
The Impact of Small Disjuncts on Classifier
Learning

Gary M. Weiss

Abstract Many classifier induction systems express the induced classifier in terms
of a disjunctive description. Small disjuncts are those disjuncts that classify few
training examples. These disjuncts are interesting because they are known to have a
much higher error rate than large disjuncts and are responsible for many, if not most,
of all classification errors. Previous research has investigated this phenomenon by
performing ad hoc analyses of a small number of data sets. In this article we pro-
vide a much more systematic study of small disjuncts and analyze how they affect
classifiers induced from thirty real-world data sets. A new metric, error concentra-
tion, is used to show that for these thirty data sets classification errors are often
heavily concentrated toward the smaller disjuncts. Various factors, including prun-
ing, training-set size, noise and class imbalance are then analyzed to determine how
they affect small disjuncts and the distribution of errors across disjuncts. This anal-
ysis provides many insights into why some data sets are difficult to learn from and
also provides a better understanding of classifier learningin general. We believe that
such an understanding is critical to the development of improved classifier induction
algorithms.

1 Introduction

It has long been observed that certain classification problems are quite difficult and
that high levels of classification performance are not achievable in these cases. In
certain circumstances entire classes of problems tend to bedifficult, such as clas-
sification problems that deal with class imbalance [18]. These problems have often
been studied in detail and sometimes methods have even been proposed for improv-
ing classification performance, but generally there is little explanation for why these
techniques work and the research instead relies on empirical evaluations of the meth-
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ods. As just one example, most of the research aimed at improving the performance
of classifiers induced from imbalanced data sets provides little or no justification
for the methods. In this article we focus on the role of small disjuncts in classifier
learning and in so doing provide the terms and concepts necessary to provide these
justifications. Additionally, we provide a number of conclusions about what makes
classifier learning hard and under what circumstances.

Classifier induction programs often express the learned classifier as a disjunction.
For example, such systems often express the classifier as a decision tree or a rule
set, in which case each leaf in the decision tree or rule in therule set correspond to
a disjunct. Thesize of a disjunct is defined as the number of training examples that
the disjunct correctly classifies [9]. A number of empiricalstudies have shown that
learned concepts include disjuncts that span a wide range ofdisjunct sizes and that
small disjuncts—those disjuncts that correctly classify only a few training exam-
ples—collectively cover a significant percentage of the total test examples. These
studies also show that small disjuncts have a much higher error rate than large dis-
juncts, a phenomenon sometimes referred to as the “problem with small disjuncts”
and that these small disjuncts collectively contribute a significant portion of the total
test errors.

One problem with past studies is that each study analyzes classifiers induced
from only a few data sets. In particular, Holte et al. [9] analyze two data sets, Ali
and Pazzani [1] one data set, Danyluk and Provost [8] one dataset, Weiss [17] two
data sets, Weiss and Hirsh [19] two data sets, and Carvalho and Freitas [3] two data
sets. Because of the small number of data sets analyzed, and because there was no
established way to measure the degree to which errors were concentrated toward
the small disjuncts, these studies were not able to quantifythe problem with small
disjuncts. This article addresses these concerns. First, anew metric, error concentra-
tion, is introduced which quantifies, in a single number, theextent to which errors
are concentrated toward the smaller disjuncts. This metricis then used to measure
the error concentration of the classifiers induced from thirty data sets. Because we
analyze a large number of data sets, we are able to draw general conclusions about
the role that small disjuncts play in classifier learning.

Small disjuncts are of interest because they are responsible for many—if not
most—of the errors that result when the induced classifier isapplied to new (test)
data. This in turn leads to two reasons for studying small disjuncts. First, we hope
that what we learn about small disjuncts may enable us to build more effective clas-
sifier induction programs by addressing the problem with small disjuncts. Specifi-
cally, such learners would improve the classification performance of the examples
covered by the small disjuncts without excessively degrading the accuracy of the
examples covered by the larger disjuncts, such that theoverall performance of the
classifier is improved. Existing efforts to do just this, which are described in Sect. 9,
have produced, at best, only marginal improvements. A better understanding of
small disjuncts and their role in learning may be necessary before further advances
are possible.

The second reason for studying small disjuncts is to providea better understand-
ing of small disjuncts and, by extension, of classifier learning in general. Most of the
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research on small disjuncts has not focused on this, which isthe main focus of this
article. Essentially, small disjuncts are used as a lens through which to examine fac-
tors that are important to classifier learning, which is perhaps the most common data
mining method. Pruning, training-set size, noise, and class imbalance are each ana-
lyzed to see how they affect small disjuncts and the distribution of errors throughout
the disjuncts—and, more generally, how this impacts classifier learning.

This article is organized as follows. In Sect. 2 we analyze the role of small dis-
juncts in classifier learning and introduce relevant metrics and terminology. Sect. 3
then describes the methodology used to conduct our experiments. Our experimental
results and the analysis of these results are then presentedin the next five sections.
We provide a general analysis of the impact that small disjuncts have on learning
in Sect. 4 and then, over the next four sections, we then analyze how each of the
following factors interact with small disjuncts during thelearning process: pruning
(Sect. 5), training set size (Sect. 6), noise (Sect. 7) and class imbalance (Sect. 8). Re-
lated work is covered in Sect. 9 and our conclusions and future work are discussed
in Sect. 10.

2 An Example: The Vote Data Set

In order to illustrate the problem with small disjuncts, theperformance of a classifier
induced by C4.5 [14] from the Vote data set is shown in Fig. 1. This figure shows
how the correctly and incorrectly classified test examples are distributed across the
disjuncts in the induced classifier. The overall test set error rate for the classifier is
6.9%.

Each bar in the histogram in Fig. 1 covers ten sizes of disjuncts. The leftmost
bin shows that those disjuncts that correctly classify 0 – 9 training examples cover
9.5 test examples, of which 7.1 are classified correctly and 2.4 classified incorrectly
(fractional values occur because the results are averaged over 10 cross-validated
runs). Fig. 1 clearly shows that the errors are concentratedtoward the smaller dis-
juncts. Analysis at a finer level of granularity shows that the errors are skewed even
more toward the small disjuncts—75% of the errors in the leftmost bin come from
disjuncts of size 0 and 1. One may also be interested in the distribution of disjuncts
by disjunct size. The classifier associated with Fig. 1 is made up of fifty disjuncts,
of which forty-five are associated with the leftmost bin (i.e. have a disjunct size less
than 10). Note that disjuncts of size 0 were formed because when the decision tree
learner used to generate the classifier splits a nodeN using a featuref , the split will
branch on all possible values off —even if a feature value does not occur within the
training data atN.

In order to more effectively show the extent to which errors are concentrated
toward the small disjuncts, we plot the percentage of total test errors versus the
percentage of correctly classified test examples contributed by a set of disjuncts. The
curve in Fig. 2 is generated by starting with the smallest disjunct from the classifier
induced from the Vote data set and then progressively addinglarger disjuncts. This
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Fig. 1 Distribution of Examples for Vote Data Set
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Fig. 2 Error Concentration Curve for the Vote Data Set

curve shows, for example, that disjuncts with size 0-4 cover5.1% of the correctly
classified test examples but 73% of the total test errors. Theline Y=X represents a
classifier in which classification errors are distributed uniformly across the disjuncts,
independent of the size of the disjunct. Since the “error concentration” curve in
Fig. 2 falls above the line Y=X, the errors produced by this classifier are more
concentrated toward the smaller disjuncts than to the larger disjuncts.
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To make it easy to compare the degree to which errors are concentrated toward
the smaller disjuncts for different classifiers, we introduce theerror concentration
(EC) metric. The error concentration of a classifier is defined as the fraction of the
total areaabove the line Y=X that falls below its error concentration curve.Using
this scheme, the higher the error concentration, the more concentrated the errors
are toward the smaller disjuncts. Error concentration may range from a value of
+1, which indicates that all test errors are contributed by the smallest disjuncts,
before even a single correctly classified test example is covered, to a value of –1,
which indicates that all test errors are contributed by the largest disjuncts, after all
correctly classified test examples are covered. Based on previous research, which
indicates that small disjuncts have higher error rates thanlarge disjuncts, one would
expect the error concentration of most classifiers to be greater than 0. The error
concentration for the classifier described in Fig. 2 is .848,indicating that the errors
are highly concentrated toward the small disjuncts.

3 Description of Experiments

The majority of results presented in this paper are based on an analysis of thirty
data sets, of which nineteen were obtained from the UCI repository [2] and eleven,
identified, with a “+”, were obtained from researchers at AT&T [6, 7]. These data
sets are summarized in Table 1.

Table 1 Description of Thirty Data Sets

# Dataset Size # Dataset Size
1 adult 21,280 16 market1+ 3,180
2 bands 538 17 market2+ 11,000
3 blackjack+ 15,000 18 move+ 3,028
4 breast-wisc 699 19network1+ 3,577
5 bridges 101 20 network2+ 3,826
6 coding 20,000 21 ocr+ 2,688
7 crx 690 22 promoters 106
8 german 1,000 23 sonar 208
9 heart-hungarian 293 24 soybean-large 682
10 hepatitis 155 25splice-junction 3,175
11 horse-colic 300 26 ticket1+ 556
12 hypothyroid 3,771 27 ticket2+ 556
13 kr-vs-kp 3,196 28 ticket3+ 556
14 labor 57 29 vote 435
15 liver 345 30 weather+ 5,597

Numerous experiments are run on these data sets to assess theimpact that small
disjuncts have on learning. The majority of the experimental results presented in this
article are based on C4.5 [14], a popular program for inducing decision trees. C4.5
was modified by the author to collect a variety of informationrelated to disjunct
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size. Note that disjunct size is defined based on the number ofexamples covered
by the training data but, as is typical in data mining, the classification results are
measured based on the performance on the test data. Many experiments were re-
peated using Ripper [6], a program for inducing rule sets, toensure the generality
of our results. Because Ripper exports detailed information about the performance
of individual rules, internal modifications to the program were not required in order
to track the statistics related to disjunct size. All experiments for both learners em-
ploy ten-fold cross validation and all results are based on the averages over these ten
runs. Pruning tends to eliminate most small disjuncts and, for this reason, research
on small disjuncts generally disables pruning [8, 9, 17, 19]. If this were not done,
then pruning would mask the problem with small disjuncts. While this means that
the analyzed classifiers are not the same as the ones that would be generated using
the learners in their standard configurations, these results are nonetheless important,
since the performance of the unpruned classifiers constrains the performance of the
pruned classifiers. However, in this article both unpruned and pruned classifiers are
analyzed, for both C4.5 and Ripper. This makes it possible toanalyze the effect that
pruning has on small disjuncts and to evaluate pruning as a strategy for addressing
the problem with small disjuncts. As the results for pruningin Sect. 5 will show,
the problem with small disjuncts is still evident after pruning, although to a lesser
extent.

All results, other than those described in Sect. 5, are basedon the use of C4.5 and
Ripper with their pruning strategies disabled. For C4.5, when pruning is disabled the
–m 1 option is also used, to ensure that C4.5 does not stop splitting a node before
the node contains examples belonging to a single class (the default is –m 2). Ripper
is configured to produce unordered rules so that it does not produce a single default
rule to cover the majority class.

4 The Problem with Small Disjuncts

Previous research claims that errors tend to be concentrated most heavily in the
smaller disjuncts [1, 3, 8, 9, 15, 17, 19]. In this section we provide the most com-
prehensive analysis of this claim to date, by measuring the degree to which errors
are concentrated toward the smaller disjuncts for the thirty data sets listed in Table
1, for classifiers induced by C4.5 and Ripper.

The experimental results for C4.5 and Ripper, in order of decreasing error con-
centration, are displayed in Tables 2 and 3, respectively. In addition to specifying
the error concentration, these tables the error rate of the induced classifier, the size
of the data set, and the size of the largest disjunct in the induced classifier. They also
specify the percentage of the total test errors that are contributed by the smallest
disjuncts that collectively cover 10% of the correctly classified test examples and
then the percentage of the total correctly classified examples that are covered by the
smallest disjuncts that collectively cover half of the total errors.
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Table 2 Error Concentration Results for C4.5

EC
Rank

Dataset
Name

Error
Rate

Dataset
Size

Largest
Disjunct

% Errs at
10% correct

% Correct at
50% errors

Error
Conc.

1 kr-vs-kp 0.3 3,196 669 75.0 1.1 .874
2 hypothyroid 0.5 3,771 2,697 85.2 0.8 .852
3 vote 6.9 435 197 73.0 1.9 .848
4 splice-junction 5.8 3,175 287 76.5 4.0 .818
5 ticket2 5.8 556 319 76.1 2.7 .758
6 ticket1 2.2 556 366 54.8 4.4 .752
7 ticket3 3.6 556 339 60.5 4.6 .744
8 soybean-large 9.1 682 56 53.8 9.3 .742
9 breast-wisc 5.0 699 332 47.3 10.7 .662

10 ocr 2.2 2,688 1,186 52.1 8.9 .558

11 hepatitis 22.1 155 49 30.1 17.2 .508
12 horse-colic 16.3 300 75 31.5 18.2 .504
13 crx 19.0 690 58 32.4 14.3 .502
14 bridges 15.8 101 33 15.0 23.2 .452
15 heart-hungar. 24.5 293 69 31.7 21.9 .450
16 market1 23.6 3,180 181 29.7 21.1 .440
17 adult 16.3 21,280 1,441 28.7 21.8 .424
18 weather 33.2 5,597 151 25.6 22.4 .416
19 network2 23.9 3,826 618 31.2 24.2 .384
20 promoters 24.3 106 20 32.8 20.6 .376
21 network1 24.1 3,577 528 26.1 24.1 .358
22 german 31.7 1,000 56 17.8 29.4 .356

23 coding 25.5 20,000 195 22.5 30.9 .294
24 move 23.5 3,028 35 17.0 30.8 .284
25 sonar 28.4 208 50 15.9 32.9 .226
26 bands 29.0 538 50 65.2 54.1 .178
27 liver 34.5 345 44 13.7 40.3 .120
28 blackjack 27.8 15,000 1,989 18.6 39.3 .108
29 labor 20.7 57 19 33.7 49.1 .102
30 market2 46.3 11,000 264 10.3 45.5 .040

As an example of how to interpret the results in these tables,consider the entry
for the kr-vs-kp data set in Table 2. The error concentrationfor the classifier induced
from this data set is .874. Furthermore, the smallest disjuncts that collectively cover
10% of the correctly classified test examples contribute 75%of the total test errors,
while the smallest disjuncts that contribute half of the total errors cover only 1.1%
of the total correctly-classified examples. These measurements provide a concrete
indication of just how concentrated the errors are toward the smaller disjuncts.

The results for C4.5 and Ripper show that although the error concentration values
are, as expected, almost always positive, the values vary widely, indicating that the
induced classifiers suffer from the problem of small disjuncts to varying degrees.
The classifiers induced using Ripper have a slightly smalleraverage error concen-
tration than those induced using C4.5 (.445 vs. .471), indicating that the classifiers
induced by Ripper have the errors spread slightly more uniformly across the dis-
juncts. Overall, Ripper and C4.5 tend to generate classifiers with similar error con-
centration values. This can be seen by comparing the EC rank in Table 3 for Ripper
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Table 3 Error Concentration Results for Ripper

EC
Rank

C4.5
Rank

Dataset
Name

Error
Rate

Dataset
Size

Largest
Disjunct

% Errs
10% correct

% Correct
50% Errs

Error
Conc.

1 2 hypothyroid 1.2 3,771 2,696 96.0 0.1 .898
2 1 kr-vs-kp 0.8 3,196 669 92.9 2.2 .840
3 6 ticket1 3.5 556 367 69.4 1.6 .802
4 7 ticket3 4.5 556 333 61.4 5.6 .790
5 5 ticket2 6.8 556 261 71.0 3.2 .782
6 3 vote 6.0 435 197 75.8 3.0 .756
7 4 splice-junction 6.1 3,175 422 62.3 7.9 .678
8 9 breast-wisc 5.3 699 355 68.0 3.6 .660
9 8 soybean-large 11.3 682 61 69.3 4.8 .638

10 10 ocr 2.6 2,688 804 50.5 10.0 .560

11 17 adult 19.7 21,280 1,488 36.9 15.0 .516
12 16 market1 25.0 3,180 243 32.2 16.9 .470
13 12 horse-colic 22.0 300 73 20.7 23.9 .444
14 13 crx 17.0 690 120 32.5 19.7 .424
15 15 heart-hungar. 23.9 293 67 25.8 24.8 .390
16 26 bands 21.9 538 62 25.6 29.2 .380
17 25 sonar 31.0 208 47 32.6 23.9 .376
18 23 coding 28.2 20,000 206 22.6 29.2 .374
19 18 weather 30.2 5,597 201 23.8 24.8 .356
20 24 move 32.1 3,028 45 25.9 25.6 .342
21 14 bridges 14.5 101 39 41.7 35.5 .334
22 20 promoters 19.8 106 24 20.0 20.0 .326
23 11 hepatitis 20.3 155 60 19.3 20.8 .302
24 22 german 30.8 1,000 99 12.1 35.0 .300

25 19 network2 23.1 3,826 77 25.6 22.9 .242
26 27 liver 34.0 345 28 28.2 32.0 .198
27 28 blackjack 30.2 15,000 1,427 12.3 42.3 .108
28 21 network1 23.4 3,577 79 18.9 46.0 .090
29 29 labor 24.5 57 21 0.0 18.3 -.006
30 30 market2 48.8 11,000 55 10.4 49.8 -.018

(column 1) with the EC rank for C4.5 (column 2), which is displayed graphically
in the scatter plot in Fig. 3, where each point represents theerror concentration for
a single data set. Since the points in Fig. 3 are clustered around the line Y=X, both
learners tend to produce classifiers with similar error concentrations, and hence tend
to suffer from the problem with small disjuncts to similar degrees. The agreement
is especially close for the most interesting cases, where the error concentrations are
large—the largest ten error concentration values in Fig. 3,for both C4.5 and Ripper,
are generated by the same ten data sets.

With respect to classification accuracy, the two learners perform similarly, al-
though C4.5 performs slightly better (it outperforms Ripper on 18 of the 30 data
sets, with an average error rate of 18.4% vs. 19.0%). However, as will be shown in
the next section, when pruning is used Ripper slightly outperforms C4.5.

The results in Table 2 and Table 3 indicate that, for both C4.5and Ripper, there
is a relationship between the error rate and error concentration of the induced clas-
sifiers. These results show that, for the thirty data sets, when the induced classifier
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Fig. 3 Comparison of C4.5 and Ripper Error Concentration Values

has an error rate less than 12%, then the error concentrationis always greater than
.50. Based on the error rate and error concentration values,the induced classifiers
seem to fit naturally into the following three categories:

1. High-EC/Moderate-ER data sets 1-10 for C4.5 and Ripper
2. Medium-EC/High-ER data sets 11-22 for C4.5; 11-24 for Ripper
3. Low-EC/High-ER data sets 23-30 for C4.5; 25-30 for Ripper

It is interesting to note that for those data sets in the High-EC/Moderate-ER cat-
egory, the largest disjunct generally covers a very large portion of the total training
examples. As an example, consider the hypothyroid data set.Of the 3,394 examples
(90% of the total data) used for training, nearly 2,700 of these examples, or 79%, are
covered by the largest disjunct induced by C4.5 and Ripper. To see that these large
disjuncts are extremely accurate, consider the vote data set, which falls within the
same category. The distribution of errors for the vote data set was shown previously
in Fig. 1. The data used to generate this figure indicates thatthe largest disjunct,
which covers 23% of the total training examples, does not contribute a single error
when used to classify the test data. These observations leadus to speculate that con-
cepts that can be learned well (i.e., have low error rates) are often made up of very
general cases that lead to highly accurate large disjunct—and therefore to classifiers
with very high error concentrations. Concepts that are difficult to learn, on the other
hand, either are not made up of very general cases, or, due to limitations with the ex-
pressive power of the learner, these general cases cannot berepresented using large
disjuncts. This leads to classifiers without very large, highly accurate, disjuncts and
with many small disjuncts. These classifiers tend to have much smaller error con-
centrations.
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Fig. 4 Distribution of Examples with Pruning for the Vote Data Set

5 The Effect of Pruning on Small Disjuncts

The results in the previous section, consistent with previous research on small dis-
juncts, were generated using C4.5 and Ripper with their pruning strategies disabled.
Pruning is generally not used when studying small disjunctsbecause of the belief
that it disproportionately eliminates small disjuncts from the induced classifier and
thereby obscures the very phenomenon we wish to study. However, because prun-
ing is employed by many learning systems, it is worthwhile tounderstand how it
affects small disjuncts and the distribution of errors across disjuncts—as well as
how effective it is at addressing the problem with small disjuncts. In this section we
investigate the effect of pruning on the distribution of errors across the disjuncts in
the induced classifier. We begin with an illustrative example. Fig. 4 shows the dis-
tribution of errors for the classifier induced from the vote data set using C4.5 with
pruning. This distribution can be compared to the corresponding distribution in Fig.
1 that was generated using C4.5 without pruning, to show the effect that pruning has
on the distribution of errors.

A comparison of Fig. 4 with Fig. 1 shows that with pruning the errors are less
concentrated in the small disjuncts. This is also confirmed by the error concentration
value, which is reduced from .848 to .712. It is also apparentthat with pruning far
fewer examples are classified by disjuncts with size 0-9 and 10-19. The underlying
data indicates that without pruning the induced classifierstypically (i.e., over the 10
runs) contain 48 disjuncts, of which 45 are of size 10 or less,while with pruning
only 10 disjuncts remain, of which 7 have size 10 or less. So, in this case pruning
eliminates 38 of the 45 disjuncts with size 10 or less. This confirms the assumption
that pruning eliminates many, if not most, small disjuncts.The emancipated exam-
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ples—those that would have been classified by the eliminateddisjuncts—are now
classified by larger disjuncts. It should be noted, however,that even with pruning
the error concentration is still quite positive (.712), indicating that the errors still
tend to be concentrated toward the small disjuncts. In this case pruning also causes
the overall error rate of the classifier to decrease from 6.9%to 5.3%.

The performance of the classifiers induced from the thirty data sets, using C4.5
and Ripper with their default pruning strategies, is presented in Table 4 and Table 5,
respectively. The induced classifiers are again placed intothree categories, although
in this case the patterns that were previously observed are not nearly as evident.
In particular, with pruning some classifiers continue to have low error rates but no
longer have large error concentrations (e.g., ocr, soybean-lg, and ticket3 for C4.5
only). In these cases pruning has caused the rarely occurring classification errors to
be distributed much more uniformly throughout the disjuncts.

Table 4 Error Concentration Results for C4.5 with Pruning

EC
Rank

Dataset
Error
Rate

Dataset
Size

Largest
Disjunct

% Errors
10% correct

% Correct
50% errors

Error
Conc.

1 hypothyroid 0.5 3,771 2,732 90.7 0.7 .818
2 ticket1 1.6 556 410 46.7 10.3 .730
3 vote 5.3 435 221 68.7 2.9 .712
4 breast-wisc 4.9 699 345 49.6 10.0 .688
5 kr-vs-kp 0.6 3,196 669 35.4 15.6 .658
6 splice-junction 4.2 3,175 479 41.6 25.9 .566
7 crx 15.1 690 267 45.2 11.5 .516

8 ticket2 4.9 556 442 48.1 12.8 .474
9 weather 31.1 5,597 573 26.2 22.2 .442

10 adult 14.1 21,280 5,018 36.6 17.6 .424
11 german 28.4 1,000 313 29.6 21.9 .404
12 soybean-large 8.2 682 61 48.0 14.4 .394
13 network2 22.2 3,826 1,685 30.8 21.2 .362
14 ocr 2.7 2,688 1,350 40.4 34.3 .348
15 market1 20.9 3,180 830 28.4 23.6 .336
16 network1 22.4 3,577 1,470 24.4 27.2 .318

17 ticket3 2.7 556 431 37.0 20.9 .310
18 horse-colic 14.7 300 137 35.8 19.3 .272

19 coding 27.7 20,000 415 17.2 34.9 .216
20 sonar 28.4 208 50 15.1 34.6 .202
21 heart-hung. 21.4 293 132 19.9 31.8 .198
22 hepatitis 18.2 155 89 24.2 26.3 .168
23 liver 35.4 345 59 17.6 34.8 .162
24 promoters 24.4 106 26 17.2 37.0 .128
25 move 23.9 3,028 216 14.4 42.9 .094
26 blackjack 27.6 15,000 3,053 16.9 44.7 .092
27 labor 22.3 57 24 14.3 40.5 .082
28 bridges 15.8 101 67 14.9 50.1 .064
29 market2 45.1 11,000 426 12.2 44.7 .060
30 bands 30.1 538 279 0.8 58.3 -.184
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Table 5 Error Concentration Results for Ripper with Pruning

EC
Rank

C4.5
Rank

Dataset
Error
Rate

Dataset
Size

Largest
Disjunct

% Errors
10% correct

% Correct
50% errs

Error
Conc.

1 1 hypothyroid 0.9 3,771 2,732 97.2 0.6 .930
2 5 kr-vs-kp 0.8 3196 669 56.8 5.4 .746
3 2 ticket1 1.6 556 410 41.5 11.9 .740
4 6 splice-junction 5.8 3,175 552 46.9 10.7 .690
5 3 vote 4.1 435 221 62.5 2.8 .648
6 8 ticket2 4.5 556 405 73.3 7.8 .574
7 17 ticket3 4.0 556 412 71.3 9.0 .516

8 14 ocr 2.7 2,688 854 29.4 24.5 .306

9 20 sonar 29.7 208 59 23.1 25.4 .282
10 30 bands 26.0 538 118 22.1 24.0 .218
11 9 weather 26.9 5,597 1,148 18.8 35.4 .198

12 23 liver 32.1 345 69 13.6 34.7 .146
13 12 soybean-large 9.8 682 66 17.8 47.4 .128
14 11 german 29.4 1,000 390 14.7 32.4 .128
15 4 breast-wisc 4.4 699 370 14.4 31.4 .124
16 15 market1 21.3 3,180 998 19.0 43.4 .114
17 7 crx 15.1 690 272 16.4 39.1 .108
18 13 network2 22.6 3,826 1,861 15.3 39.5 .090
19 16 network1 23.3 3,577 1,765 16.0 42.0 .090
20 18 horse-colic 15.7 300 141 13.8 36.6 .086
21 21 hungar-heart 18.8 293 138 17.9 42.6 .072
22 19 coding 28.3 20,000 894 12.7 46.5 .052
23 26 blackjack 28.1 15,000 4,893 16.8 45.3 .040
24 22 hepatitis 22.3 155 93 25.5 57.2 -.004
25 29 market2 40.9 11,000 2,457 7.7 50.2 -.016
26 28 bridges 18.3 101 71 19.1 55.0 -.024
27 25 move 24.1 3,028 320 10.9 63.1 -.094
28 10 adult 15.2 21,280 9,293 9.8 67.9 -.146
29 27 labor 18.2 57 25 0.0 70.9 -.228
30 24 promoters 11.9 106 32 0.0 54.1 -.324

The results in Table 4 and Table 5, when compared to the results in Table 2 and
3, show that pruning tends to reduce the error concentrationof most classifiers. This
is shown graphically by the scatter plot in Fig. 5. Since mostof the points fall below
the line Y=X, we conclude that for both C4.5 and Ripper, pruning, as expected,
tends to reduce error concentration. However, Fig. 5 makes it clear that pruning
has a more dramatic impact on the error concentration for classifiers induced using
Ripper than those induced using C4.5. Pruning causes the error concentration to
decrease for 23 of the 30 data sets for C4.5 and for 26 of the 30 data sets for Ripper.
More significant, however, is the magnitude of the changes inerror concentration.
On average, pruning causes the error concentration for classifiers induced using
C4.5 to drop from .471 to .375, while the corresponding drop when using Ripper
is from .445 to .206. These results indicate that the pruned classifiers produced by
Ripper have the errors much less concentrated toward the small disjuncts than those
produced by C4.5. Given that Ripper is generally known to produce very simple rule
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Fig. 5 Effect of Pruning on Error Concentration

sets, this larger decrease in error concentration is likelydue to the fact that Ripper
has a more aggressive pruning strategy than C4.5.

The results in Table 4 and Table 5 and in Fig. 5 indicate that, even with pruning,
the “problem with small disjuncts” is still quite evident for both C4.5 and Rip-
per. For both learners the error concentration, averaged over the thirty data sets,
is still decidedly positive. Furthermore, even with pruning both learners produce
many classifiers with error concentrations greater than .50. However, it is certainly
worth noting that with pruning, seven of the classifiers induced by Ripper haveneg-
ative error concentrations. Comparing the error concentration values for Ripper with
and without pruning reveals one particularly interesting example. For the adult data
set, pruning causes the error concentration to drop from .516 to -.146. This large
change likely indicates that many error-prone small disjuncts are eliminated. This
is supported by the fact that the size of the largest disjunctin the induced classifier
changes from 1,488 without pruning to 9,293 with pruning. Thus, pruning seems to
have an enormous affect on this Ripper classifier.

The effect that pruning has on error rate is shown graphically in Fig. 6 for both
C4.5 and Ripper. Because most of the points in Fig. 6 fall below the line Y=X,
we conclude that pruning tends to reduce the error rate for both C4.5 and Ripper.
However, the figure also makes it clear that pruning improvesthe performance of
Ripper more than it improves the performance of C4.5. In particular, for C4.5 prun-
ing causes the error rate to drop for 19 of the 30 data sets while for Ripper pruning
causes the error rate to drop for 24 of the 30 data sets. Over the 30 data sets pruning
causes C4.5’s error rate to drop from 18.4% to 17.5% and Ripper’s error rate to drop
from 19.0% to 16.9%.
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Fig. 6 Effect of Pruning on Error Rate

Given that pruning tends to affect small disjuncts more thanlarge disjuncts, an
interesting question is whether pruning is more effective at reducing error rate when
the errors in the unpruned classifier are most highly concentrated in the small dis-
juncts. Fig. 7 addresses this by plotting the absolute reduction in error rate due to
pruning versus the error concentration rank of the unprunedclassifier. The data sets
with high and medium error concentrations show a fairly consistent reduction in
error rate.1 Finally, the classifiers in the Low-EC/High-ER category show a netin-
crease in error rate. These results suggest that pruning is most beneficial when the
errors are most highly concentrated in the small disjuncts—and may actually hurt
when this is not the case. The results for Ripper show a somewhat similar pattern, al-
though the unpruned classifiers with low error concentrations do consistently show
some reduction in error rate when pruning is used.

The results in this section show that pruned classifiers generally have lower error
rates and lower error concentrations than their unpruned counterparts. Our analy-
sis shows us that for the vote data set this change is due to thefact that pruning
eliminates most small disjuncts. A similar analysis, performed for other data sets
in this study, shows a similar pattern—pruning eliminates most small disjuncts. In
summary, pruning is a strategy for dealing with the “problemof small disjuncts.”
Pruning eliminates many small disjuncts and the emancipated examples that would

1 Note that although the classifiers in the Medium-EC/High-ER category show a greater absolute
reduction in error rate than those in the High-EC/Moderate-ER group,this corresponds to a smaller
relative reduction in error rate, due to the differences in the error rate of the unpruned classifiers.
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Fig. 7 Improvement in Error Rate versus Error Concentration Rank

have been classified by the eliminated disjuncts are then classified by other, typically
much larger, disjuncts. The result of pruning is that there is a decrease in the aver-
age error rate of the induced classifiers and the remaining errors are more uniformly
distributed across the disjuncts.

One can gauge the effectiveness of pruning as a strategy for addressing the prob-
lem with small disjuncts by comparing it to an “ideal” strategy that causes the error
rate of the small disjuncts to equal the error rate of the larger disjuncts. Table 6
shows the average error rates of the classifiers induced by C4.5 for the thirty data
sets, without pruning, with pruning, and with two variants of this idealized strategy.
The error rates for the idealized strategies are determinedby first identifying the
smallest disjuncts that collectively cover 10% (20%) of thetraining examples and
then calculating the error rate of the classifier as if the error rate of these small dis-
juncts equaled the error rate of the examples classified by all of the other disjuncts.

Table 6 Comparison of Pruning to Idealized Strategy

Strategy

No Pruning Pruning
Idealized

(10%)
Idealized

(20%)
Average Error Rate 18.4% 17.5% 15.2% 13.5%

Relative Improvement 4.9% 17.4% 26.6%

The results in Table 6 show that the idealized strategy yields much more dra-
matic improvements in error rate than pruning, even when it is only applied to the
disjuncts that cover 10% of the training examples. This indicates that pruning is not
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very effective at addressing the problem with small disjuncts and provides a strong
motivation for finding better strategies for handling smalldisjuncts (several such
strategies are discussed in Sect. 9). Note, however, that weare not suggesting that
the performance of the idealized strategies can necessarily ever be realized.

For many real-world problems, it is more important to classify a reduced set of
examples with high precision than in finding the classifier with the best overall ac-
curacy. For example, if the task is to identify customers likely to buy a product in
response to a direct marketing campaign, it may be impossible to utilize all clas-
sifications—budgetary concerns may permit one to only contact the 10,000 people
most likely to make a purchase. Given that our results indicate that pruningde-
creases the precision of the larger, more precise disjuncts (compare Fig. 1 and Fig.
4), this suggests that pruning may be harmful in such cases—even though pruning
leads to an overall increase in the accuracy of the induced classifier. To investigate
this further, classifiers were generated by starting with the largest disjunct and then
progressively adding smaller disjuncts. A classification decision is only made if an
example is covered by one of the added disjuncts; otherwise no classification is
made. The error rate (i.e., precision) of the resulting classifiers, generated with and
without pruning, is shown in Table 7, as is the difference in error rates. A negative
difference indicates that pruning leads to an improvement (i.e., a reduction) in error
rate, while a positive difference indicates that pruning leads to an increase in error
rate. Results are reported for classifiers with disjuncts that collectively cover 10%,
30%, 50%, 70% and 100% of the training examples.

The last row in Table 7 shows the error rates averaged over thethirty data sets.
These results clearly show that, over the thirty data sets, pruning only helps for the
last column—when all disjuncts are included in the evaluated classifier. Note that
these results, which correspond to the accuracy results presented earlier, are typi-
cally the only results that are described. This leads to an overly optimistic view of
pruning, since in other cases pruning results in ahigher overall error rate. As a con-
crete example, consider the case where we only use the disjuncts that collectively
cover 50% of the training examples. In this case C4.5 with pruning generates clas-
sifiers with an average error rate of 12.9% whereas C4.5 without pruning generates
classifiers with an average error rate of 11.4%. Looking at the individual results for
this situation, pruning does worse for 17 of the data sets, better for 9 of the data sets,
and the same for 4 of the data sets. However, the magnitude of the differences is
much greater in the cases where pruning performs worse.

The results from the last row of Table 7 are displayed graphically in Fig. 8, which
plots the error rates, with and without pruning, averaged over the thirty data sets.
Note, however, that unlike the results in Table 7, Fig. 8 shows classifier performance
at each 10% increment.

Fig. 8 clearly demonstrates that under most circumstances pruning doesnot pro-
duce the best results. While it produces marginally better results when predictive
accuracy is the evaluation metric (i.e., all examples must be classified), it produces
much poorer results when one can be very selective about the classification “rules”
that are used. These results confirm the hypothesis that whenpruning eliminates
some small disjuncts, the emancipated examples cause the error rate of the more ac-
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Table 7 Effect of Pruning when Classification Based only on Largest Disjuncts

Dataset Name Error rate with pruning (yes) and without pruning (no)

10% covered 30% covered 70% covered 100% covered
Pruning used: yes no ∆ yes no ∆ yes no ∆ yes no ∆
kr-vs-kp 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.6 0.3 0.3
hypothyroid 0.1 0.3 -0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.5 0.5 0.0
vote 3.1 0.0 3.1 1.0 0.0 1.0 2.3 0.7 1.6 5.3 6.9 -1.6
splice-junction 0.3 0.9 -0.6 0.2 0.3 -0.1 2.4 0.6 1.8 4.2 5.8 -1.6
ticket2 0.3 0.0 0.3 2.7 0.8 1.9 2.5 1.0 1.5 4.9 5.8 -0.9

ticket1 0.1 2.1 -1.9 0.3 0.6 -0.3 0.3 0.3 0.0 1.6 2.2 -0.5
ticket3 2.1 2.0 0.1 1.7 1.2 0.5 1.5 0.5 1.0 2.7 3.6 -0.9
soybean-large 1.5 0.0 1.5 5.4 1.0 4.4 4.7 1.3 3.5 8.2 9.1 -0.9
breast-wisc 1.5 1.1 0.4 1.0 1.0 0.0 1.0 1.4 -0.4 4.9 5.0 -0.1
ocr 1.5 1.8 -0.3 1.9 0.8 1.1 1.9 1.0 0.9 2.7 2.2 0.5
hepatitis 5.4 6.7 -1.3 15.0 2.2 12.9 12.8 12.1 0.6 18.2 22.1 -3.9
horse-colic 20.2 1.8 18.4 14.6 4.6 10.0 10.7 10.6 0.1 14.7 16.3 -1.7
crx 7.0 7.3 -0.3 7.9 6.5 1.4 7.8 9.3 -1.6 15.1 19.0 -3.9
bridges 10.0 0.0 10.0 17.5 0.0 17.5 14.9 9.4 5.4 15.8 15.8 0.0
heart-hung. 15.4 6.2 9.2 18.4 11.4 7.0 16.0 16.4 -0.4 21.4 24.5 -3.1
market1 16.6 2.2 14.4 12.2 7.8 4.4 14.5 15.9 -1.4 20.9 23.6 -2.6
adult 3.9 0.5 3.4 3.6 4.9 -1.3 8.3 10.6 -2.3 14.1 16.3 -2.2
weather 5.4 8.6 -3.2 10.6 14.0 -3.4 22.7 24.6 -1.9 31.1 33.2 -2.1
network2 10.8 9.1 1.7 12.5 10.7 1.8 15.1 17.2 -2.1 22.2 23.9 -1.8
promoters 10.2 19.3 -9.1 10.9 10.4 0.4 19.6 16.8 2.8 24.4 24.3 0.1
network1 15.3 7.4 7.9 13.1 11.8 1.3 16.7 17.3 -0.6 22.4 24.1 -1.7
german 10.0 4.9 5.1 11.1 12.5 -1.4 20.4 25.7 -5.3 28.4 31.7 -3.3
coding 19.8 8.5 11.3 18.7 14.3 4.4 23.6 20.6 3.1 27.7 25.5 2.2
move 24.6 9.0 15.6 19.2 12.1 7.1 22.6 18.7 3.8 23.9 23.5 0.3
sonar 27.6 27.6 0.0 23.7 23.7 0.0 24.4 24.3 0.1 28.4 28.4 0.0
bands 13.1 0.0 13.1 34.3 16.3 18.0 33.8 26.6 7.2 30.1 29.0 1.1
liver 27.5 36.2 -8.8 32.4 28.1 4.3 30.7 31.8 -1.2 35.4 34.5 0.9
blackjack 25.3 26.1 -0.8 25.1 25.8 -0.8 26.1 24.4 1.7 27.6 27.8 -0.2

labor 25.0 25.0 0.0 17.5 24.8 -7.3 24.4 17.5 6.9 22.3 20.7 1.6
market2 44.1 45.5 -1.4 43.1 44.3 -1.2 43.3 45.3 -2.0 45.1 46.3 -1.2
Average 11.6 8.7 2.9 12.5 9.7 2.8 14.2 13.4 0.8 17.5 18.4 -0.9

curate large disjuncts to decrease. The overall error rate is reduced only because the
error rate for the emancipated examples is lower than their original error rate. Thus,
pruning redistributes the errors such that the errors are more uniformly distributed
than without pruning. This is exactly what one does not want to happen when one
can be selective about which examples to classify (or which classifications to act
upon). We find the fact that pruning only improves classifier performance when
disjuncts covering more than 80% of the training examples are used to be quite
compelling.
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Fig. 8 Averaged Error Rate Based on Classifiers Built from the Largest Disjuncts

6 The Effect of Training Set Size on Small Disjuncts

The amount of training data available for learning has several well-known effects.
Namely, increasing the amount of training data will tend to increase the accuracy of
the classifier and increase the number of “rules”, as additional training data permits
the existing rules to be refined. In this section we analyze the effect that training-set
size has on small disjuncts and error concentration.

Fig. 9 returns to the vote data set example, but this time shows the distribution
of examples and errors when the training set is limited to useonly 10% of the total
data. These results can be compared with those in Fig. 1, which are based upon 90%
of the data being used for training. Thus, the results in Fig.9 are based on 1/9th the
training data used in Fig. 1. Note that the size of the bins, and consequently the scale
of the x-axis, has been reduced in Fig. 9.

A comparison of the relative distribution of errors betweenFig. 9 and Fig. 1
shows that errors are more concentrated toward the smaller disjuncts in Fig. 1, which
has a higher error concentration (.848 vs. .628). This indicates that increasing the
amount of training data increases the degree to which the errors are concentrated
toward the small disjuncts. Like the results in Fig. 1, the results in Fig. 9 show that
there are three groupings of disjuncts, which one might be tempted to refer to as
small, medium, and large disjuncts. The size of the disjuncts within each group dif-
fers between the two figures, due to the different number of training examples used
to generate each classifier (note the change in scale of the x-axis). It is informative to
compare the error concentrations for classifiers induced using different training-set
sizes because error concentration is a relative measure—itmeasures the distribution
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Fig. 9 Distribution of Examples for the Vote Data Set (using 1/9 of the normal training data)

of errors within the classifier relative to the disjuncts within the classifier and rela-
tive to the total number of errors produced by the classifier (which will be less when
more training data is available). Summary statistics for all thirty data set are shown
in Table 8.

Table 8 shows the error rate and error concentration for the classifiers induced
from each of the thirty data sets using three different training set sizes. The last
two columns highlight the impact of training-set size, by showing the change in
error concentration and error rate that occurs when the training set size is increased
by a factor of nine. As expected, the error rate tends to decrease with additional
training data while the error concentration, consistent with the results associated
with the vote data set, shows a consistent increase—for 27 ofthe 30 data sets the
error concentration increases when the amount of training data is increased by a
factor of nine.

The observation that an increase in training data leads to anincrease in error
concentration can be explained by analyzing how an increasein training data affects
the classifier that is learned. As more training data becomesavailable, the induced
classifier is better able to sample, and learn, the general cases that exist within the
concept. This causes the classifier to form highly accurate large disjuncts. As an
example, note that the largest disjunct in Fig. 1 does not cover a single error and
that the medium-sized disjuncts, with sizes between 80 and 109, cover only a few
errors. Their counterparts in Fig. 9, with size between 20 and 27 and 10 to 15,
have a higher error rate. Thus, an increase in training data leads to more accurate
large disjuncts and a higher error concentration. The smalldisjuncts that are formed
using the increased amount of training data may correspond to rare cases within the
concept that previously were not sampled sufficiently to be learned.
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Table 8 The Effect of Training Set Size on Error Concentration

Amount of Total Data Used for Training ∆ from
10% 50% 90% 10% to 90%

Data Set ER EC ER EC ER EC ER EC
kr-vs-kp 3.9 .742 0.7 .884 0.3 .874 -3.6 .132
hypothyroid 1.3 .910 0.6 .838 0.5 .852 -0.8 -.058
vote 9.0 .626 6.7 .762 6.9 .848 -2.1 .222
splice-junction 8.5 .760 6.3 .806 5.8 .818 -2.7 .058
ticket2 7.0 .364 5.7 .788 5.8 .758 -1.2 .394

ticket1 2.9 .476 3.2 .852 2.2 .752 -0.7 .276
ticket3 9.5 .672 4.1 .512 3.6 .744 -5.9 .072
soybean-large 31.9 .484 13.8 .660 9.1 .742 -22.8 .258
breast-wisc 9.2 .366 5.4 .650 5.0 .662 -4.2 .296
ocr 8.9 .506 2.9 .502 2.2 .558 -6.7 .052
hepatitis 22.2 .318 22.5 .526 22.1 .508 -0.1 .190
horse-colic 23.3 .452 18.7 .534 16.3 .504 -7.0 .052
crx 20.6 .460 19.1 .426 19.0 .502 -1.6 .042
bridges 16.8 .100 14.6 .270 15.8 .452 -1.0 .352
heart-hungarian 23.7 .216 22.1 .416 24.5 .450 0.8 .234
market1 26.9 .322 23.9 .422 23.6 .440 -3.3 .118
adult 18.6 .486 17.2 .452 16.3 .424 -2.3 -.062
weather 34.0 .340 32.7 .380 33.2 .416 -0.8 .076
network2 27.8 .354 24.9 .342 23.9 .384 -3.9 .030
promoters 36.0 .108 22.4 .206 24.3 .376 -11.7 .268
network1 28.6 .314 25.1 .354 24.1 .358 -4.5 .044
german 34.3 .248 33.3 .334 31.7 .356 -2.6 .108
coding 38.4 .214 30.6 .280 25.5 .294 -12.9 .080
move 33.7 .158 25.9 .268 23.5 .284 -10.2 .126
sonar 40.4 .028 27.3 .292 28.4 .226 -12.0 .198
bands 36.8 .100 30.7 .152 29.0 .178 -7.8 .078
liver 40.5 .030 36.4 .054 34.5 .120 -6.0 .090
blackjack 29.4 .100 27.9 .094 27.8 .108 -1.6 .008

labor 30.3 .114 17.0 .044 20.7 .102 -9.6 -.012
market2 47.3 .032 45.7 .028 46.3 .040 -1.0 .008
Average 23.4 .347 18.9 .438 18.4 .471 -5.0 .124

In this section we noted that additional training data reduces the error rate of
the induced classifier and increases its error concentration. These results help to
explain the pattern, described in Sect. 4, that classifiers with low error rates tend
to have higher error concentrations that those with high error rates. That is, if we
imagine that additional training data were made available to those data sets where
the associated classifier has a high error rate, we would expect the error rate to
decline and the error concentration to increase. This wouldtend to move classifiers
into the High-EC/Moderate-ER category. Thus, to a large extent, the pattern that
was established in Sect. 4 between error rate and error concentration reflects the
degree to which a concept has been learned—concepts that have been well-learned
tend to have very large disjuncts which are extremely accurate and hence have low
error concentrations.
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7 The Effect of Noise on Small Disjuncts

Noise plays an important role in classifier learning. Both the structure and perfor-
mance of a classifier will be affected by noisy data. In particular, noisy data may
cause a many erroneous small disjuncts to be induced. Danyluk and Provost [8]
speculated that the classifiers they induced from (systematic) noisy data performed
poorly because of an inability to distinguish between theseerroneous consistencies
and correct ones. Weiss [17] and Weiss and Hirsh [19] explored this hypothesis us-
ing, respectively, two artificial data sets and two real-world data sets and showed
that noise can make rare cases (i.e., true exceptions) in thetrue, unknown, concept
difficult to learn. The research presented in this section further investigates the role
of noise in learning, and, in particular, shows how noisy data affects induced classi-
fiers and the distribution of the errors across the disjunctswithin these classifiers.

The experiments described in this section involve applyingrandom class noise
and random attribute noise to the data. The following experimental scenarios are
explored:

Scenario 1: Random class noise applied to the training data
Scenario 2: Random attribute noise applied to the training data
Scenario 3: Random attribute noise applied to both trainingand test data

Class noise is only applied to the training set since the uncorrupted class label
in the test set is required to properly measure classifier performance. The second
scenario, in which random attribute noise is applied only tothe training set, permits
us to measure the sensitivity of the learner to noise (if attribute noise were applied to
the test set then even if the correct concept were learned there would be classification
errors). The third scenario, in which attribute noise is applied to both the training and
test set, corresponds to the real-world situation where errors in measurement affect
all examples. A level of n% random class noise means that for n% of the examples
the class label is replaced by a randomly selected class value, including possibly
the original value. Attribute noise is defined similarly, except that for numerical
attributes a random value is selected between the minimum and maximum values
that occur within the data set. Note that only when the noise level reaches 100% is
all information contained within the original data lost.

The vote data set is used to illustrate the effect that noise has on the distribution
of examples, by disjunct size. The results are shown in Fig. 10a–f, with the graphs in
the left column corresponding to the case when there is no pruning and the graphs in
the right column corresponding to the case when pruning is employed. Figs. 10a and
10b, which are exact copies of Figs. 1 and 4, respectively, show the results without
any noise and are provided for comparison purposes. Figs. 10c and 1d correspond
to the case where 10% attribute noise is applied to the training data and Figs. 10e
and 1f to the case where 10% class noise is applied to the training data.

A comparison of Fig. 10a with Figs. 10c and 10e shows that bothattribute and
class noise cause more test examples to be covered by small disjuncts, although this
shift is more dramatic for class noise than for attribute noise. The underlying data
indicates that this shift occurs because noisy data causes more small disjuncts to
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(a) No Noise
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(b) No Noise
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(c)10% Attribute Noise
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(d) 10% Attribute Noise
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(e) 10% Class Noise
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Fig. 10 The Effect that Noise has on the Distribution of Examples, by Disjunct size

be formed. This comparison also shows that the error concentration remains fairly
stable when attribute noise is added but decreases significantly when class noise is
added.

By comparing Figs. 10c and 10d, Figs. 10e and 10f, and Fig. 10bwith Figs. 10d
and 10f, it becomes clear that pruning reduces the shift in distribution of (correctly
and incorrectly) examples that is observed when pruning is not used. A comparison
of the error rates for classifiers with and without pruning also shows that pruning is
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Fig. 11 The Effect of Noise on Classifier Complexity

able to combat the effect of noise on the ability of the classifier to learn the concept.
Surprisingly, when pruning is used, classifier accuracy forthe vote data set actually
improves when 10% attribute noise is added—the error rate decreases from 5.3%
to 4.6%. This phenomenon, which is discussed in more detail shortly, is actually
observed for many of the thirty data sets, but only when low (e.g., 10%) levels of
attribute noise are added. The error concentration resultsalso indicate that even
with pruning, noise causes the errors to be distributed moreuniformly throughout
the disjuncts than when no noise is applied.

The results presented in the remainder of this section are based on averages over
twenty-seven of the thirty data sets listed in Table 1 (the coding, ocr and bands data
sets were omitted due to difficulties applying our noise model to these data sets).
The next three figures show, respectively, how noise affectsthe number of leaves,
the error rate, and the error concentration of the induced classifiers. Measurements
are taken at the following noise levels: 0%, 5%, 10%, 20%, 30%, 40%, and 50%.
The curves in these figures are labeled to identify the type ofnoise that is applied,
whether it is applied to the training set or training and testset, and whether pruning
is used. The labels are interpreted as follows: the “Class” and “Attribute” prefix
indicate the type of noise, the “-Both” term, if included, indicates that the noise
is applied to the training and test sets rather than to just the training set, and the
“-Prune” suffix is used to indicate that the results are with pruning.

Fig. 11 shows that without pruning the number of leaves in theinduced decision
tree increases dramatically with increasing levels of noise, but that pruning effec-
tively eliminates this increase. The effect that noise has on error rate is shown in
Fig. 12. Error rate increases with increasing levels of noise, with one exception.
When attribute noise is applied to only the training data andpruning is used, the
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Fig. 12 The Effect of Noise on Error Rate

error rate decreases slightly from 17.7% with 5% noise to 17.5% with 10% noise.
This decrease is no anomaly, since it occurs for many of the data sets analyzed. We
believe the decrease in error rate may be due to the fact that attribute noise leads to
more aggressive pruning (most of the data sets that show the decrease in error rate
have high overall error rates, which perhaps are more likelyto benefit from aggres-
sive pruning). Fig. 12 also shows that pruning is far more effective at handling class
noise than attribute noise.

Fig. 13 shows the effect of noise on error concentration. When pruning is not em-
ployed, increasing levels of noise lead to decreases in error concentration, indicat-
ing that errors become more uniformly distributed based on disjunct size. This helps
explain why we find a low-ER/high-EC group of classifiers and ahigh-ER/medium-
EC group of classifiers: adding noise to classifiers in the former increases their error
rate and decreases their error concentration, making them look more like classifiers
in the latter group. The results in Fig. 13 also show, however, that when there is
noise only in the training set, then pruning causes the errorconcentration to remain
relatively constant (this is especially true for class noise).

The results in this section demonstrate that pruning enables the learner to combat
noisy training data. Specifically, pruning removes many of the disjuncts that are
caused by the noise (Fig. 11) and this yields a much smaller increase in error rate
than if pruning were not employed (Fig. 12). Because pruningeliminates many of
the erroneous small disjuncts, the errors are not nearly as concentrated in the small
disjuncts (Fig. 13). We believe that the increase in error rate that comes from noisy
training data when pruning is employed is at least partly dueto the inability of the
learner to distinguish between true exceptions and noise.

The detailed results associated with the individual data sets show that for class
noise there is a trend for data sets with high error concentrations to experience a
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Fig. 13 The Effect of Noise on Error Concentration

greater increase in error rate from class noise. What is muchmore apparent, how-
ever, is that many classifiers with low error concentrationsareextremely tolerant of
class noise, whereas none of the classifiers with high error concentrations exhibit
this tolerance. For example, the blackjack and labor data sets, both of which have
low error concentrations, are so tolerant of noise that when50% random class noise
is added to the training set, the error rate on the induced classifier on the test data
increases by less than 1%. These results are consistent withthe belief that noise
makes learning difficult because it makes of an inability to distinguish between true
exceptions and noise. Even without the addition of noise, none of the concepts can
be induced perfectly (i.e., they have non-zero error rate).The classifiers with a high
error concentration already show an inability to properly learn the rare cases in the
concept (which show up as small disjuncts)—the addition of noise simply wors-
ens the situation. Those concepts with very general cases that can be learned well
without noise (leading to highly accurate large disjuncts and low error concentra-
tions) are less susceptible to noise. For example, corrupting the class labels for a
few examples belonging to a very large disjunct is unlikely to change the class label
learned for that disjunct.

8 The Effect of Class Imbalance on Small Disjuncts

A data set exhibits class imbalance if the number of examplesbelonging to each
class is unequal. A great deal of recent research, some of which is described in Sect.
9, has studied the problem of learning classifiers from imbalanced data, since this
has long been recognized as commonly occurring and difficultdata mining problem.
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However, with few exceptions [11, 22], this research has notexamined the role of
small disjuncts when learning from imbalanced data.

The study by Weiss and Provost [22] showed that examples truly belonging to
the minority class are misclassified much more often than examples belonging to
the majority class and that examples labelled by the classifier as belonging to the
minority class (i.e., minority-class predictions) have much higher error rates than
those labelled with the majority class. That study further showed that the minority-
labeled disjuncts tend to cover fewer training examples than the majority-labeled
disjuncts. This result is not surprising given that the minority class has, by definition,
fewer training examples than the majority class.2 The study concluded that part of
the reason that minority-class predictions are more error-prone than majority-class
predictions is because the minority-class predictions have a lower average disjunct
size and hence suffer more from the problem with small disjuncts. The work by Jo
and Japkowicz is discussed in Sect. 9.

In this section we extend the research by Weiss and Provost [22] to consider
whether there is a causal link between class imbalance and the problem with small
disjuncts in the opposite direction. That is, we consider whether class imbalance
causes small disjuncts to have a higher error rate than largedisjuncts, or, more gen-
erally, whether an increase in class imbalance will cause anincrease in error concen-
tration. Before evaluating this hypothesis empirically, it is useful to speculate why
such a causal link might exist. Weiss and Provost suggested that one reason that
minority-class predictions are more error-prone than the majority-class predictions
is because, by definition, there are more majority-class test examples than minority-
class test examples. To see why this is so, imagine a data set for which there are nine
majority-class examples for every one minority-class example. If onerandomly gen-
erates a classifier andrandomly labels each disjunct (e.g., leaf), then the minority-
labeled disjuncts will have an expected error rate of 90% while the majority-labeled
disjuncts will have an expected error rate of only 10%. Thus,this test-distribution
effect favors majority-class predictions. Given that Weiss and Provost showed that
small disjuncts are disproportionately likely to be labeled with the minority class,
one would therefore expect this test-distribution effect to favor the larger disjuncts
over the smaller disjuncts.

We evaluate this hypothesis by altering the class distribution of data sets and
then measuring the error concentration associated with theinduced classifiers. For
simplicity, we look at only two class distributions for eachdata set: the naturally oc-
curring class distribution and a perfectly balanced class distribution, in which each
class is represented in equal proportions. By comparing theerror concentrations for
these two class distributions, we can also determine how much of the “problem with
small disjuncts” is due to class imbalance in the data set.

2 The detailed results show that the induced classifiers have moremajority-labeled disjuncts than
minority-labeled disjuncts, but the ratio of majority-labeled disjuncts to minority-labeled disjuncts
is smaller than the ratio of majority-class examples to minority-class examples. Thus the majority-
class disjuncts cover more examples than the minority-class examples.
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We form data sets with the natural and balanced class distributions using the
methodology described by Weiss and Provost [22]. This methodology employs strat-
ified sampling, without replacement, to form the desired class distribution from the
original data set. The number of examples selected for training is the same for the
natural and balanced versions of each data set, to ensure that any differences in per-
formance are due solely to the difference in class distribution (the actual number
of training examples that are used is reduced from what is available, to ensure that
the balanced class distribution can be formed without duplicating any examples).
Because this methodology reduces the number of training examples, we exclude the
small data sets when studying class imbalance, so that all classifiers are induced
from using a “reasonable” number of examples. The data sets employed in this sec-
tion include the larger data sets from Table 1 plus some additional data sets. These
data sets, listed in Table 9, are identical to the ones studied by Weiss and Provost
[22]. They include twenty data sets from the UCI repository,five data sets, iden-
tified with a “+”, from previously published work by researchers at AT&T [7] and
one new data set, the phone data set, generated by the author.The data sets are listed
in order of decreasing class imbalance (the percentage of minority-class examples
in each data set is included). In order to simplify the presentation and analysis of
the results, data sets with more than two classes were mappedinto two classes by
designating the least frequently occurring class as the minority class and mapping
the remaining classes into a new, majority, class. Each dataset that originally started
with more than two classes is identified with an asterisk (*).

Table 9 Description of Data Sets for Class Imbalance Experiments

# Dataset % Min. Size # Dataset % Min. Size
1 letter-a* 3.9 20,000 14 network2 27.9 3,826
2 pendigits* 8.3 13,821 15 yeast* 28.9 1,484
3 abalone* 8.7 4,177 16 network1+ 29.2 3,577
4 sick-euthyroid 9.3 3,163 17 car* 30.0 1,728
5 connect-4* 9.5 11,258 18 german 30.0 1.000
6 optdigits* 9.9 5,620 19 breast-wisc 34.5 699
7 covertype* 14.8 581,102 20 blackjack+ 35.6 15,000
8 solar-flare* 15.7 1,389 21 weather+ 40.1 5,597
9 phone 18.2 652,557 22 bands 42.2 538
10 letter-vowel* 19.4 20,000 23 market1+ 43.0 3,181
11 contraceptive* 22.6 1,473 24 crx 44.5 690
12 adult 23.9 48,842 25 kr-vs-kp 47.8 3,196
13 splice-junction* 24.1 3,175 26 move+ 49.4 3,029

Fig. 14 shows the error concentration for the classifiers induced by C4.5 from the
natural and balanced versions of the data sets listed in Table 9. Since the error con-
centrations are all greater than zero when there is no class imbalance, we conclude
that even with a balanced data set errors tend to be concentrated toward the smaller
disjuncts. However, by comparing the error concentrationsassociated with the clas-
sifiers induced from the balanced and natural class distributions, we see that when
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Fig. 14 The Effect of Class Distribution on Error Concentration

there is class imbalance, with few exceptions, the error concentration increases. The
differences tend to be larger when the data set has greater class imbalance (the left-
most data set has the most natural class imbalance and the class imbalance decreases
from left to right).

If we look at the average error concentration for the classifiers induced from the
natural and balanced versions of the twenty-six data sets, we see that the balanced
versions have an average error concentration of .396 while the natural versions have
an average error concentration of .496. This corresponds toa 20% reduction in error
concentration when class imbalance is removed. If we restrict our attention to the
first 18 data sets, which contain at most 30% minority-class examples, then the dif-
ferences in error concentration are 28% (.387 for the balanced data sets versus .537
for the data sets with the natural class distributions). We therefore conclude that for
data sets with class imbalance, part of the reason why small disjuncts have a higher
error rate than the large disjuncts is due to the fact that minority-class predictions
are more likely to be erroneous due to the test distribution effect described earlier.
This is empirical evidence that class imbalance is partly responsible for the problem
with small disjuncts. This also indicates that if one artificially modifies the class dis-
tribution of the training data to be more balanced, then the error concentration will
decrease. This observation may help explain why, as noted byWeiss and Provost
[22], classifiers built using balanced class distributionstend to be quite robust.
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9 Related Work

Research on small disjuncts can be placed into the followingthree categories, which
we use to organize our discussion of related work. These three categories are based
on whether the purpose of the research is to:

1. Characterize and/or measure the role of small disjuncts in learning,
2. Provide a better understanding of small disjuncts (e.g.,why they are more error

prone than large disjuncts), or
3. Design better classifiers that address the problem with small disjuncts.

Most previous research on small disjuncts only incidentally tried to characterize
or measure the role of small disjuncts in learning and only analyzed one or two data
sets [1, 3, 8, 9, 17, 19]. This made it impossible to form any general conclusions.
We addressed this problem by analyzing thirty data sets.

Some research has focused on providing a better understanding of small dis-
juncts. Danyluk and Provost [8] observed that in the domain they were studying,
when they trained using noisy data, classifier accuracy suffered severely. They spec-
ulated that this occurred because: 1) it is difficult to distinguish between noise and
true exceptions and, 2) in their domain, errors in measurement and classification
often occur systematically rather than randomly. Thus, they speculated that it was
difficult to distinguish between erroneous consistencies and correct ones. This spec-
ulation formed the basis for the work by Weiss [17] and Weiss and Hirsh [19].
Weiss [17] investigates the interaction between noise, rare cases and small disjuncts
using synthetic datasets, for which the true “concept” is known and can be ma-
nipulated. Some synthetic data sets were constructed from concepts that included
many rare, or exceptional cases, while others were constructed from concepts that
mainly included general cases. The research showed that therare cases tended to
form small disjuncts in the induced classifier. It further showed that systematic at-
tribute noise, class noise, and missing attributes can eachcause the small disjuncts
to have higher error rates than the large disjuncts, and alsocause those test examples
that correspond to rare cases to be misclassified more often than those test examples
corresponding to common cases. That paper also provided an explanation for this
behavior: it is asserted that attribute noise in the training data can cause the common
cases to look like the rare cases, thus ”overwhelming” the rare cases and causing the
wrong subconcept to be learned

The majority of research on small disjuncts focuses on ways to address the prob-
lem with small disjuncts. Holte et al. [9] evaluate several strategies for improving
learning in the presence of small disjuncts. They show that the strategy of elimi-
nating all small disjuncts is ineffective, because the emancipated examples are then
even more likely to be misclassified. The authors focus on a strategy of making small
disjuncts highly specific and argued that while a maximum generality bias, which is
used by systems such as ID3, is appropriate for large disjuncts, it is not appropriate
for small disjuncts. To test this claim, they ran experiments where a maximum gen-
erality bias is used for the large disjuncts and a maximum specificity bias is used for
the small disjuncts (for a maximum specificity biasall conditions satisfied by the
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training examples covered by a disjunct are added to the disjunct). The experimen-
tal results show that with the maximum specificity bias, the resulting disjuncts cover
fewer cases but have much lower error rates. Unfortunately,the emancipated exam-
ples increase the error rate of the large disjuncts to the extent that the overall error
rates remain roughly the same. Although the authors also experiment with a more
selective bias that produces interesting results, it does not demonstrably improve
learning.

Ting [15] evaluates a method for improving the performance of small disjuncts
that also uses a maximum specificity bias. However, unlike the method employed
by Holte et al. [9], this method does not affect (and therefore cannot degrade) the
performance of the large disjuncts. The basic approach is touse C4.5 to determine
if an example is covered by a small or large disjunct. If it is covered by a large
disjunct, then C4.5 is used to classify the example. However, if the example is cov-
ered by a small disjunct, then IB1, an instance-based learner, is used to classify the
example. Instance-based learning is used in this case because it can be considered
an extreme example of the maximum specificity bias. In order to use this hybrid
learning method, there must be a specific criterion for determining what is a small
disjunct. The paper empirically evaluates alternative criteria, based on a threshold
value and 1) the absolute size of the disjunct, 2) the relative size of the disjunct, or
3) the error rate of the disjunct. For each criterion, only the best result, produced
using the best threshold, is displayed. The results are therefore overly optimistic,
because the criteria/threshold values are selected using the test data rather than an
independent hold-out set. Thus, although the observed results are encouraging, it
cannot be claimed that the composite learner is very successful in addressing the
problem with small disjuncts.

Carvalho and Freitas [3] employ a hybrid method similar to that used by Ting
[15]. They also use C4.5 to build a decision tree and then, foreach training exam-
ple, use the size of the leaf covering that example to determine if the example is
covered by a small or large disjunct. The training examples that fall into each small
disjunct are then fed together into a genetic-algorithm based learner that forms rules
to specifically cover the examples that fall into that individual disjunct. Test exam-
ples that fall into leaves corresponding to large disjunctsare then assigned a class
label based on the decision tree; test examples that fall into a small disjunct are clas-
sified by the rules learned by the genetic algorithm for that particular disjunct. Their
results are also encouraging, but, because they are based ononly a few data sets, and
because, as with the results by Ting [15], the improvements in error rate are only
seen for certain specific definitions of “small disjunct”, itcannot be concluded that
this research substantially addresses the problem with small disjuncts.

Several other approaches are advocated for addressing the problem with small
disjuncts. Quinlan [13] tries to minimize the problem by improving the probability
estimates used to assign a class label to a disjunct. A naive estimate of the error
rate of a disjunct is the proportion of the training examplesthat it misclassifies.
However, this estimate performs quite poorly for small disjuncts, due to the small
number of examples used to form the estimate. Quinlan describes a method for im-
proving the accuracy estimates of the small disjuncts by taking the class distribution
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into account. The motivation for this work is that for unbalanced class distribu-
tions one would expect the disjuncts that predict the majority class to have a lower
error rate than those predicting the minority class (this isthe test distribution ef-
fect described in Sect. 8). Quinlan incorporates theseprior probabilities into the
error rate estimates. However, instead of using the overallclass distribution as the
prior probability, Quinlan generates a more representative measure by calculating
the class distribution only on those training examples thatare ”close” to the small
disjunct—that is, fail to satisfy at most one condition in the disjunct. The experi-
mental results demonstrate that Quinlan’s error rate estimation model outperforms
the naive method, most significantly for skewed distributions.

Van den Bosch et al. [16] advocate the use of instance-based learning for do-
mains with many small disjuncts. They are mainly interestedin language learning
tasks, which they claim result in many small disjuncts, or “pockets of exceptions.”
In particular, they focus on the problem of learning word pronunciations. Because
instance-based learning does not form disjunctive concepts, rather than determining
disjunct sizes, they instead compute cluster sizes, which they view as analogous to
disjunct size. They determine cluster sizes by repeatedly selecting examples from
the data, forming a ranked list of the 100 nearest neighbors,and then they determine
the rank of the nearest neighbor with a different class value—this value minus one
is considered to be the cluster size. This method, as well as the more conventional
method of measuring disjunct size via a decision tree, showsthat the word pro-
nunciation domain has many small disjuncts. The authors also try an information-
theoretic weighted similarity matching function, which effectively re-scales the fea-
ture space so that ”more important” features have greater weight. When this is done,
the size of the average cluster is increased from 15 to 25. Unfortunately, error rates
were not specified for the various clusters and hence one therefore cannot measure
how effective this strategy for dealing with the problem with small disjuncts.

The problem of learning from imbalanced data where the classes are represented
in unequal proportions is a common problem that has receiveda great deal of at-
tention [4, 5, 10, 21]. Our results in Sect. 8 provide a link between the problem
of learning from imbalanced data and the small disjuncts problem. A similar link
was provided by Jo and Japkowicz [11], who also showed that a method that deals
with the problem of small disjuncts, cluster-based oversampling, can also improve
the performance of classifiers that learn from imbalanced data. This supports the
notion that a better understanding of small disjuncts can lead the design of better
classification methods.

10 Conclusion

This article makes several contributions to the study of small disjuncts and, more
generally, classifier learning. First, the degree to which small disjuncts affect learn-
ing is quantified using a new measure, error concentration. Because error concen-
tration is measured for a large collection of data sets, for the first time it is possible
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to draw general conclusions about the impact that small disjuncts have on learn-
ing. The experimental results show that, as expected, for many classifiers errors are
highly concentrated toward the smaller disjuncts—howeverthe results also show
that for a substantial number of classifiers this simply is not true. Our research also
indicates that the error concentration for the classifiers induced using C4.5 and Rip-
per are highly correlated, indicating that error concentration measures some “real”
aspect of the concept being learned, and is not totally an artifact of the learner.
Finally, our results indicate that classifiers with relatively low error rates almost al-
ways have high error concentrations while this is not true ofclassifiers with high
error rates. Analysis indicates that this is due to the fact that classifiers with low
error rates generally contain some very accurate large disjuncts. We conclude from
this that concepts that can be learned well tend to contain very general cases and
that C4.5 and Ripper generate classifiers with similar errorconcentrations because
they are both able to form accurate large disjuncts to cover these general cases.

Another contribution of this article is that it takes an in-depth look at pruning.
This is particularly important because previous research into small disjuncts largely
ignores pruning. Our results indicate that pruning eliminates many of the small dis-
juncts in the induced classifier and that this leads to a reduction in error concen-
tration. These results also show that pruning is more effective at reducing the error
rate of a classifier when the unpruned classifier has a high error concentration. Prun-
ing is evaluated as a method for addressing the problem with small disjuncts and is
shown to be of limited effectiveness. Our analysis also shows that because pruning
distributes the errors that were concentrated in small disjuncts to the more accurate,
larger, disjuncts, pruning can actually degrade classifierperformance when one may
be selective in applying the induced classification rules.

In this article we also show how factors such as training-setsize, noise, and class
imbalance affect small disjuncts and error concentration.This provides not only
a better understanding of small disjuncts, but of how these important, real-world,
factors affect inductive learning. As an example, the results in Sect. 6 permit us
to explain how increasing the amount of training data leads to an improvement in
classifier accuracy. These results, which show that increasing the amount of training
data leads to an increase in error concentration, suggest that the additional training
data allows the general cases within the concept to be learned better than before,
but that it also introduces many new small disjuncts. These small disjuncts, which
correspond to rare cases in the concept, are formed because there is now sufficient
training data to ensure that they are sampled. These small disjuncts are error prone,
however, due to the small number of training examples used todetermine the clas-
sification. The small disjuncts in the induced classifier mayalso be error prone be-
cause, as the results in Sect. 7 and previous research [17, 19] indicate, noisy data
causes erroneous small disjuncts to be formed. Our results indicate that pruning is
somewhat effective at combating the effect of noise on classifier accuracy, because
of its ability to handle small disjuncts. Finally, the results in this article also indicate
that class imbalance can worsen the problem with noise and small disjuncts. This
may help explain why a balanced class distribution often leads to classifiers that are
more robust than those induced from the naturally occurringclass distribution.
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We believe that an understanding of small disjuncts is important in order to prop-
erly appreciate the difficulties associated with classifierlearning, because, as this
article clearly shows, it is often the small disjuncts that determine the overall perfor-
mance of a classifier. We therefore hope that the metrics provided in this article can
be used to better evaluate the performance of classifiers andwill ultimately lead to
the design of better classifiers. The research in this article also enables us to better
understand how various real-world factors, like noise and class-imbalance, impact
classifier learning. This is especially important as data mining tackles more difficult
problems.
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