to implement continuous biometric 

monitoring. 

Table 1 lists the 18 activities included in this study. 

They are organized into three categories. The divisions are 

based on the belief that the smartwatch sensor data will be 

especially beneficial for the hand-oriented activities. 

Actual food was used for the eating activities. 

 
Table 1. Eighteen Monitored Activities  

General Activities (non hand-oriented) 

• Walking 

• Jogging 

• Stairs (ascending & descending) 

• Sitting 

• Standing 

• Kicking a Soccer Ball (two people) 

General Activities (hand-oriented) 

• Dribbling a Basketball 

• Catch with a Tennis Ball (two people, underhand) 

• Typing 

• Writing 

• Clapping 

• Brushing Teeth 

• Folding Clothes 

Eating Activities (hand-oriented) 

• Eating Pasta 

• Eating Soup 

• Eating a Sandwich 

• Eating Chips 

• Drinking from a Cup 

 

Most of the activities are self-explanatory and precise 

details are not presented due to space considerations. For 

the stairs activity, the test subject went up and down a 

single flight of indoor stairs continuously for three 

minutes. For the catch and kicking activities the test 

subject conducted the activity with a researcher. For the 

typing and writing activities, a specific prompt was given 

to the test subject. For all eating activities, the researcher 

ensured that sufficient food/drink was available for the test 

subject, so that they could continue the activity without 

interruption. 

C. Data Transformation 

This section describes the process for transforming the 

raw time-series sensor data into examples that can be used 

by conventional classification algorithms. Sensor readings, 

for both the accelerometer and gyroscope, are recorded in 

the following format: 

      <timestamp, x, y, z> 

The timestamp is measured in nanoseconds and the x, y, z 

values correspond to the three spatial axes. The x, y, and z 

values are measured in m/s2 for the accelerometer and in 

rad/s (radians per second) for the gyroscope. 

We converted the time-series data into examples using a 

sliding-window approach, without overlap, such that the 

data stream is divided into 10-second segments. Since 

every activity was performed for 3 minutes this yielded 

approximately 18 examples per activity. A 10-second 

interval was chosen because prior activity recognition and 

biometrics studies have used the same interval and 

demonstrated good results [2, 6]. Moreover, 10 seconds is 

a practical length for performing activities for the purpose 

of biometrics.  

Once the data is divided into 10-second segments, the 

low-level sensor data is transformed into 43 descriptive, 

high-level features. The exact same set of features are used 

for both the accelerometer and gyroscope data. The full 

list of features is provided below. The value in the square 

brackets indicates the number of features generated. When 

three features are generated they correspond to the three 

spatial axes. 

• Average[3]:  Average sensor value (each axis) 

• Standard Deviation[3]: Standard deviation (each axis) 

• Average Absolute Difference[3]: Average absolute 

difference between the 200 values and the mean of 

these values (each axis) 

• Time Between Peaks[3]: Time between peaks in the 

sinusoidal waves formed by the data as determined by 

a simple algorithm (each axis) 

• Average Resultant Acceleration[1]: For each of the 

sensor samples in the window, take the square root of 

the sum of the square of the x, y, z axis values, and 

then average them. 

• Binned Distribution[30]: The range of values is 

determined (maximum - minimum), 10 equal-sized 

bins are formed, and the fraction of the 200 values 



 

 

 

within each bin is recorded (each axis) 

Finally, each example is appended with a label that 
indicates the activity the participant was performing and a 
numerical ID that uniquely identifies the participant. 

D. Dataset 

This section describes the transformed data set that is 

used to build the biometric classification models. Each 

sensor generates over 16,200 examples, all with 43 

features, which corresponds to over 45 hours of data per 

sensor. With 51 test subjects, a complete data set with no 

missing data would consist of almost 184 hours of data (51 

users × 18 activities × 4 sensors × 3 minutes). Our data 

collection efforts came close to achieving a perfect data 

set, with a 99% successful collection rate. Table 2 

provides a summary of the data. Currently, the data is 

available upon request but will be submitted to a public 

dataset repository by the end of the year. 

Table 2. Summary of Collected Data (in hours) 

Sensor 
Phone Watch 

Accel. Gyro. Accel. Gyro. 

Collected 45.5 45.4 45.6 45.3 

Missing  0.4  0.5   0.3   0.6 

III. EXPERIMENT METHODOLOGY 

This section describes the methodology for building and 

evaluating our biometric models. Section IIIA describes 

the classification algorithms used to build the models, 

Section IIIB describes the combinations of sensors used to 

build each model and how the sensor data is fused, and 

Sections IIIC and IIID describe the methodology for 

constructing the identification and authentication models. 

A. Classification Algorithms 

Python's scikit-learn module, an open source library for 
data mining and analysis [7], provides the three 
classification algorithms that are used in this study: k-
Neighbors, Decision Tree, and Random Forest. The default 
parameters were used for the three algorithms. For the k-
Neighbors classifier, the number of neighbors was set to 5, 
using uniform weights and the Minkowski distance metric. 
For the Random Forest classifier the maximum number of 
features considered was the square root of the number of 
features in the data, and the number of decision trees in the 
forest was set to 10. 

B. Sensor Combinations 

The basic models in this study rely on a single sensor, 

yielding 4 models, since the phone and watch both have an 

accelerometer and gyroscope sensor. Since multiple 

sensors may yield superior results, we also consider the 

following 5 sensor combinations: 

• Phone:   Phone Accel + Phone Gyro 

• Watch:   Watch Accel + Watch Gyro 

• Accel:    Phone Accel + Watch Accel 

• Gyro:     Phone Gyro + Watch Gyro  

• All:        Phone Accel + Phone Gyro + 

              Watch Accel + Watch Gyro 

The sensor data is fused by concatenating the features. 

For example, to create the fused “phone” data set, the 43 

phone accelerometer features and 43 phone gyroscope 

features are concatenated. In the sensor combinations 

listed above, the first four contain 86 features while the 

last one contains 172 features. Each combination of 

sensors essentially yields a different data set. Thus, we 

have a total of 9 data sets (4 individual sensors and 5 fused 

sensors). 

C. Identification Experiments 

The identification task is to identify a user from a 

sample of their motion sensor data. For this task, we build 

two types of models. The first type of model builds a 

classifier for each of the 18 individual activities. This 

yields 486 different experiment configurations (18 

activities × 9 sensor combinations × 3 algorithms). 

The second type of model is trained from the 

aggregation of data from all 18 activities. We execute 

three variations of this experiment, based on whether the 

activity label is 1) not provided, 2) provided, or 3) not 

provided but predicted by an induced activity recognition 

model. The case where the activity label is provided 

corresponds to the case where both the training data and 

test data are generated from a carefully organized 

sequence of activities (like in this study). The case where 

the activity labels are not provided more closely 

correspond to the case of continuous biometrics, where no 

manual labeling of the activities occurs. The case where 

we predict the activity label, which results in a two-step 

classification process, is an attempt to provide the benefits 

associated with activity labels without the effort of manual 

labeling the activities. We have 81 total “aggregate” 

experiment configurations (3 variations × 3 algorithms × 9 

sensor combinations). 

All experiments use stratified 10-fold cross-validation 

to build and evaluate the models, to ensure that each fold 

contains the same distribution of users. Overall, a total of 

567 (486 + 81) distinct identification experiments were 

conducted, with 10 runs per distinct experiment. 

D. Authentication Experiments 

An authentication model can distinguish a specific user 

from an imposter. For authentication, each test subject 

requires their own model, which means we must construct 

51 models. Each model must be trained using data from 

the user to be authenticated. Training data from “other” 

users is also required, but in real world situations data 

from all potential imposters will not be available. Thus, 

the “imposters” in the test set should not be represented in 



 

 

 

the training set. Given that we have 51 test subjects, we 

can partition the 50 “other” users into two sets, one set to 

be used in the training set and the other set to be used in 

the test set. 

Since authentication is a binary classification problem 

and the positive class (the user we are trying to 

authenticate) is rare in comparison to the negative class 

(imposters we are trying to reject), we under-sampled the 

“other” users to create a training set that has a ratio of 1:3 

(1 user to 3 imposters). We experimented using several 

different class ratios, including 1:1, and 1:2, but somewhat 

surprisingly this did not notably alter the results. 

We decided to use the 1:3 ratio for three reasons, and 

we would argue that these reasons generally favor a 

training set that contains more “other” users than the user 

to be authenticated. First, this ratio is used in other 

biometric studies [2, 6]. Second, by using more imposter 

data than data for the user to be authenticated, we are 

biasing the classifier to predict “imposter”, meaning that it 

will be very conservative when authenticating a user. 

Lastly, by using more “imposter” data we are more able to 

represent a variety of imposters—which is important since 

the “other” class must represent all other users.  

For each user's model, the collected activity data 

associated with that user is randomly divided into two 

equal portions. One portion is placed into the training set 

and the other is placed into the test set, which gives 90 

seconds of data for each set. Then eighteen random users 

are chosen from the data set and 30 seconds of data 

randomly selected for each of these users. Nine of the 

users are placed in the training set while the remaining 

nine are placed in the test set, resulting in 270 seconds (9 

users × 30 seconds) of data for each set. Looking at the 

ratio of data from the user and data from other users, it is 

clear that the above methodology yields a 1:3 ratio. As 

with the identification experiments, the process is repeated 

for each of the 9 sensor combinations and 3 algorithms, 

giving a total of 1377 experiments (51 users × 9 × 3). 

IV. RESULTS 

Section IVA presents the results for the identification 

experiments while Section IVB presents the results for the 

authentication experiments.  Due to space limitations, we 

cannot provide the detailed results for all of the variations 

of the experiments, so in some cases we only provide 

summary results. For example, all experiments were run 

using the k-Neighbors, Decision Tree, and Random Forest 

algorithms, but we only provide the most granular results 

for the Random Forest algorithm, since our results indicate 

that this algorithm performs best. 

As discussed in Section IIIC, some of the identification 

models utilize data from only a single activity, while other 

models utilize data from all 18 activities.  We begin by 

describing the results for the models using single activities 

and then proceed to the results that use all 18 activities. 

A. Identification Results using Single Activities 

The results in this section are based on a single activity. 

The most granular results are based on a single test 

example, which corresponds to 10 seconds of data. 

However, we can assume that sensor data streaming from 

a phone or watch comes from a single person—at least 

over small time frames—so making a prediction based on 

a single 10-second sample of data is unnecessarily 

restrictive.  To improve prediction accuracy we use 5 

examples, or 50 seconds worth of data, and use majority 

voting to predict the identity of the subject. In the case of a 

tie, the first user in the list was arbitrarily selected. The 

results using this strategy are reported in Table 4 (next 

page). 

Based on the average performance over all activities in 

Table 4 (last row), the best sensor combination to use is 

“Accel,” which corresponds to the accelerometer for both 

the watch and phone, followed closely by the 

combinations of all sensors (“All”). The two relevant 

averages are highlighted in bold. However, they may have 

suboptimal performance for specific biometric activities. 

If we look at each of the specific activities, we see that the 

accelerometer sensor combination performs best (if we 

include ties) for 16 of the 18 activities, while the 

combination of all sensors performs best for 14 of the 18 

activities. Therefore, from this table, for results on 

Random Forest with voting, we conclude that the 

accelerometer sensor combination should be used. Due to 

space considerations we cannot provide results for all 

three algorithms, with and without voting, at the level of 

granularity reflected in Table 4. Thus we provide only the 

summary results for all three algorithms in Table 3. 

The identification accuracies displayed in Table 3 are 

based on the “Accel” sensor combination, since that 

combination was shown to perform best overall. The 

results are also aggregated over all 18 individual activities. 

Note that the value in Table 3 for Random Forest with 

voting corresponds to the value of 99.7 highlighted in bold 

in Table 4. 

 
Table 3. Average Identification Performance (%) using “Accel” 

Algorithm Without Voting With Voting 

k-Neighbors 77.8 88.8 

Decision Tree 91.7 98.0 

Random Forest 96.4 99.7 

 

The results from Table 3 shows that Random Forest 

performs best, Decision Trees perform second best, and k-

Neighbors performs worst. The superiority of Random 

Forest for such identification tasks is consistent with some 

prior studies [2, 6]. More importantly, these results 

indicate that a majority-voting scheme improves 

identification accuracy regardless of the classification 

algorithm used. 



 

 

 

Table 4. Identification Accuracy (%) using a Single Activity with Random Forest and Voting 

Activity 

Single Sensor Fused Sensor Avg. 

Phone 

Accel 

Phone 

Gyro 

Watch 

Accel 

Watch 

Gyro 
Phone Watch Accel Gyro All  

Walking 100.0 100.0 94.1 80.4 100.0 90.2 100.0 100.0 100.0 96.1 

Jogging 100.0 100.0 90.0 88.0 100.0 98.0 100.0 100.0 100.0 97.3 

Stairs 98.0 90.0 70.0 43.8 96.0 75.0 100.0 91.7 100.0 84.9 

Sitting 100.0 62.7 88.2 33.3 98.0 86.3 100.0 64.7 100.0 81.5 

Standing 98.0 39.2 82.4 20.0 94.1 84.0 100.0 50.0 100.0 74.2 

Typing 100.0 89.8 94.0 50.0 100.0 100.0 100.0 95.9 100.0 92.2 

Teeth 98.0 82.4 94.1 62.7 100.0 96.1 100.0 94.1 100.0 91.9 

Soup 100.0 66.7 88.2 62.0 100.0 88.0 100.0 80.0 100.0 87.2 

Chips 100.0 76.0 82.4 41.2 98.0 82.4 98.0 80.0 100.0 84.2 

Pasta 100.0 56.0 84.0 48.0 100.0 84.0 100.0 71.4 98.0 82.4 

Drinking 100.0 58.8 86.3 41.2 100.0 80.4 100.0 60.8 100.0 80.8 

Sandwich 98.0 68.0 84.0 38.0 100.0 82.0 100.0 73.5 98.0 82.4 

Kicking 96.1 68.6 76.0 32.0 100.0 82.0 100.0 80.0 98.0 81.4 

Catch 98.0 70.0 78.0 85.7 100.0 91.8 100.0 91.8 100.0 90.6 

Dribbling 96.1 68.6 98.0 90.2 98.0 86.3 96.1 96.1 100.0 92.2 

Writing 96.1 80.0 94.1 58.8 100.0 98.0 100.0 90.0 100.0 90.8 

Clapping 100.0 86.3 96.1 90.2 100.0 98.0 100.0 100.0 98.0 96.5 

Folding 100.0 76.5 64.7 39.2 96.1 86.3 100.0 78.4 100.0 82.4 

Avg. 98.8 74.4 85.8 55.8 98.9 88.3 99.7 83.2 99.6  

 

B. Identification Results using All 18 Activities 

The results for the identification experiments using data 

from all 18 activities, when using the Random Forest 

Algorithm, are summarized in Table 5. The table includes 

results from all 9 distinct sensor combinations (the rows) 

and three variations of the basic experiment, depending on 

whether the activity label was not provided at all (“without 

label”), was provided (“with label”), or predicted using a 

two-stage learning process (“predicted label”).  

Table 5. Identification Accuracy (%) using All 18 Activities 

 

Without voting (Voting = “No”), the results in Table 5 

are not very impressive since the identification accuracies 

are generally under 70%. But it should be noted that since 

there are 51 subjects, the baseline strategy of guessing the 

identity of the subject would yield an accuracy of only 

about 2%. However, with voting using 5 examples, the 

results improve significantly. Like the results for models 

using a single activity, the best sensor combinations to use 

are the accelerometer for both the watch and phone 

(“Accel”) and the combination of all sensors (“All”). Both 

combinations achieved around a 99% accuracy rate for all 

three variations (highlighted in bold in Table 5), again 

highlighting the benefits of fusing single sensor data. For 

the single sensors, the phone accelerometer (“Phone 

Accel”) outperforms all other single sensors by a wide 

margin and actually performs close to the levels of the best 

sensor combinations (“Accel” and “All”). 

 Looking at the overall average accuracies for the three 

variations of setting the activity labels, we see little overall 

difference. As expected, providing the actual activity label 

(“with label”) performs the best while not providing any 

activity information (“without label”) performs worst. 

Predicting the activity label (“predicted label”) performs 

only slightly worse than the actual label, which is 

encouraging since predicting the label is more practical 

than providing the label in most real-world situations 

where we would want to implement continuous 

biometrics. 

We also explored how the amount of training data 

impacts identification accuracy. Based on the average 

biometric performance of the 18 individual activities using 

Random Forest and the two accelerometer sensors (Accel), 

we found that there are diminishing returns once you have 

about one minute of data.  

Sensors 

Used 

Without Label 

Voting? 

With Label 

Voting? 

Predicted Label 

Voting? 

No Yes No Yes No Yes 

Phone Accel 58.0 96.8 58.5 97.6 30.3 96.0 

Phone Gyro 27.4 61.6 28.6 65.1 27.0 63.1 

Watch Accel 27.8 76.0 28.6 77.3 62.7 75.4 

Watch Gyro 12.4 39.8 13.2 43.9 51.8 42.4 

Phone 61.2 97.0 62.1 97.5 32.7 96.2 

Watch 28.6 77.1 29.3 77.9 66.6 80.6 

Accel 64.0 99.2 63.9 99.3 64.0 98.9 

Gyro 30.3 72.3 30.6 73.0 56.3 72.9 

All 64.7 99.1 65.1 99.1 67.0 98.9 

Avg. 41.6 79.9 42.2 81.2 43.8 80.5 



 

 

 

Table 6. Authentication EER for using a Single Activity with Random Forest and Voting 

Activity 

Single Sensor Fused Sensor Avg. 

Phone 

Accel 

Phone 

Gyro 

Watch 

Accel 

Watch 

Gyro 
Phone Watch Accel Gyro All  

Walking 9.4 9.8 13.2 17.2 8.8 13.9 11.3 10.0 6.8 11.2 

Jogging 7.8 10.8 16.2 15.2 9.7 12.7 9.0 11.2 8.3 11.2 

Stairs 13.4 12.5 19.3 23.9 9.3 18.9 8.4 14.1 6.9 14.1 

Sitting 10.4 23.7 14.5 32.1 8.8 17.0 10.0 21.1 10.2 16.4 

Standing 12.1 22.1 16.7 31.6 10.9 15.2 10.0 21.5 7.7 16.4 

Typing 8.3 15.4 13.0 20.7 8.9 14.0 8.6 13.3 8.8 12.3 

Teeth 10.1 14.0 13.3 20.0 10.2 14.4 10.8 14.9 8.2 12.9 

Soup 7.3 19.2 17.0 22.3 6.1 13.3 7.8 17.5 8.0 13.2 

Chips 9.9 21.5 14.7 25.9 10.3 18.1 8.5 17.2 8.0 14.9 

Pasta 8.0 23.7 14.3 26.6 8.9 18.5 9.0 19.6 5.4 14.9 

Drinking 11.3 19.2 16.6 25.1 10.2 13.9 10.9 19.9 8.1 15.0 

Sandwich 9.9 17.9 17.5 25.7 11.4 17.7 8.2 16.2 9.3 14.9 

Kicking 10.6 19.4 21.0 24.1 11.0 16.6 10.1 18.8 11.0 15.8 

Catch 9.7 19.3 16.3 15.5 10.0 14.9 9.3 13.9 10.0 13.2 

Dribbling 10.3 21.0 16.4 16.1 9.7 14.5 10.0 11.8 11.5 13.5 

Writing 8.7 15.7 10.7 21.3 9.2 11.6 9.0 16.0 10.1 12.5 

Clapping 9.4 13.4 12.9 17.2 10.1 13.2 8.1 14.8 8.5 12.0 

Folding 7.9 18.6 17.0 23.4 10.0 17.3 8.1 16.2 7.1 14.0 

Avg. 9.7 17.6 15.6 22.4 9.6 15.3 9.3 16.0 9.3  

 

This is encouraging since it indicates that good performance 

is possible with a modest amount of training data. These 

findings are from models without voting since the benefits of 

voting would obscure the impact of limited training data. 

Voting is quite effective at improving identification 

performance, as shown in Table 5. The results in Table 5 only 

show the results when voting using 5 examples (n=5). 

Through experimentation, we found that the benefit of voting 

using additional examples diminishes after n=5. 

C. Authentication Results 

As described in Section IIID, authentication is a binary 

classification task that involves verifying the identity of a 

specific user. To evaluate our authentication models we 

compute Equal Error Rate (EER), a metric commonly used to 

compare different authentication models [8]. This metric is 

calculated as the point where the False Acceptance Rate 

(FAR) equals the False Rejection Rate (FRR). FAR is the rate 

at which the model incorrectly accepts an imposter as a 

legitimate user, while FRR is the rate at which the model 

incorrectly rejects a legitimate user. Both FAR and FRR can 

be altered by varying the probability threshold value used for 

assigning a classification. The lower the EER, the better the 

performance of the model. The EER for each activity and 

sensor combination is presented in Table 6. Each result in the 

table is averaged over the 51 individual user models. 

Looking at the average performance over all activities in 

Table 6 (last row), the best sensor combinations to use are the 

accelerometer for both the watch and phone (“Accel”), and the 

combinations of all sensors (“All”), both highlighted in bold. 

Note that these two sensor combinations are the same as the 

two best sensor combinations for identification (see Tables 3 

and 5). Examining the results in more detail, the accelerometer 

performs best for 4 of the 18 activities, while the combination 

of all sensors performs best for 8 of the 18 activities.  

In terms of individual activities, walking and jogging have 

the lowest EER while sitting and standing have the highest 

EER (lower is better). This makes sense since the walking and 

jogging activities involve a wide range of motions while 

sitting and standing do not. Other activities like writing and 

typing have similarly good performance. However, they 

require equipment such as a keyboard or pen and paper, 

making them less practical as a biometric trait. Activities 

involving eating or drinking also suffer from the same 

problem. These activities had the worst performance overall. 

Lastly, the exercise related activities (excluding walking and 

jogging) had relatively good performance. In terms of 

practicality, these activities are the least practical as they 

require equipment as well as open space. 

V. RELATED WORK 

Sensor-based biometrics have been heavily explored due to 

the wide range of practical applications. As smartphones 

continue to access and store increasingly sensitive personal 

information, traditional passwords are inadequate in terms of 

security, and there is a desire to move towards multi-factor 

authentication. Other applications include authenticating a 

user to keep a computer account safe, or even to unlock the 

front door to your home. Sensor-based biometrics can be 

carried out either using specialized sensors [9] or built-in 

sensors on commercial devices [6]. In addition, smartwatches 

have also been used to perform biometrics [2], which have the 

advantage of being in a more consistent location on the wrist 

(as opposed to in a pocket or bag). Our research utilizes both 



 

 

 

smartphones and smartwatches because they are more 

affordable than specialized sensors and can easily be deployed 

in a real-world application. 

Many of the studies that use sensor data from smartphones 

focus on gait as a person’s biometric signature, with excellent 

results. In a study of 14 test subjects, Hoang et al. achieved an 

EER of 3.5% using the built-in accelerometer [10]. 

Participants were asked to walk around a track for twelve laps 

with the smartphone in their trouser front pocket. In a similar 

study of 36 test subjects, which examined both “normal” 

speed and “fast” speed gait, Juefei-Xu et al. managed an EER 

of roughly 5% using a smartphone accelerometer and 

gyroscope [11]. However, gait-based biometrics is heavily 

affected by many factors including a person’s shoes, physical 

state (e.g. injury), walking environment, and can lead to 

inconsistent system performance [2].  

As an alternative, some papers have investigated 

uncommon biometric signatures. For example, Yang et al. 

achieved an EER of 6% using snapping data (via microphone) 

from 22 test subjects collected over 7 days [12]. In another 

study, Buriro et al. achieved a False Acceptance Rate (FAR) / 

False Rejection Rate (FRR) of 3-4%, using accelerometer, 

gyroscope and magnetometer sensor data of a person’s hand 

movements as they type [13]. The study also considered the 

timing of individual keystrokes. However, our work considers 

a large number of daily activities as a biometric signature. 

VI. CONCLUSIONS AND FURTHER WORK 

Our study demonstrates that mobile biometrics is feasible 

using a commercially available smartwatch and/or 

smartphone. It also provided some more specific, but very 

important conclusions. First, sensor fusion improves biometric 

performance and a combination of the phone and watch 

accelerometer performs best, followed closely by a 

combination of the accelerometer and gyroscope sensors on 

both the phone and watch. Second, a majority voting strategy 

can dramatically improve biometric performance. Voting 

using 50 seconds of data (5 examples) can greatly outperform 

using 10 seconds of data (1 example).  Third, one can achieve 

good biometric performance when using a variety of diverse 

activities even when the activity is not labeled. A two-stage 

classification process that first involves predicting the activity 

label can improve performance. These results are a good step 

toward continuous biometrics in an unstructured environment. 

Lastly, a variety of activities can generate useful biometric 

signatures. Walking and jogging are very effective, but so are 

writing and typing. Other activities perform nearly as well but 

are impractical because they require specific equipment. 

There are several ways to expand our current research. Data  

from multiple days will be necessary to verify that the 

biometric models hold up over time and may assist in building 

more robust models. More sophisticated features and more 

sophisticated sensor fusion techniques can also be explored. A 

more ambitious step would be to move closer to the 

continuous biometrics scenario by allowing additional 

activities and allowing different users to have different activity 

profiles. Finally, this research can be applied to build a real-

time biometric system, as in the past we have engineered real-

time activity recognition systems. 
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