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Abstract
Systems that learn from examples often express the learned
concept in the form of a disjunctive description.  Disjuncts
that correctly classify few training examples are known as
small disjuncts and are interesting to machine learning re-
searchers because they have a much higher error rate than
large disjuncts.  Previous research has investigated this phe-
nomenon by performing ad hoc analyses of a small number
of datasets.  In this paper we present a quantitative measure
for evaluating the effect of small disjuncts on learning and
use it to analyze 30 benchmark datasets.  We investigate the
relationship between small disjuncts and pruning, training set
size and noise, and come up with several interesting results.

Introduction

Systems that learn from examples often express the learned
concept as a disjunction.  The size of a disjunct is defined
as the number of training examples that it correctly classi-
fies (Holte, Acker, and Porter 1989).  A number of empiri-
cal studies have demonstrated that learned concepts include
disjuncts that span a large range of disjunct sizes and that
the small disjuncts—those disjuncts that correctly classify
only a few training examples—collectively cover a signifi-
cant percentage of the test examples (Holte, Acker, and
Porter 1989; Ali and Pazzani 1992; Danyluk and Provost
1993; Ting 1994; Van den Bosch et al. 1997; Weiss and
Hirsh 1998).  It has also been shown that small disjuncts
often correspond to rare cases within the domain under
study (Weiss 1995) and cannot be totally eliminated if high
predictive accuracy is to be achieved (Holte et al. 1989).
Previous studies have shown that small disjuncts have
much higher error rates than large disjuncts and contribute
a disproportionate number of the total errors.  This phe-
nomenon is known as “the problem with small disjuncts”.

There are two reasons for studying the problem with
small disjuncts.  The first is that small disjuncts can help us
answer important machine learning questions, such as: how
does the amount of available training data affect learning,
how does pruning work and when is it most effective, and
how does noise affect the ability to learn a concept?  Thus,
we use small disjuncts as a lens through which to examine
important issues in machine learning.  The second reason
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for studying small disjuncts is to learn to build machine
learning programs that “address” the problem with small
disjuncts.  These learners will improve the accuracy of the
small disjuncts without significantly decreasing the accu-
racy of the large disjuncts, so that the overall accuracy of
the learned concept is improved.  Several researchers have
attempted to build such learners.  One approach involves
employing a maximum specificity bias for learning small
disjuncts, while continuing to use the more common maxi-
mum generality bias for the large disjuncts (Holte et al.
1989; Ting 1994).  Unfortunately, these efforts have pro-
duced, at best, only marginal improvements.  A better un-
derstanding of small disjuncts and their role in learning
may be required before further advances are possible.

In this paper we use small disjuncts to gain a better un-
derstanding of machine learning.  In the process of doing
this, we address a major limitation with previous re-
search—that very few datasets were analyzed: Holte et al.
(1989) analyzed two datasets, Ali and Pazzani (1992) one
dataset, Danyluk and Provost (1993) one dataset, and Weiss
and Hirsh (1998) two datasets.  Because so few datasets
were analyzed, only relatively weak qualitative conclusions
were possible.  By analyzing thirty datasets, we are able to
draw some quantitative conclusions, as well as form more
definitive qualitative conclusions than previously possible.†

Description of Experiments

The results presented in this paper are based on 30 datasets,
of which 19 were collected from the UCI repository (Blake
and Merz 1998) and 11 from researchers at AT&T (Cohen
1995; Cohen and Singer 1999).  Numerous experiments
were run on these datasets to assess the impact of small
disjuncts on learning, especially as factors such as training
set size, pruning strategy, and noise level are varied.  The
majority of experiments use C4.5, a program for inducing
decision trees (Quinlan 1993).  C4.5 was modified by the
authors to collect information related to disjunct size.
During the training phase the modified software assigns
each disjunct/leaf a value based on the number of training
examples it correctly classifies.  The number of correctly
and incorrectly classified examples associated with each
disjunct is then tracked during the testing phase, so that at
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the end the distribution of correctly/incorrectly classified
test examples by disjunct size is known.  For example, the
software might record the fact that disjuncts of size 3 col-
lectively classify 5 test examples correctly and 3 incor-
rectly.  Some experiments were repeated with RIPPER, a
program for inducing rule sets (Cohen 1995), in order to
assess the generality of our results.

Since pruning eliminates many small disjuncts, consistent
with what has been done previously, pruning is disabled for
C4.5 and RIPPER for most experiments (as is seen later,
however, the same trends are seen even when pruning is
not disabled).  C4.5 is also run with the –m1 option, to
ensure that nodes continue to be split until they only con-
tain examples of a single class, and RIPPER is configured
to produce unordered rules so that it does not produce a
single default rule to cover the majority class.  All experi-
ments employ 10-fold cross validation and the results are
therefore based on averages of the test set calculated over
10 runs.  Unless specified otherwise, all results are based
on C4.5 without pruning.

An Example: The Vote Dataset
In order to illustrate the problem with small disjuncts and
introduce a way of measuring this problem, we examine the
concept learned by C4.5 from the Vote dataset.  Figure 1
shows how the correctly and incorrectly classified test
examples are distributed across the disjuncts in this con-
cept.  Each bin in the figure spans 10 sizes of disjuncts.
The leftmost bin shows that those disjuncts that classify 0-9
training examples correctly cover 9.5 test examples, of
which 7.1 are classified correctly and 2.4 classified incor-
rectly.  The fractional values occur because the results are
averaged over 10 cross-validated runs.  Disjuncts of size 0
occur because when C4.5 splits a node using a feature f, the
split uses all possible feature values, whether or not the
value occurs within the training examples at that node.
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Figure 1: Distribution of Errors

Figure 1 clearly shows that the errors are concentrated
toward the smaller disjuncts.  Analysis at a finer level of
granularity shows that the errors are skewed even more
toward the small disjuncts—75% of the errors in the left-
most bin come from disjuncts of size 0 and 1.  Space limi-
tations prevent us from showing the distribution of disjuncts,
but of the 50 disjuncts in the learned concept, 45 of them
are associated with the leftmost bin.

The data may also be described using a new measure,
mean disjunct size.  This measure is computed over a set of
examples as follows: each example is assigned a value
equal to the size of the disjunct that classifies it, and then
the mean of these values is calculated.  For the concept
shown in Figure 1, the mean disjunct size over all test ex-
amples is 124—one can also view this as the center of mass
of the bins in the figure.  The mean disjunct size for the
incorrectly (correctly) classified test examples is 10 (133).
Since 10 << 133, the errors are heavily concentrated toward
the smaller disjuncts.

In order to better show the extent to which errors are
concentrated toward the small disjuncts, we plot, for each
disjunct size n, the percentage of test errors versus percent-
age of correctly classified test examples covered by dis-
juncts of size n or less.  Figure 2 shows this plot for the
concept induced from the Vote dataset.  It shows, for ex-
ample, that disjuncts with size 0-4 contribute 5.1% of the
correctly classified test examples but 73% of the total test
errors.  Since the curve in Figure 2 is above the line Y=X,
the errors are concentrated toward the smaller disjuncts.
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Figure 2: An Error Concentration Curve

To make it easy to compare the degree to which errors
are concentrated in the small disjuncts for different con-
cepts, we introduce a measurement called error concentra-
tion.  Error Concentration (EC) is defined as the percentage
of the total area above the line Y=X in Figure 2 that falls
under the EC curve.  EC may take on values between 100
and –100, but is expected to be positive—a negative value
indicates that the errors are concentrated more toward the
larger disjuncts.  The EC value for the concept in Figure 2
is 84.8%, indicating that the errors are highly concentrated
toward the small disjuncts.

Results

In this section we present the EC values for 30 datasets and
demonstrate that, although they exhibit the problem with
small disjuncts to varying degrees, there is some structure
to this problem.  We then present results that demonstrate
how small disjuncts are affected by pruning, training set
size, and noise.  Due to space limitations, only a few key
results are presented in this section.  More detailed results
are presented elsewhere (Weiss and Hirsh 2000).



Error Concentration for 30 Datasets
C4.5 was applied to 30 datasets and the results, ordered by
EC, are summarized in Table 1. We also list the percentage
of test errors contributed by the smallest disjuncts that
cover 10% of the correctly classified test examples.  Note
the wide range of EC values and the number of concepts
with high EC values.

EC Dataset Dataset Error Largest Number % Errors at Error
Rank         Size Rate (%) Disjunct Leaves 10% Correct Conc.

1 kr-vs-kp 3196 0.3 669 47 75.0 87.4
2 hypothyroid 3771 0.5 2697 38 85.2 85.2
3 vote 435 6.9 197 48 73.0 84.8
4 splice-junction 3175 5.8 287 265 76.5 81.8
5 ticket2 556 5.8 319 28 76.1 75.8
6 ticket1 556 2.2 366 18 54.8 75.2
7 ticket3 556 3.6 339 25 60.5 74.4
8 soybean-large 682 9.1 56 175 53.8 74.2
9 breast-wisc 699 5.0 332 31 47.3 66.2
10 ocr 2688 2.2 1186 71 52.1 55.8
11 hepatitis 155 22.1 49 23 30.1 50.8
12 horse-colic 300 16.3 75 40 31.5 50.4
13 crx 690 19.0 58 227 32.4 50.2
14 bridges 101 15.8 33 32 15.0 45.2
15 heart-hungarian 293 24.5 69 38 31.7 45.0
16 market1 3180 23.6 181 718 29.7 44.0
17 adult 21280 16.3 1441 8434 28.7 42.4
18 weather 5597 33.2 151 816 25.6 41.6
19 network2 3826 23.9 618 382 31.2 38.4
20 promoters 106 24.3 20 31 32.8 37.6
21 network1 3577 24.1 528 362 26.1 35.8
22 german 1000 31.7 56 475 17.8 35.6
23 coding 20000 25.5 195 8385 22.5 29.4
24 move 3028 23.5 35 2687 17.0 28.4
25 sonar 208 28.4 50 18 15.9 22.6
26 bands 538 29.0 50 586 65.2 17.8
27 liver 345 34.5 44 35 13.7 12.0
28 blackjack 15000 27.8 1989 45 18.6 10.8
29 labor 57 20.7 19 16 33.7 10.2
30 market2 11000 46.3 264 3335 10.3 4.0

Table 1: Error Concentration for 30 Datasets

While dataset size is not correlated with error concentra-
tion, error rate clearly is—concepts with low error rates
(<10%) tend to have high EC values.  Based on the error
rate (ER) and EC values, the entries in Table 1 seem to fit
naturally into the following three categories.

1. Low-ER/High-EC: includes datasets 1-10
2. High-ER/Medium-EC: includes datasets 11-22
3. High-ER/Low-EC: includes datasets 23-30

Note that there are no learned concepts with very high
EC and high ER, or with low EC and low ER.  Of particu-
lar interest is that fact that for those datasets in the Low-
ER/High-EC group, the largest disjunct in the concept
classifies a significant portion of the total training exam-
ples, whereas this is not true for the datasets in the High-
ER/Low-EC group.  Due to space considerations, the re-
sults for C4.5 with pruning are not included in Table 1, but
the average EC value over the 30 datasets with pruning is
33.5.  While this is less than the average without pruning
(47.1), it still is well above 0, indicating that even after
pruning a substantial proportion of the errors are still con-
centrated in the smaller disjuncts.

Comparison with Results from RIPPER
Some learning methods, such as neural networks, do not
have a notion of a disjunct, while others, such as nearest
neighbor methods, do not form disjunctive concepts, but
generate something very close, since clusters of examples
can be viewed as disjuncts (Van den Bosch et al. 1997).
C4.5 is used for most experiments in this paper because it is
well known and forms disjunctive concepts.  In order to
support the generality of any conclusions we draw from the
results using C4.5, we compare the EC values for C4.5 with
those of RIPPER, a rule learner that also generates disjunc-
tive concepts.  The comparison is presented in Figure 3,
where each point represents the EC values for a single
dataset.  Since the results are clustered around the line
Y=X, both learners tend to produce concepts with similar
EC values, and hence tend to suffer from the problem with
small disjuncts to similar degrees.  The agreement is espe-
cially close for the most interesting cases, where the EC
values are large—the same 10 datasets generate the largest
10 EC values for both learners.
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Figure 3: Comparison of C4.5 and RIPPER EC Values

The agreement shown in Figure 3 supports our belief that
there is a fundamental property of the underlying datasets
that is responsible for the EC values.  We believe this prop-
erty is the relative frequency of rare and general cases in
the “true”, but unknown, concept to be learned.  We recog-
nize, however, that a concept that has many rare cases
when expressed as a disjunctive concept may not have
them when expressed in a different form.  We believe this
does not significantly decrease the generality of our results
given the number of learners that form disjunction-like
concepts.

The Effect of Pruning
Pruning is not used for most of our experiments because it
partially obscures the effects of small disjuncts.  Nonethe-
less, small disjuncts provide an opportunity for better un-
derstanding how pruning works.  Figure 4 displays the
same information as Figure 1, except that the results were
generated using C4.5 with pruning.  Pruning causes the
overall error rate to decrease to 5.3% from 6.9%.
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Figure 4: Distribution of Errors with Pruning

Comparing Figure 4 with Figure 1 shows that with prun-
ing the errors are less concentrated toward the small dis-
juncts (the decrease in EC from 84.8 to 71.2 confirms this).
It is also apparent that with pruning far fewer examples are
classified by disjuncts with size less than 30.  This is be-
cause the distribution of disjuncts has changed—whereas
before there were 45 disjuncts of size less than 10, after
pruning there are only 7.  So, pruning eliminates most of
the small disjuncts and many of the “emancipated” exam-
ples are then classified by the larger disjuncts. Overall,
pruning causes the EC to decrease for 23 of the 30 da-
tasets—and the decrease is often large.  Looking at this
another way, pruning causes the mean disjunct size associ-
ated with both the correct and incorrectly classified exam-
ples to increase, but the latter increases more than the
former.  Even after pruning the problem with small dis-
juncts is still quite evident—after pruning the average EC
for the first 10 datasets is 50.6.

Figure 5 plots the absolute improvement in error rate due
to pruning against EC rank.  The first 10 datasets, which
are in the low-ER/high-EC group, show a moderate im-
provement in error rate.  The datasets in the high-
ER/medium-EC group, which starts with the Hepatitis
dataset, show more improvement, but have more room for
improvement due to their higher error rate.  The datasets in
the high-ER/low-EC group, which start with the Coding
dataset, show a net increase in error rate.  These results
suggest that pruning helps when the problem with small
disjuncts is quite severe, but may actually increase the error
rate in other cases.
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Figure 5: Absolute Improvement in Error Rate vs. EC Rank

The Effect of Training Set Size
Small disjuncts provide an opportunity to better understand
how training set size affects learning.  We again apply C4.5
to the Vote dataset, except that this time a different 10%
(not 90%) of the dataset is used for training for each of the
10 cross-validation runs.  Thus, the training set size is 1/9
the size it was previously.  As before, each run employs a
different 10% of the data for testing. The resulting distribu-
tion of examples is shown in Figure 6.
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Figure 6: Distribution of Errors (10% Training Data)
Comparing the distribution of errors between Figures 1

and 6 shows that errors are less concentrated toward the
smaller disjuncts in Figure 6.  This is consistent with the
fact that the EC decreases from 84.8 to 62.8 and the mean
disjunct size over all examples decreases from 124 to 19,
while the mean disjunct size of the errors decreases only
slightly from 10.0 to 8.9.  Analysis of the results from the
30 datasets shows a similar phenomenon—for 27 of the 30
datasets the EC decreases as the training set size decreases.

These results suggest that the definition of small dis-
juncts should factor in training set size.  To investigate this
further, the error rates of disjuncts with specific sizes (0, 1,
2, etc.) were compared as the training set size was varied.
Because disjuncts of a specific size for most concepts cover
very few examples, statistically valid comparison were
possible for only 4 of the 30 datasets.  The results for the
Coding dataset are shown in Figure 7.  Results for the other
datasets are available in Weiss and Hirsh (2000).
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Figure 7: Effect of Training Size on Disjunct Error Rate

Figure 7 shows that the error rates for the smallest dis-
juncts decrease significantly when the training set size is
increased.  These results further suggest that the definition
of small disjuncts should take training set size into account.



The Effect of Noise
Rare cases cause small disjuncts to be formed in learned
concepts.  The inability to distinguish between these rare
cases (i.e., true exceptions) and noise may be largely re-
sponsible for the difficulty in learning in the presence of
noise.  This conjecture was investigated using synthetic
datasets (Weiss 1995) and two real-world datasets (Weiss
and Hirsh 1998).  We extend this previous work by ana-
lyzing 27 datasets (technical difficulties prevented us from
handling 3 of the datasets).  We restrict the discussion to
(random) class noise, since the differing number of attrib-
utes in each dataset makes it difficult to fairly compare the
impact of attribute noise across datasets.

Although detailed results for class noise are presented
elsewhere (Weiss and Hirsh 2000) the results indicate that
there is a subtle trend for datasets with higher EC values to
experience a greater increase in error rate from class noise.
What is much more apparent, however, is that many con-
cepts with low EC values are extremely tolerant of noise,
whereas none of the concepts with high EC’s are.  For
example, two of the low-EC datasets, blackjack and labor,
are so tolerant of noise that when 50% random class noise
is added to the training set  (i.e., the class value is replaced
with a randomly selected valid value 50% of the time), the
error rate on the test set increases by less than 1%.  The
other effect is that as the amount of class noise is increased,
the EC tends to decrease.  Thus, as noise is added, across
almost all of the concepts a greater percentage of the errors
come from the larger disjuncts.  This helps explain why we
find a low-ER/high-EC group of concepts and a high-
ER/medium-EC group of concepts: adding noise to con-
cepts in the former increases their error rate and decreases
their error concentration, making them look more like
concepts in the latter group.

Noise also sometimes causes a radical change in the size
of the disjuncts.  For low-ER/high-EC group, 10% class
noise causes the mean disjunct size of these concepts to
shrink, on average, to one-ninth the original size.  For the
datasets in the high-ER/low-EC group, the same level of
noise causes almost no change in the mean disjunct size—
the average drops by less than 1%.

Discussion

Many of the results in this paper can be explained by un-
derstanding the role of small disjuncts in learning.  Learn-
ing algorithms tend to form large disjuncts to cover general
cases and small disjuncts to cover rare cases.  Concepts
with many rare cases are harder to learn than those with
few, since general cases can be accurately sampled with
less training data.  This supports the results in Table 1.
Concepts in the low-ER/high-EC group contain very gen-
eral cases—the largest disjunct in these concepts cover, on
average, 43% of the correctly classified training examples.
The general cases are learned very accurately (the largest
disjunct learned in all 10 runs of the Vote dataset never
covers any test errors).  The datasets that are easy to learn

and have low error rates have high EC values because so
few errors occur in the large disjuncts.

Pruning is the most widespread strategy for addressing
the problem with small disjuncts.  As was shown earlier,
pruning eliminates many small disjuncts.  The emancipated
examples are then classified using other disjuncts.  While
this tends to cause the error rate of these other disjuncts to
increase, the overall error rate of the concept tends to de-
crease.  Pruning reduces C4.5’s average error rate on the 30
datasets from 18.4% to 17.5%, while reducing the EC from
84.8 to 71.2.  While this average 0.9% error rate reduction
is significant, it is useful to compare this reduction to an
“idealized” strategy, where the error rate for the small
disjuncts is equal to the error rate of the other (i.e., medium
and large) disjuncts.  While such a strategy is not achiev-
able, it provides a way of gauging the effectiveness of
pruning at addressing the problem of small disjuncts.

Table 2 compares the error rates (averaged over the 30
datasets) resulting from various strategies.  The idealized
strategy is applied using two scenarios, where the smallest
disjuncts covering a total of 10% (20%) of the training
examples were assigned an error rate based on the remain-
ing 90% (80%) of the examples.

No Pruning Default Pruning Idealized (10%) Idealized (20%)
18.4% 17.5% 15.2% 13.5%

Table 2: Comparison of Pruning to Idealized Strategy

Table 2 shows that the idealized strategy, even when ap-
plied to only 10% of the examples, significantly outper-
forms C4.5’s pruning strategy.  These results provide a
motivation for finding strategies that better address the
problem with small disjuncts.

For many real-world problems, such as identifying those
customers likely to buy a product, one is more interested in
finding individual classification rules that have high preci-
sion than in finding the concept with the best overall accu-
racy.  In these situations, pruning seems a questionable
strategy, since it tends to decrease the precision of the
larger (presumably more precise) disjuncts.  To investigate
this further, precision/recall curves were generated with
and without pruning for each dataset, by starting with the
largest disjunct and progressively adding smaller disjuncts.
The curves for all 30 datasets were averaged, and the re-
sults are shown in Figure 8.
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The figure shows that while pruning improves predictive
accuracy (precision at 100% recall), it reduces the precision
of a solution for most values of recall.  The break-even
point occurs at only 80% recall.  This suggests that the use
of pruning should be tied to the performance metric most
appropriate for a given learning task.

Identifying Error Prone Small Disjuncts

Almost all strategies for addressing the problem with small
disjuncts treat small and large disjuncts differently.  Conse-
quently, if we hope to address this problem, we need a way
to effectively distinguish between the two.  The definition
that a small disjunct is a disjunct that correctly classifies
few training examples (Holte, et al. 1989) is not particu-
larly helpful in this context.  What is needed is a method
for determining a good threshold t, such that disjuncts with
size less than t have a much higher error rate than those
with size greater than t.  Based on our results we suggest
that the threshold t should be based on the relationship
between disjunct size and error rate, since error rate is not
related to disjunct size in a simple way, and more specifi-
cally, using error concentration.  Based on the EC curve in
Figure 2, for example, it seems reasonable to conclude that
the threshold for the Vote dataset should be 4, 16, or a
value in between.  For datasets such as Market2 or Labor,
where the EC is very low, we may choose not to distinguish
small disjuncts from large disjuncts at all.

Conclusion

This paper provides insight into the role of small disjuncts
in learning.  By measuring error concentration on concepts
induced from 30 datasets, we demonstrate that the problem
with small disjuncts occurs to varying degrees, but is quite
severe for many of these concepts.  We show that even
after pruning the problem is still evident, and, by using
RIPPER, showed that our results are not an artifact of C4.5.

Although the focus of the paper was on measuring and
understanding the impact of small disjuncts on learning, we
feel our results could lead to improved learning algorithms.
First, error concentration can help identify the threshold for
categorizing a disjunct as small, and hence can be used to
improve the effectiveness of variable bias system in ad-
dressing the problem with small disjuncts.  The EC value
could also be used to control the pruning strategy of a
learning algorithm, since low EC values seems to indicate
that pruning may actually decrease predictive accuracy.  A
high EC value is also a clear indication that one is likely to
be able to trade-off reduced recall for greatly improved
precision.
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