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Abstract Many classifier induction systems express the inducedifikrsie terms
of a disjunctive description. Small disjuncts are thosgudists that classify few
training examples. These disjuncts are interesting bedéey are known to have a
much higher error rate than large disjuncts and are redplerfsir many, if not most,
of all classification errors. Previous research has ingatgd this phenomenon by
performing ad hoc analyses of a small number of data sethidratticle we pro-
vide a much more systematic study of small disjuncts andyaadiow they affect
classifiers induced from thirty real-world data sets. A neetnio, error concentra-
tion, is used to show that for these thirty data sets claasific errors are often
heavily concentrated toward the smaller disjuncts. Varifactors, including prun-
ing, training-set size, noise and class imbalance are thalyzed to determine how
they affect small disjuncts and the distribution of errazeoas disjuncts. This anal-
ysis provides many insights into why some data sets are uliffic learn from and
also provides a better understanding of classifier leariniggneral. We believe that
such an understanding is critical to the development of avg classifier induction
algorithms.

1 Introduction

It has long been observed that certain classification pnablere quite difficult and
that high levels of classification performance are not aeliile in these cases. In
certain circumstances entire classes of problems tend thffieult, such as clas-
sification problems that deal with class imbalance [18].SEhgroblems have often
been studied in detail and sometimes methods have even bsrspd for improv-
ing classification performance, but generally there ilgkplanation for why these
techniques work and the research instead relies on emgvigluations of the meth-
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ods. As just one example, most of the research aimed at inmgytive performance
of classifiers induced from imbalanced data sets providts 6r no justification
for the methods. In this article we focus on the role of smijushcts in classifier
learning and in so doing provide the terms and concepts saceto provide these
justifications. Additionally, we provide a number of corgiltns about what makes
classifier learning hard and under what circumstances.

Classifier induction programs often express the learnessitier as a disjunction.
For example, such systems often express the classifier assaotetree or a rule
set, in which case each leaf in the decision tree or rule imileeset correspond to
a disjunct. Thesize of a disjunct is defined as the number of training exampleis tha
the disjunct correctly classifies [9]. A number of empiristldies have shown that
learned concepts include disjuncts that span a wide randisjohct sizes and that
small disjuncts—those disjuncts that correctly classiffyca few training exam-
ples—collectively cover a significant percentage of thalttest examples. These
studies also show that small disjuncts have a much higher ete than large dis-
juncts, a phenomenon sometimes referred to as the “probigmsmall disjuncts”
and that these small disjuncts collectively contributegaigicant portion of the total
test errors.

One problem with past studies is that each study analyzesifitas induced
from only a few data sets. In particular, Holte et al. [9] azal two data sets, Al
and Pazzani [1] one data set, Danyluk and Provost [8] ones#at&\Veiss [17] two
data sets, Weiss and Hirsh [19] two data sets, and Carvath&aitas [3] two data
sets. Because of the small number of data sets analyzed eaadde there was no
established way to measure the degree to which errors waieotrated toward
the small disjuncts, these studies were not able to quathiEfyproblem with small
disjuncts. This article addresses these concerns. Finstyanetric, error concentra-
tion, is introduced which quantifies, in a single number, ékt=nt to which errors
are concentrated toward the smaller disjuncts. This meticen used to measure
the error concentration of the classifiers induced fromyttdata sets. Because we
analyze a large number of data sets, we are able to draw geoedusions about
the role that small disjuncts play in classifier learning.

Small disjuncts are of interest because they are respen&blmany—if not
most—of the errors that result when the induced classifiapdied to new (test)
data. This in turn leads to two reasons for studying smajudes. First, we hope
that what we learn about small disjuncts may enable us td budre effective clas-
sifier induction programs by addressing the problem withlsdisjuncts. Specifi-
cally, such learners would improve the classification penémnce of the examples
covered by the small disjuncts without excessively degigdie accuracy of the
examples covered by the larger disjuncts, such thabtbeall performance of the
classifier is improved. Existing efforts to do just this, ainare described in Sect. 9,
have produced, at best, only marginal improvements. A betteerstanding of
small disjuncts and their role in learning may be necessefyrb further advances
are possible.

The second reason for studying small disjuncts is to pro&idetter understand-
ing of small disjuncts and, by extension, of classifier l@agin general. Most of the
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research on small disjuncts has not focused on this, whitteisain focus of this
article. Essentially, small disjuncts are used as a lemaigir which to examine fac-
tors that are important to classifier learning, which is ppdithe most common data
mining method. Pruning, training-set size, noise, andsalabalance are each ana-
lyzed to see how they affect small disjuncts and the didfidowof errors throughout
the disjuncts—and, more generally, how this impacts di@ssearning.

This article is organized as follows. In Sect. 2 we analyzertile of small dis-
juncts in classifier learning and introduce relevant metaiod terminology. Sect. 3
then describes the methodology used to conduct our expetsni@ur experimental
results and the analysis of these results are then preserttesl next five sections.
We provide a general analysis of the impact that small diggihave on learning
in Sect. 4 and then, over the next four sections, we then aadlgw each of the
following factors interact with small disjuncts during tlearning process: pruning
(Sect. 5), training set size (Sect. 6), noise (Sect. 7) aasbémbalance (Sect. 8). Re-
lated work is covered in Sect. 9 and our conclusions andéutiark are discussed
in Sect. 10.

2 An Example: The Vote Data Set

In order to illustrate the problem with small disjuncts, gegformance of a classifier
induced by C4.5 [14] from the Vote data set is shown in Fig. HisTigure shows
how the correctly and incorrectly classified test examptesdastributed across the
disjuncts in the induced classifier. The overall test setrgate for the classifier is
6.9%.

Each bar in the histogram in Fig. 1 covers ten sizes of disguriche leftmost
bin shows that those disjuncts that correctly classify 0 rafhing examples cover
9.5 test examples, of which 7.1 are classified correctly afdlassified incorrectly
(fractional values occur because the results are averagadl® cross-validated
runs). Fig. 1 clearly shows that the errors are concentiiatedrd the smaller dis-
juncts. Analysis at a finer level of granularity shows tha&t ¢rors are skewed even
more toward the small disjuncts—75% of the errors in thareft bin come from
disjuncts of size 0 and 1. One may also be interested in thihdison of disjuncts
by disjunct size. The classifier associated with Fig. 1 isenagl of fifty disjuncts,
of which forty-five are associated with the leftmost bin.(have a disjunct size less
than 10). Note that disjuncts of size 0 were formed becausmle decision tree
learner used to generate the classifier splits a hbodsing a featurd, the split will
branch on all possible values bfeven if a feature value does not occur within the
training data alN.

In order to more effectively show the extent to which errors eoncentrated
toward the small disjuncts, we plot the percentage of tasi érrors versus the
percentage of correctly classified test examples cong&iboy a set of disjuncts. The
curve in Fig. 2 is generated by starting with the smallegudig from the classifier
induced from the Vote data set and then progressively addmer disjuncts. This
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Fig. 2 Error Concentration Curve for the Vote Data Set

curve shows, for example, that disjuncts with size 0-4 c@v&¥o of the correctly
classified test examples but 73% of the total test errors.lifber=X represents a
classifier in which classification errors are distributedarmly across the disjuncts,
independent of the size of the disjunct. Since the “errorceatration” curve in
Fig. 2 falls above the line Y=X, the errors produced by thigsslfier are more
concentrated toward the smaller disjuncts than to the fatiggincts.
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To make it easy to compare the degree to which errors are otvated toward
the smaller disjuncts for different classifiers, we introeldheerror concentration
(EC) metric. The error concentration of a classifier is defias the fraction of the
total areaabove the line Y=X that falls below its error concentration curising
this scheme, the higher the error concentration, the moneestrated the errors
are toward the smaller disjuncts. Error concentration nzage from a value of
+1, which indicates that all test errors are contributed Hy $mallest disjuncts,
before even a single correctly classified test example isreal to a value of -1,
which indicates that all test errors are contributed by #rgdst disjuncts, after all
correctly classified test examples are covered. Based atiopeeresearch, which
indicates that small disjuncts have higher error rates ldrge disjuncts, one would
expect the error concentration of most classifiers to betgreéhan 0. The error
concentration for the classifier described in Fig. 2 is .8d@icating that the errors
are highly concentrated toward the small disjuncts.

3 Description of Experiments

The majority of results presented in this paper are basechamalysis of thirty
data sets, of which nineteen were obtained from the UCI iepgq2] and eleven,
identified, with a “+”, were obtained from researchers at AT, 7]. These data
sets are summarized in Table 1.

Table 1 Description of Thirty Data Sets

# Dataset Sze # Dataset Sze
1 adult 21,280 16 marketl+ 3,180
2 bands 538 17 market2+ 11,000
3 blackjack+ 15,000 18 move+ 3,028
4 breast-wisc 699 19networkl+ 3,577
5 bridges 101 20 network2+ 3,826
6 coding 20,000 21 ocr+ 2,688
7 Crx 690 22 promoters 106
8 german 1,000 23 sonar 208
9 heart-hungarian 293 24 soybean-large 682
10 hepatitis 155 25splice-junction 3,175
11 horse-colic 300 26 ticketl+ 556
12 hypothyroid 3,771 27 ticket2+ 556
13 kr-vs-kp 3,196 28 ticket3+ 556
14 labor 57 29 vote 435
15 liver 345 30 weather+ 5,597

Numerous experiments are run on these data sets to ass@spdut that small
disjuncts have on learning. The majority of the experimiaetsults presented in this
article are based on C4.5 [14], a popular program for indudecision trees. C4.5
was modified by the author to collect a variety of informatiefated to disjunct
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size. Note that disjunct size is defined based on the numbexarfiples covered
by the training data but, as is typical in data mining, thessiigcation results are
measured based on the performance on the test data. Manyneepts were re-
peated using Ripper [6], a program for inducing rule setgrnsure the generality
of our results. Because Ripper exports detailed informagioout the performance
of individual rules, internal modifications to the prograrare not required in order
to track the statistics related to disjunct size. All expemts for both learners em-
ploy ten-fold cross validation and all results are basederaverages over these ten
runs. Pruning tends to eliminate most small disjuncts amcdthis reason, research
on small disjuncts generally disables pruning [8, 9, 17, If&his were not done,
then pruning would mask the problem with small disjuncts.il/this means that
the analyzed classifiers are not the same as the ones that b®glenerated using
the learners in their standard configurations, these seardtnonetheless important,
since the performance of the unpruned classifiers constt@mperformance of the
pruned classifiers. However, in this article both unprurnedi@runed classifiers are
analyzed, for both C4.5 and Ripper. This makes it possibéaadyze the effect that
pruning has on small disjuncts and to evaluate pruning asategy for addressing
the problem with small disjuncts. As the results for pruningsect. 5 will show,
the problem with small disjuncts is still evident after pingy although to a lesser
extent.

All results, other than those described in Sect. 5, are basétke use of C4.5 and
Ripper with their pruning strategies disabled. For C4.5empruning is disabled the
—m 1 option is also used, to ensure that C4.5 does not stdfirgpk node before
the node contains examples belonging to a single class éflaaltlis —m 2). Ripper
is configured to produce unordered rules so that it does dige a single default
rule to cover the majority class.

4 The Problem with Small Disjuncts

Previous research claims that errors tend to be conceditratst heavily in the
smaller disjuncts [1, 3, 8, 9, 15, 17, 19]. In this section wevjgle the most com-
prehensive analysis of this claim to date, by measuring dgges to which errors
are concentrated toward the smaller disjuncts for theythiata sets listed in Table
1, for classifiers induced by C4.5 and Ripper.

The experimental results for C4.5 and Ripper, in order ofekesing error con-
centration, are displayed in Tables 2 and 3, respectivelgddition to specifying
the error concentration, these tables the error rate ofithecied classifier, the size
of the data set, and the size of the largest disjunct in theced classifier. They also
specify the percentage of the total test errors that areriboted by the smallest
disjuncts that collectively cover 10% of the correctly slified test examples and
then the percentage of the total correctly classified exastplat are covered by the
smallest disjuncts that collectively cover half of the teaors.
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Table 2 Error Concentration Results for C4.5

EC Dataset Error Dataset Largest % Errs at % Correctat Error
Rank Name Rate Size Disjunct _ 10% correct _ 50% errors _Conc.
1 kr-vs-kp 0.3 3,196 669 75.0 11 .874
2 hypothyroid 0.5 3,771 2,697 85.2 0.8 .852
3 vote 6.9 435 197 73.0 1.9 .848
4 splice-junction 5.8 3,175 287 76.5 4.0 .818
5 ticket2 5.8 556 319 76.1 2.7 758
6 ticketl 2.2 556 366 54.8 4.4 752
7 ticket3 3.6 556 339 60.5 4.6 744
8 soybean-large 9.1 682 56 53.8 9.3 742
9  breast-wisc 5.0 699 332 47.3 10.7 .662
10 ocr 2.2 2,688 1,186 52.1 8.9 .558
11 hepatitis 22.1 155 49 30.1 17.2 .508
12 horse-colic 16.3 300 75 315 18.2 .504
13 crx 19.0 690 58 32.4 14.3 .502
14 bridges 15.8 101 33 15.0 23.2 452
15 heart-hungar. 24.5 293 69 31.7 21.9 .450
16 marketl 23.6 3,180 181 29.7 21.1 440
17  adult 16.3 21,280 1,441 28.7 21.8 424
18 weather 33.2 5,597 151 25.6 22.4 416
19 network2 23.9 3,826 618 31.2 24.2 .384
20 promoters 24.3 106 20 32.8 20.6 .376
21 networkl 24.1 3,577 528 26.1 24.1 .358
22 german 31.7 1,000 56 17.8 29.4 .356
23 coding 25.5 20,000 195 22.5 30.9 .294
24 move 235 3,028 35 17.0 30.8 .284
25 sonar 28.4 208 50 15.9 32.9 226
26 bands 29.0 538 50 65.2 54.1 178
27 liver 345 345 44 13.7 40.3 120
28  blackjack 27.8 15,000 1,989 18.6 39.3 .108
29 labor 20.7 57 19 33.7 49.1 102
30 market2 46.3 11,000 264 10.3 45.5 .040

As an example of how to interpret the results in these tabl@ssider the entry
for the kr-vs-kp data set in Table 2. The error concentrdtoithe classifier induced
from this data set is .874. Furthermore, the smallest disguthhat collectively cover
10% of the correctly classified test examples contribute 8b%e total test errors,
while the smallest disjuncts that contribute half of thet&trrors cover only 1.1%
of the total correctly-classified examples. These measem&rprovide a concrete
indication of just how concentrated the errors are towaedsthaller disjuncts.

The results for C4.5 and Ripper show that although the eoocentration values
are, as expected, almost always positive, the values vatglyyiindicating that the
induced classifiers suffer from the problem of small disjarto varying degrees.
The classifiers induced using Ripper have a slightly smallerage error concen-
tration than those induced using C4.5 (.445 vs. .471), atilig that the classifiers
induced by Ripper have the errors spread slightly more tmifp across the dis-
juncts. Overall, Ripper and C4.5 tend to generate classifith similar error con-
centration values. This can be seen by comparing the EC nafédle 3 for Ripper
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Table 3 Error Concentration Results for Ripper

EC C4.5 Dataset Error Dataset Largest % Errs % Correct  Error
Rank Rank Name Rate Size Disjunct _ 10% correct 50% Errs  Conc.
1 2 hypothyroid 1.2 3,771 2,696 96.0 0.1 .898
2 kr-vs-kp 0.8 3,196 669 92.9 2.2 .840
3 6 ticketl 35 556 367 69.4 1.6 .802
4 7 ticket3 45 556 333 61.4 5.6 790
5 5 ticket2 6.8 556 261 71.0 3.2 782
6 3 vote 6.0 435 197 75.8 3.0 756
7 4 splice-junction 6.1 3,175 422 62.3 7.9 .678
8 9  breast-wisc 53 699 355 68.0 3.6 .660
9 8 soybean-large 11.3 682 61 69.3 4.8 .638
10 10 ocr 2.6 2,688 804 50.5 10.0 .560
11 17 adult 19.7 21,280 1,488 36.9 15.0 516
12 16 marketl 25.0 3,180 243 32.2 16.9 470
13 12  horse-colic 22.0 300 73 20.7 23.9 444
14 13 corx 17.0 690 120 325 19.7 424
15 15 heart-hungar. 23.9 293 67 25.8 24.8 .390
16 26 bands 21.9 538 62 25.6 29.2 .380
17 25 sonar 31.0 208 47 32.6 23.9 .376
18 23 coding 28.2 20,000 206 22.6 29.2 .374
19 18 weather 30.2 5,597 201 23.8 24.8 .356
20 24 move 32.1 3,028 45 259 25.6 .342
21 14 bridges 14.5 101 39 41.7 355 .334
22 20 promoters 19.8 106 24 20.0 20.0 .326
23 11  hepatitis 20.3 155 60 19.3 20.8 .302
24 22 german 30.8 1,000 99 12.1 35.0 .300
25 19 network2 23.1 3,826 77 25.6 22.9 .242
26 27  liver 34.0 345 28 28.2 32.0 .198
27 28 blackjack 30.2 15,000 1,427 12.3 42.3 .108
28 21 networkl 23.4 3,577 79 18.9 46.0 .090
29 29 labor 245 57 21 0.0 18.3 -.006
30 30 market2 48.8 11,000 55 10.4 49.8 -.018

(column 1) with the EC rank for C4.5 (column 2), which is despd graphically
in the scatter plot in Fig. 3, where each point representgttar concentration for
a single data set. Since the points in Fig. 3 are clusteradchdrthe line Y=X, both
learners tend to produce classifiers with similar error eotrations, and hence tend
to suffer from the problem with small disjuncts to similamdees. The agreement
is especially close for the most interesting cases, whererttor concentrations are
large—the largest ten error concentration values in Fifprdyoth C4.5 and Ripper,
are generated by the same ten data sets.

With respect to classification accuracy, the two learnerfopa similarly, al-
though C4.5 performs slightly better (it outperforms Rippa 18 of the 30 data
sets, with an average error rate of 18.4% vs. 19.0%). Howasewill be shown in
the next section, when pruning is used Ripper slightly aditpms C4.5.

The results in Table 2 and Table 3 indicate that, for both @4d Ripper, there
is a relationship between the error rate and error condéniraf the induced clas-
sifiers. These results show that, for the thirty data setgnwhe induced classifier
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Fig. 3 Comparison of C4.5 and Ripper Error Concentration Values

has an error rate less than 12%, then the error concentiataways greater than
.50. Based on the error rate and error concentration vallhesnduced classifiers
seem to fit naturally into the following three categories:

1. High-EC/Moderate-ER  data sets 1-10 for C4.5 and Ripper
2. Medium-EC/High-ER  data sets 11-22 for C4.5; 11-24 forgRip
3. Low-EC/High-ER data sets 23-30 for C4.5; 25-30 for Ripper

It is interesting to note that for those data sets in the HigliModerate-ER cat-
egory, the largest disjunct generally covers a very largégoof the total training
examples. As an example, consider the hypothyroid dat®$éte 3,394 examples
(90% of the total data) used for training, nearly 2,700 o§thexamples, or 79%, are
covered by the largest disjunct induced by C4.5 and Rippes€eE that these large
disjuncts are extremely accurate, consider the vote datavkeh falls within the
same category. The distribution of errors for the vote datavais shown previously
in Fig. 1. The data used to generate this figure indicatestligalargest disjunct,
which covers 23% of the total training examples, does notritarie a single error
when used to classify the test data. These observationsigetadspeculate that con-
cepts that can be learned well (i.e., have low error ratespiien made up of very
general cases that lead to highly accurate large disjunct-treerefore to classifiers
with very high error concentrations. Concepts that areadlilfito learn, on the other
hand, either are not made up of very general cases, or, dingitations with the ex-
pressive power of the learner, these general cases canrepfesented using large
disjuncts. This leads to classifiers without very largehhigiccurate, disjuncts and
with many small disjuncts. These classifiers tend to havehnsnealler error con-
centrations.
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Fig. 4 Distribution of Examples with Pruning for the Vote Data Set

5 The Effect of Pruning on Small Disjuncts

The results in the previous section, consistent with previesearch on small dis-
juncts, were generated using C4.5 and Ripper with theiripgustrategies disabled.
Pruning is generally not used when studying small disjubetsause of the belief
that it disproportionately eliminates small disjunctsnfr¢the induced classifier and
thereby obscures the very phenomenon we wish to study. Howlegcause prun-
ing is employed by many learning systems, it is worthwhileistaerstand how it
affects small disjuncts and the distribution of errors asrdisjuncts—as well as
how effective it is at addressing the problem with smalluhsits. In this section we
investigate the effect of pruning on the distribution ofoesracross the disjuncts in
the induced classifier. We begin with an illustrative exaempiig. 4 shows the dis-
tribution of errors for the classifier induced from the votgalset using C4.5 with
pruning. This distribution can be compared to the corredpandistribution in Fig.
1 that was generated using C4.5 without pruning, to showftletehat pruning has
on the distribution of errors.

A comparison of Fig. 4 with Fig. 1 shows that with pruning thieoes are less
concentrated in the small disjuncts. This is also confirmeithé error concentration
value, which is reduced from .848 to .712. It is also appatteatt with pruning far
fewer examples are classified by disjuncts with size 0-9 @il The underlying
data indicates that without pruning the induced classifigally (i.e., over the 10
runs) contain 48 disjuncts, of which 45 are of size 10 or ledsle with pruning
only 10 disjuncts remain, of which 7 have size 10 or less. Bthis case pruning
eliminates 38 of the 45 disjuncts with size 10 or less. Thigficms the assumption
that pruning eliminates many, if not most, small disjundise emancipated exam-
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ples—those that would have been classified by the eliminditgdncts—are now
classified by larger disjuncts. It should be noted, howetet even with pruning
the error concentration is still quite positive (.712),icating that the errors still
tend to be concentrated toward the small disjuncts. In tée @runing also causes
the overall error rate of the classifier to decrease from G®%3%.

The performance of the classifiers induced from the thirtya dats, using C4.5
and Ripper with their default pruning strategies, is préseéim Table 4 and Table 5,
respectively. The induced classifiers are again placedhiné@ categories, although
in this case the patterns that were previously observed @reearly as evident.
In particular, with pruning some classifiers continue toenkow error rates but no
longer have large error concentrations (e.g., ocr, soylgaend ticket3 for C4.5
only). In these cases pruning has caused the rarely ocguiassification errors to
be distributed much more uniformly throughout the disjsnct

Table 4 Error Concentration Results for C4.5 with Pruning

EC Dataset Error  Dataset L:_’:Ir_gest % Errors % Correct  Error
Rank Rate Size Disjunct  10% correct  50% errors _Conc.
1 hypothyroid 0.5 3,771 2,732 90.7 0.7 .818
ticketl 1.6 556 410 46.7 10.3 730

3 vote 5.3 435 221 68.7 2.9 712
4 breast-wisc 4.9 699 345 49.6 10.0 .688
5  kr-vs-kp 0.6 3,196 669 35.4 15.6 .658
6  splice-junction 4.2 3,175 479 41.6 25.9 .566
7 crx 15.1 690 267 45.2 115 .516
8 ticket2 4.9 556 442 48.1 12.8 AT74
9  weather 31.1 5,597 573 26.2 222 442
10 adult 14.1 21,280 5,018 36.6 17.6 424
11 german 28.4 1,000 313 29.6 219 404
12 soybean-large 8.2 682 61 48.0 14.4 .394
13 network2 22.2 3,826 1,685 30.8 21.2 .362
14 ocr 2.7 2,688 1,350 40.4 34.3 .348
15 marketl 20.9 3,180 830 28.4 23.6 .336
16 networkl 22.4 3,577 1,470 24.4 27.2 .318
17  ticket3 2.7 556 431 37.0 20.9 .310
18 horse-colic 14.7 300 137 35.8 19.3 272
19 coding 27.7 20,000 415 17.2 34.9 .216
20 sonar 28.4 208 50 15.1 34.6 .202
21 heart-hung. 21.4 293 132 19.9 31.8 .198
22 hepatitis 18.2 155 89 24.2 26.3 .168
23 liver 35.4 345 59 17.6 34.8 162
24 promoters 24.4 106 26 17.2 37.0 128
25 move 23.9 3,028 216 14.4 42.9 .094
26 blackjack 27.6 15,000 3,053 16.9 447 .092
27  labor 22.3 57 24 14.3 40.5 .082
28 bridges 15.8 101 67 14.9 50.1 .064
29 market2 451 11,000 426 12.2 44.7 .060

30 bands 30.1 538 279 0.8 58.3 -.184
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Table 5 Error Concentration Results for Ripper with Pruning

EC C45 Dataset Error Dataset Lfar.gest % Errors % Correct  Error
Rank Rank Rate  Size Disjunct __ 10% correct 50% errs _Conc.
1 1 hypothyroid 09 3,771 2,732 97.2 0.6 .930
2 5  kr-vs-kp 0.8 3196 669 56.8 5.4 746
3 2 ticketl 1.6 556 410 41.5 11.9 .740
4 6 splice-junction 5.8 3,175 552 46.9 10.7 .690
5 3 vote 4.1 435 221 62.5 2.8 .648
6 8 ticket2 45 556 405 73.3 7.8 574
7 17 ticket3 4.0 556 412 71.3 9.0 .516
8 14 ocr 27 2,688 854 29.4 24.5 .306
9 20 sonar 29.7 208 59 23.1 25.4 .282
10 30 bands 26.0 538 118 22.1 24.0 .218
11 9  weather 26.9 5,597 1,148 18.8 35.4 .198
12 23 liver 32.1 345 69 13.6 34.7 .146
13 12 soybean-large 9.8 682 66 17.8 47.4 128
14 11 german 29.4 1,000 390 14.7 32.4 128
15 4 breast-wisc 4.4 699 370 14.4 31.4 124
16 15 marketl 21.3 3,180 998 19.0 43.4 114
17 7 crx 15.1 690 272 16.4 39.1 .108
18 13 network2 226 3,826 1,861 15.3 39.5 .090
19 16 networkl 23.3 3,577 1,765 16.0 42.0 .090
20 18 horse-colic 15.7 300 141 13.8 36.6 .086
21 21 hungar-heart 18.8 293 138 17.9 42.6 .072
22 19 coding 28.3 20,000 894 12.7 46.5 .052
23 26 blackjack 28.1 15,000 4,893 16.8 45.3 .040
24 22 hepatitis 22.3 155 93 255 57.2 -.004
25 29 market2 40.9 11,000 2,457 7.7 50.2 -.016
26 28 bridges 18.3 101 71 19.1 55.0 -.024
27 25 move 241 3,028 320 10.9 63.1 -.094
28 10 adult 15.2 21,280 9,293 9.8 67.9 -.146
29 27 labor 18.2 57 25 0.0 70.9 -.228
30 24 promoters 11.9 106 32 0.0 54.1 -.324

The results in Table 4 and Table 5, when compared to the sasuliable 2 and
3, show that pruning tends to reduce the error concentrafiorost classifiers. This
is shown graphically by the scatter plot in Fig. 5. Since nodshe points fall below
the line Y=X, we conclude that for both C4.5 and Ripper, pngnias expected,
tends to reduce error concentration. However, Fig. 5 makekear that pruning
has a more dramatic impact on the error concentration fesiflars induced using
Ripper than those induced using C4.5. Pruning causes the @ncentration to
decrease for 23 of the 30 data sets for C4.5 and for 26 of the@0sets for Ripper.
More significant, however, is the magnitude of the changesrior concentration.
On average, pruning causes the error concentration fosifitxs induced using
C4.5 to drop from .471 to .375, while the corresponding drdemvusing Ripper
is from .445 to .206. These results indicate that the prutessifiers produced by
Ripper have the errors much less concentrated toward thiédisjancts than those
produced by C4.5. Given that Ripper is generally known talpoe very simple rule
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sets, this larger decrease in error concentration is lidaky to the fact that Ripper
has a more aggressive pruning strategy than C4.5.

The results in Table 4 and Table 5 and in Fig. 5 indicate thain evith pruning,
the “problem with small disjuncts” is still quite evidentrfdoth C4.5 and Rip-
per. For both learners the error concentration, averaged thre thirty data sets,
is still decidedly positive. Furthermore, even with prupiboth learners produce
many classifiers with error concentrations greater thanH&Wever, it is certainly
worth noting that with pruning, seven of the classifiers icetliby Ripper haveeg-
ative error concentrations. Comparing the error concentratidmes for Ripper with
and without pruning reveals one particularly interestirgraple. For the adult data
set, pruning causes the error concentration to drop fro t6+.146. This large
change likely indicates that many error-prone small disfsirare eliminated. This
is supported by the fact that the size of the largest disjumitie induced classifier
changes from 1,488 without pruning to 9,293 with pruningud;ipruning seems to
have an enormous affect on this Ripper classifier.

The effect that pruning has on error rate is shown graplyiéalFig. 6 for both
C4.5 and Ripper. Because most of the points in Fig. 6 fall\edlwe line Y=X,
we conclude that pruning tends to reduce the error rate fiir 64.5 and Ripper.
However, the figure also makes it clear that pruning imprdfiesperformance of
Ripper more than it improves the performance of C4.5. Inigaler, for C4.5 prun-
ing causes the error rate to drop for 19 of the 30 data setgwdmilRipper pruning
causes the error rate to drop for 24 of the 30 data sets. O¥&Qthlata sets pruning
causes C4.5’s error rate to drop from 18.4% to 17.5% and Rgp@eor rate to drop
from 19.0% to 16.9%.
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Given that pruning tends to affect small disjuncts more tlaage disjuncts, an
interesting question is whether pruning is more effectiveducing error rate when
the errors in the unpruned classifier are most highly comatat in the small dis-
juncts. Fig. 7 addresses this by plotting the absolute témlui error rate due to
pruning versus the error concentration rank of the unpratessifier. The data sets
with high and medium error concentrations show a fairly ¢gteat reduction in
error rate! Finally, the classifiers in the Low-EC/High-ER categorysteonetin-
crease in error rate. These results suggest that pruning is mosfteéad when the
errors are most highly concentrated in the small disjunesd-may actually hurt
when this is not the case. The results for Ripper show a somtesirhilar pattern, al-
though the unpruned classifiers with low error concentratido consistently show
some reduction in error rate when pruning is used.

The results in this section show that pruned classifiersrgépéave lower error
rates and lower error concentrations than their unprunedteoparts. Our analy-
sis shows us that for the vote data set this change is due tia¢héhat pruning
eliminates most small disjuncts. A similar analysis, perfed for other data sets
in this study, shows a similar pattern—pruning eliminatexsstrsmall disjuncts. In
summary, pruning is a strategy for dealing with the “probleirsmall disjuncts.”
Pruning eliminates many small disjuncts and the emandaipatamples that would

1 Note that although the classifiers in the Medium-EC/High-ERg@aity show a greater absolute
reduction in error rate than those in the High-EC/Moderate-ER gtbigxgorresponds to a smaller
relative reduction in error rate, due to the differences in the errerafathe unpruned classifiers.
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have been classified by the eliminated disjuncts are thaesiéiled by other, typically
much larger, disjuncts. The result of pruning is that thera decrease in the aver-
age error rate of the induced classifiers and the remainiogsegire more uniformly
distributed across the disjuncts.

One can gauge the effectiveness of pruning as a strateggdoessing the prob-
lem with small disjuncts by comparing it to an “ideal” strgyethat causes the error
rate of the small disjuncts to equal the error rate of theeladjsjuncts. Table 6
shows the average error rates of the classifiers induced Wy fGrthe thirty data
sets, without pruning, with pruning, and with two variantstos idealized strategy.
The error rates for the idealized strategies are deterntiyefitst identifying the
smallest disjuncts that collectively cover 10% (20%) of ttaning examples and
then calculating the error rate of the classifier as if theramate of these small dis-
juncts equaled the error rate of the examples classifiedlloy tile other disjuncts.

Table 6 Comparison of Pruning to Idealized Strategy

Strategy
) ) Idealized Idealized
No Prunin Prunin
uning  FIuning g g94) (20%)
Average Error Rate 18.4% 17.5% 15.2% 13.5%
Relative Improvement 4.9% 17.4% 26.6%

The results in Table 6 show that the idealized strategy gietddich more dra-
matic improvements in error rate than pruning, even whes dnly applied to the
disjuncts that cover 10% of the training examples. Thisdat#s that pruning is not
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very effective at addressing the problem with small disfarand provides a strong
motivation for finding better strategies for handling sndiffjuncts (several such
strategies are discussed in Sect. 9). Note, however, tharteveot suggesting that
the performance of the idealized strategies can necessaél be realized.

For many real-world problems, it is more important to clfsaireduced set of
examples with high precision than in finding the classifighvtiie best overall ac-
curacy. For example, if the task is to identify customersliiko buy a product in
response to a direct marketing campaign, it may be impassibutilize all clas-
sifications—budgetary concerns may permit one to only atrikee 10,000 people
most likely to make a purchase. Given that our results inditiaat pruningde-
creases the precision of the larger, more precise disjuncts (compéy. 1 and Fig.
4), this suggests that pruning may be harmful in such casesatbough pruning
leads to an overall increase in the accuracy of the inducessbifier. To investigate
this further, classifiers were generated by starting wighléingest disjunct and then
progressively adding smaller disjuncts. A classificatieaigion is only made if an
example is covered by one of the added disjuncts; otherwgselassification is
made. The error rate (i.e., precision) of the resultingsifeess, generated with and
without pruning, is shown in Table 7, as is the differencerioerates. A negative
difference indicates that pruning leads to an improvemest @ reduction) in error
rate, while a positive difference indicates that prunirgdieto an increase in error
rate. Results are reported for classifiers with disjuncis tbllectively cover 10%,
30%, 50%, 70% and 100% of the training examples.

The last row in Table 7 shows the error rates averaged ovehittg data sets.
These results clearly show that, over the thirty data setsiipg only helps for the
last column—when all disjuncts are included in the evaldaiassifier. Note that
these results, which correspond to the accuracy resulsepted earlier, are typi-
cally the only results that are described. This leads to @mlpwptimistic view of
pruning, since in other cases pruning results nigher overall error rate. As a con-
crete example, consider the case where we only use the clisjtivat collectively
cover 50% of the training examples. In this case C4.5 witmipigi generates clas-
sifiers with an average error rate of 12.9% whereas C4.5 withauning generates
classifiers with an average error rate of 11.4%. Looking @inldividual results for
this situation, pruning does worse for 17 of the data settebir 9 of the data sets,
and the same for 4 of the data sets. However, the magnitudeedifferences is
much greater in the cases where pruning performs worse.

The results from the last row of Table 7 are displayed graglyiin Fig. 8, which
plots the error rates, with and without pruning, averageer ¢he thirty data sets.
Note, however, that unlike the results in Table 7, Fig. 8 sholassifier performance
at each 10% increment.

Fig. 8 clearly demonstrates that under most circumstancesny doesot pro-
duce the best results. While it produces marginally bettsults when predictive
accuracy is the evaluation metric (i.e., all examples maatlassified), it produces
much poorer results when one can be very selective aboutabsification “rules”
that are used. These results confirm the hypothesis that yharing eliminates
some small disjuncts, the emancipated examples cause tineate of the more ac-



The Impact of Small Disjuncts on Classifier Learning 17

Table 7 Effect of Pruning when Classification Based only on Largesjubists

Dataset Name Error rate with pruning (yes) and without pruning (no)

10% covered 30% covered 70% covered 100% covered
Pruning used: yes no A yes no A yes no A yes no A
kr-vs-kp 00 00 00 00 00 00 01 00 01 06 03 03
hypothyroid 01 03 -02 02 01 01 01 00 00 05 05 0.0
vote 31 00 31 10 00 10 23 07 16 53 69 -16
splice-junction 03 09 -06 02 03 -01 24 06 18 42 58 -16
ticket2 03 00 03 27 08 19 25 10 15 49 58 -09
ticketl 01 21 -19 03 06 -03 03 03 00 16 22 -05
ticket3 21 20 01 17 12 05 15 05 10 27 36 -09
soybean-large 15 00 15 54 10 44 47 13 35 82 91 -09
breast-wisc 15 11 04 10 10 00 10 14 -04 49 50 -01
ocr 15 18 -03 19 08 11 19 10 09 27 22 05
hepatitis 54 6.7 -13 150 22 129 128 121 06 182 221 -39
horse-colic 202 1.8 184 146 4.6 100 107 106 0.1 147 163 -1.7
crx 70 73 -03 79 65 14 78 93 -16 151 19.0 -39
bridges 10.0 0.0 100 175 0.0 175 149 94 54 158 158 0.0
heart-hung. 154 6.2 92 184 114 7.0 16.0 164 -04 214 245 -31
marketl 16.6 2.2 144 122 7.8 44 145 159 -14 209 236 -2.6
adult 39 05 34 36 49 -13 83 106 -23 141 163 -22
weather 54 86 -32 106 140 -34 227 246 -19 311 332 -21
network2 108 9.1 1.7 125 107 18 151 172 -21 222 239 -18
promoters 10.2 193 -9.1 109 104 0.4 196 168 28 244 243 0.1
networkl 153 74 79 131 118 13 16.7 173 -06 224 241 -1.7
german 100 49 51 111 125 -14 204 257 -53 284 317 -3.3
coding 19.8 85 11.3 187 143 44 236 206 31 277 255 22
move 246 9.0 156 19.2 121 7.1 226 187 38 239 235 03
sonar 276 276 0.0 237 237 00 244 243 01 284 284 0.0
bands 13.1 0.0 13.1 343 16.3 180 338 266 7.2 301 290 1.1
liver 275 36.2 -88 324 281 43 30.7 318 -1.2 354 345 0.9
blackjack 253 26.1 -08 251 258 -0.8 26.1 244 17 276 278 -0.2
labor 250 25.0 0.0 175 248 -73 244 175 69 223 207 16
market2 441 455 -14 431 443 -12 433 453 -20 451 463 -1.2
Average 116 87 29 125 97 28 142 134 08 175 184 -09

curate large disjuncts to decrease. The overall error satrluced only because the
error rate for the emancipated examples is lower than thigiinal error rate. Thus,
pruning redistributes the errors such that the errors ane miformly distributed
than without pruning. This is exactly what one does not waritappen when one
can be selective about which examples to classify (or whiabksifications to act
upon). We find the fact that pruning only improves classifierf@rmance when
disjuncts covering more than 80% of the training examplesused to be quite
compelling.
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6 The Effect of Training Set Size on Small Disjuncts

The amount of training data available for learning has sdweell-known effects.
Namely, increasing the amount of training data will tenditoréase the accuracy of
the classifier and increase the number of “rules”, as adwdititraining data permits
the existing rules to be refined. In this section we analyeeeffect that training-set
size has on small disjuncts and error concentration.

Fig. 9 returns to the vote data set example, but this time shbes distribution
of examples and errors when the training set is limited toamdg 10% of the total
data. These results can be compared with those in Fig. Lhvelnechased upon 90%
of the data being used for training. Thus, the results in Figre based on 1/9the
training data used in Fig. 1. Note that the size of the bind,camsequently the scale
of the x-axis, has been reduced in Fig. 9.

A comparison of the relative distribution of errors betwdég. 9 and Fig. 1
shows that errors are more concentrated toward the smadjendts in Fig. 1, which
has a higher error concentration (.848 vs. .628). This atdi that increasing the
amount of training data increases the degree to which tlegseare concentrated
toward the small disjuncts. Like the results in Fig. 1, theuits in Fig. 9 show that
there are three groupings of disjuncts, which one might bepted to refer to as
small, medium, and large disjuncts. The size of the dispmithin each group dif-
fers between the two figures, due to the different numberaafitng examples used
to generate each classifier (note the change in scale ofakes)-It is informative to
compare the error concentrations for classifiers inducetdyudifferent training-set
sizes because error concentration is a relative measuraeaisures the distribution
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Fig. 9 Distribution of Examples for the Vote Data Set (using 1/9 of tbemal training data)

of errors within the classifier relative to the disjunctshiitthe classifier and rela-
tive to the total number of errors produced by the classiigri¢h will be less when

more training data is available). Summary statistics fbthaity data set are shown
in Table 8.

Table 8 shows the error rate and error concentration for ldesifiers induced
from each of the thirty data sets using three different ingjrset sizes. The last
two columns highlight the impact of training-set size, bywmng the change in
error concentration and error rate that occurs when theitigiset size is increased
by a factor of nine. As expected, the error rate tends to dseravith additional
training data while the error concentration, consisterthwie results associated
with the vote data set, shows a consistent increase—for #7e080 data sets the
error concentration increases when the amount of trainatg t increased by a
factor of nine.

The observation that an increase in training data leads tom@gase in error
concentration can be explained by analyzing how an incrieds&ining data affects
the classifier that is learned. As more training data becave#able, the induced
classifier is better able to sample, and learn, the genesakdhat exist within the
concept. This causes the classifier to form highly accueatgel disjuncts. As an
example, note that the largest disjunct in Fig. 1 does nogrcavsingle error and
that the medium-sized disjuncts, with sizes between 80 &8¢ dover only a few
errors. Their counterparts in Fig. 9, with size between 20 2n and 10 to 15,
have a higher error rate. Thus, an increase in training @atgslto more accurate
large disjuncts and a higher error concentration. The stigjlincts that are formed
using the increased amount of training data may corresporaté cases within the
concept that previously were not sampled sufficiently todaeried.
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Table 8 The Effect of Training Set Size on Error Concentration

Amount of Total Data Used for Training A from

10% 50% 90% 10% to 90%
Data Set ER EC ER EC ER EC ER EC
kr-vs-kp 3.9 .742 0.7 .884 0.3 .874 -3.6 .132
hypothyroid 1.3 .910 0.6 .838 0.5 .852 -0.8 -.058
vote 9.0 .626 6.7 .762 6.9 .848 -2.1 222
splice-junction 8.5 .760 6.3 .806 5.8 .818 -2.7 .058
ticket2 7.0 .364 5.7 .788 5.8 .758 -1.2 .394
ticketl 29 .476 3.2 .852 2.2 .752 -0.7 .276
ticket3 9.5 .672 41 512 3.6 .744 -5.9 .072
soybean-large 319 .484 13.8 .660 9.1 .742 -22.8 .258
breast-wisc 9.2 .366 5.4 .650 5.0 .662 -4.2 .296
ocr 8.9 .506 2.9 .502 2.2 .558 -6.7 .052
hepatitis 22.2 .318 225 .526 22.1 .508 -0.1 .190
horse-colic 233 452 18.7 534 16.3 .504 -7.0 .052
crx 20.6 .460 19.1 .426 19.0 .502 -1.6 .042
bridges 16.8 .100 14.6 .270 15.8 .452 -1.0 .352
heart-hungarian 23.7 .216 22.1 416 245 .450 0.8 .234
marketl 26.9 .322 239 422 23.6 .440 -3.3 .118
adult 18.6 .486 17.2 .452 16.3 .424 -2.3 -.062
weather 34.0 340 32.7 .380 33.2 .416 -0.8 .076
network2 27.8 .354 249 .342 239 .384 -3.9 .030
promoters 36.0 .108 224 .206 243 .376 -11.7 .268
networkl 28.6 .314 25.1 .354 24.1 .358 -4.5 .044
german 343 .248 333 .334 31.7 .356 -2.6 .108
coding 38.4 214 30.6 .280 255 .294 -12.9 .080
move 33.7 158 259 .268 235 .284 -10.2 .126
sonar 40.4 .028 27.3 .292 28.4 226 -12.0 .198
bands 36.8 .100 30.7 .152 29.0 .178 -7.8 .078
liver 40.5 .030 36.4 .054 345 .120 -6.0 .090
blackjack 29.4 100 279 .094 27.8 .108 -1.6 .008
labor 30.3 .114 17.0 .044 20.7 .102 -9.6 -.012
market2 47.3 .032 457 .028 46.3 .040 -1.0 .008
Average 23.4 .347 18.9 .438 18.4 471 -5.0 .124

In this section we noted that additional training data reduihe error rate of
the induced classifier and increases its error concentralibese results help to
explain the pattern, described in Sect. 4, that classifiétts kaw error rates tend
to have higher error concentrations that those with higbreates. That is, if we
imagine that additional training data were made availablénbse data sets where
the associated classifier has a high error rate, we wouldcexpe error rate to
decline and the error concentration to increase. This wiand to move classifiers
into the High-EC/Moderate-ER category. Thus, to a largemxithe pattern that
was established in Sect. 4 between error rate and error otaten reflects the
degree to which a concept has been learned—concepts ttebban well-learned
tend to have very large disjuncts which are extremely a¢ewad hence have low
error concentrations.
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7 The Effect of Noise on Small Disjuncts

Noise plays an important role in classifier learning. Both $tructure and perfor-
mance of a classifier will be affected by noisy data. In patég noisy data may
cause a many erroneous small disjuncts to be induced. Daayld Provost [8]
speculated that the classifiers they induced from (systejmatisy data performed
poorly because of an inability to distinguish between tregseneous consistencies
and correct ones. Weiss [17] and Weiss and Hirsh [19] exglthis hypothesis us-
ing, respectively, two artificial data sets and two reald/@lata sets and showed
that noise can make rare cases (i.e., true exceptions) inudeunknown, concept
difficult to learn. The research presented in this sectiothér investigates the role
of noise in learning, and, in particular, shows how noisyadstects induced classi-
fiers and the distribution of the errors across the disjuwitsn these classifiers.

The experiments described in this section involve applyangdom class noise
and random attribute noise to the data. The following expental scenarios are
explored:

Scenario 1: Random class noise applied to the training data
Scenario 2: Random attribute noise applied to the trainatg d
Scenario 3: Random attribute noise applied to both traiamgjtest data

Class noise is only applied to the training set since the mapted class label
in the test set is required to properly measure classifiéfbpeance. The second
scenario, in which random attribute noise is applied onlheotraining set, permits
us to measure the sensitivity of the learner to noise (iitaite noise were applied to
the test set then even if the correct concept were learnegl\wwild be classification
errors). The third scenario, in which attribute noise isliggito both the training and
test set, corresponds to the real-world situation whe@®in measurement affect
all examples. A level of n% random class noise means thatffoohthe examples
the class label is replaced by a randomly selected clasg vadcluding possibly
the original value. Attribute noise is defined similarly,cept that for numerical
attributes a random value is selected between the minimwnreaximum values
that occur within the data set. Note that only when the nasellreaches 100% is
all information contained within the original data lost.

The vote data set is used to illustrate the effect that naseoh the distribution
of examples, by disjunct size. The results are shown in Big-—1, with the graphs in
the left column corresponding to the case when there is numpguand the graphsiin
the right column corresponding to the case when pruning g@&yed. Figs. 10a and
10b, which are exact copies of Figs. 1 and 4, respectivetyvghe results without
any noise and are provided for comparison purposes. Figsad® 1d correspond
to the case where 10% attribute noise is applied to the trgidata and Figs. 10e
and 1f to the case where 10% class noise is applied to théngediata.

A comparison of Fig. 10a with Figs. 10c and 10e shows that htitibute and
class noise cause more test examples to be covered by sgjatiats, although this
shift is more dramatic for class noise than for attributesaoirhe underlying data
indicates that this shift occurs because noisy data causes small disjuncts to
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Fig. 10 The Effect that Noise has on the Distribution of Examples, bsjibict size

be formed. This comparison also shows that the error coratétt remains fairly
stable when attribute noise is added but decreases sigtificghen class noise is
added.

By comparing Figs. 10c and 10d, Figs. 10e and 10f, and FigwithbFigs. 10d
and 10f, it becomes clear that pruning reduces the shiftstridution of (correctly
and incorrectly) examples that is observed when pruningtisised. A comparison
of the error rates for classifiers with and without pruningpahows that pruning is
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Fig. 11 The Effect of Noise on Classifier Complexity

able to combat the effect of noise on the ability of the cléessio learn the concept.
Surprisingly, when pruning is used, classifier accuracytervote data set actually
improves when 10% attribute noise is added—the error rateedses from 5.3%
to 4.6%. This phenomenon, which is discussed in more détaittly, is actually
observed for many of the thirty data sets, but only when log.(e10%) levels of
attribute noise are added. The error concentration realdts indicate that even
with pruning, noise causes the errors to be distributed mor@rmly throughout
the disjuncts than when no noise is applied.

The results presented in the remainder of this section aedban averages over
twenty-seven of the thirty data sets listed in Table 1 (thdirop, ocr and bands data
sets were omitted due to difficulties applying our noise nhdoléhese data sets).
The next three figures show, respectively, how noise affidetsiumber of leaves,
the error rate, and the error concentration of the inducaskdiers. Measurements
are taken at the following noise levels: 0%, 5%, 10%, 20%, 30086, and 50%.
The curves in these figures are labeled to identify the typeoafe that is applied,
whether it is applied to the training set or training and s&tf and whether pruning
is used. The labels are interpreted as follows: the “Classl’ ‘@ttribute” prefix
indicate the type of noise, the “-Both” term, if includeddicates that the noise
is applied to the training and test sets rather than to juestrdining set, and the
“-Prune” suffix is used to indicate that the results are witlming.

Fig. 11 shows that without pruning the number of leaves irinidaced decision
tree increases dramatically with increasing levels of eomit that pruning effec-
tively eliminates this increase. The effect that noise hawor rate is shown in
Fig. 12. Error rate increases with increasing levels of ejoigith one exception.
When attribute noise is applied to only the training data pnaing is used, the
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Fig. 12 The Effect of Noise on Error Rate

error rate decreases slightly from 17.7% with 5% noise t&6%/with 10% noise.
This decrease is no anomaly, since it occurs for many of tte skds analyzed. We
believe the decrease in error rate may be due to the facttthidge noise leads to
more aggressive pruning (most of the data sets that showettreake in error rate
have high overall error rates, which perhaps are more litcehenefit from aggres-
sive pruning). Fig. 12 also shows that pruning is far moreagite at handling class
noise than attribute noise.

Fig. 13 shows the effect of noise on error concentration. Wiraning is not em-
ployed, increasing levels of noise lead to decreases im eorcentration, indicat-
ing that errors become more uniformly distributed basedisjuigct size. This helps
explain why we find a low-ER/high-EC group of classifiers armigh-ER/medium-
EC group of classifiers: adding noise to classifiers in thenéarincreases their error
rate and decreases their error concentration, making tbhekmhore like classifiers
in the latter group. The results in Fig. 13 also show, howetat when there is
noise only in the training set, then pruning causes the eoncentration to remain
relatively constant (this is especially true for class ahis

The results in this section demonstrate that pruning esdbéelearner to combat
noisy training data. Specifically, pruning removes manyhef dlisjuncts that are
caused by the noise (Fig. 11) and this yields a much smaleease in error rate
than if pruning were not employed (Fig. 12). Because prumiimginates many of
the erroneous small disjuncts, the errors are not nearlprcentrated in the small
disjuncts (Fig. 13). We believe that the increase in errte tiaat comes from noisy
training data when pruning is employed is at least partly tdude inability of the
learner to distinguish between true exceptions and noise.

The detailed results associated with the individual dats Stgow that for class
noise there is a trend for data sets with high error concéoito experience a
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greater increase in error rate from class noise. What is manre apparent, how-
ever, is that many classifiers with low error concentratiareextremely tolerant of
class noise, whereas none of the classifiers with high emocentrations exhibit
this tolerance. For example, the blackjack and labor dat beth of which have
low error concentrations, are so tolerant of noise that v random class noise
is added to the training set, the error rate on the inducesbifler on the test data
increases by less than 1%. These results are consistenthgithelief that noise
makes learning difficult because it makes of an inabilityistidguish between true
exceptions and noise. Even without the addition of noisaeraf the concepts can
be induced perfectly (i.e., they have non-zero error rdteg. classifiers with a high
error concentration already show an inability to propeelgrh the rare cases in the
concept (which show up as small disjuncts)—the addition @& simply wors-
ens the situation. Those concepts with very general castsdin be learned well
without noise (leading to highly accurate large disjunctd &ow error concentra-
tions) are less susceptible to noise. For example, congiitie class labels for a
few examples belonging to a very large disjunct is unlikelghange the class label
learned for that disjunct.

8 The Effect of Class Imbalance on Small Disjuncts

A data set exhibits class imbalance if the number of exampéésnging to each
class is unequal. A great deal of recent research, some ohvighdescribed in Sect.
9, has studied the problem of learning classifiers from iahetd data, since this
has long been recognized as commonly occurring and diffi@té mining problem.
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However, with few exceptions [11, 22], this research hasexamined the role of
small disjuncts when learning from imbalanced data.

The study by Weiss and Provost [22] showed that exampleg beibnging to
the minority class are misclassified much more often thamekes belonging to
the majority class and that examples labelled by the classifi belonging to the
minority class (i.e., minority-class predictions) haveahnthigher error rates than
those labelled with the majority class. That study furthevged that the minority-
labeled disjuncts tend to cover fewer training examples tha majority-labeled
disjuncts. This result is not surprising given that the mityalass has, by definition,
fewer training examples than the majority cldsBhe study concluded that part of
the reason that minority-class predictions are more grone than majority-class
predictions is because the minority-class prediction®lzlower average disjunct
size and hence suffer more from the problem with small digginrhe work by Jo
and Japkowicz is discussed in Sect. 9.

In this section we extend the research by Weiss and Provastt¢2consider
whether there is a causal link between class imbalance anprtiiblem with small
disjuncts in the opposite direction. That is, we consideetlvhr class imbalance
causes small disjuncts to have a higher error rate than thsgencts, or, more gen-
erally, whether an increase in class imbalance will causea@aase in error concen-
tration. Before evaluating this hypothesis empiricallysiuseful to speculate why
such a causal link might exist. Weiss and Provost suggebttdone reason that
minority-class predictions are more error-prone than tlgonty-class predictions
is because, by definition, there are more majority-clagstesmples than minority-
class test examples. To see why this is so, imagine a datarsethich there are nine
majority-class examples for every one minority-class gxanif onerandomly gen-
erates a classifier amdndomly labels each disjunct (e.g., leaf), then the minority-
labeled disjuncts will have an expected error rate of 90%enthe majority-labeled
disjuncts will have an expected error rate of only 10%. Thiis, test-distribution
effect favors majority-class predictions. Given that Weasd Provost showed that
small disjuncts are disproportionately likely to be laloelgith the minority class,
one would therefore expect this test-distribution effectavor the larger disjuncts
over the smaller disjuncts.

We evaluate this hypothesis by altering the class disiobubf data sets and
then measuring the error concentration associated witintheced classifiers. For
simplicity, we look at only two class distributions for eaddita set: the naturally oc-
curring class distribution and a perfectly balanced clasisidution, in which each
class is represented in equal proportions. By comparingittog concentrations for
these two class distributions, we can also determine hovinotithe “problem with
small disjuncts” is due to class imbalance in the data set.

2 The detailed results show that the induced classifiers have majarity-labeled disjuncts than

minority-labeled disjuncts, but the ratio of majority-labelesjahcts to minority-labeled disjuncts

is smaller than the ratio of majority-class examples to minesiass examples. Thus the majority-
class disjuncts cover more examples than the minority-cleaspbes.
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We form data sets with the natural and balanced class distits using the
methodology described by Weiss and Provost [22]. This nuktlogy employs strat-
ified sampling, without replacement, to form the desired<distribution from the
original data set. The number of examples selected foritrgiis the same for the
natural and balanced versions of each data set, to enstianghdifferences in per-
formance are due solely to the difference in class disidbufthe actual number
of training examples that are used is reduced from what igadole, to ensure that
the balanced class distribution can be formed without daphg any examples).
Because this methodology reduces the number of trainingpbes, we exclude the
small data sets when studying class imbalance, so thataasiflers are induced
from using a “reasonable” number of examples. The data sgitoged in this sec-
tion include the larger data sets from Table 1 plus some iadditdata sets. These
data sets, listed in Table 9, are identical to the ones dualfeWeiss and Provost
[22]. They include twenty data sets from the UCI repositdiige data sets, iden-
tified with a “+”, from previously published work by reseastb at AT&T [7] and
one new data set, the phone data set, generated by the dltbalata sets are listed
in order of decreasing class imbalance (the percentageradrityi-class examples
in each data set is included). In order to simplify the préston and analysis of
the results, data sets with more than two classes were mapjoetivo classes by
designating the least frequently occurring class as theritynclass and mapping
the remaining classes into a new, majority, class. Eachsadthat originally started
with more than two classes is identified with an asterisk (*).

Table 9 Description of Data Sets for Class Imbalance Experiments

# Dataset % Min. Sze # Dataset % Min. Sze
1 letter-a* 3.9 20,000 14 network?2 27.9 3,826
2 pendigits* 8.3 13,821 15 yeast* 28.9 1,484
3 abalone* 8.7 4,177 16 networkl+ 29.2 3,577
4 sick-euthyroid 9.3 3,163 17 car* 30.0 1,728
5 connect-4* 9.5 11,258 18 german 30.0 1.000
6 optdigits* 9.9 5,620 19 breast-wisc 34.5 699
7 covertype* 14.8 581,102 20 blackjack+ 35.6 15,000
8 solar-flare* 15.7 1,389 21 weather+ 40.1 5,597
9 phone 18.2 652,557 22 bands 42.2 538
10 letter-vowel* 19.4 20,000 23 marketl+ 43.0 3,181
11 contraceptive* 226 1,473 24 crx 445 690
12 adult 23.9 48,842 25 kr-vs-kp 47.8 3,196
13 splice-junction* 24.1 3,175 26 move+ 49.4 3,029

Fig. 14 shows the error concentration for the classifieraded by C4.5 from the
natural and balanced versions of the data sets listed ire RalBince the error con-
centrations are all greater than zero when there is no afasalance, we conclude
that even with a balanced data set errors tend to be contahtmavard the smaller
disjuncts. However, by comparing the error concentratassociated with the clas-
sifiers induced from the balanced and natural class disimiis, we see that when
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there is class imbalance, with few exceptions, the errocentration increases. The
differences tend to be larger when the data set has greassrichbalance (the left-
most data set has the most natural class imbalance and sisarolaalance decreases
from left to right).

If we look at the average error concentration for the classifinduced from the
natural and balanced versions of the twenty-six data setse® that the balanced
versions have an average error concentration of .396 wieleatural versions have
an average error concentration of .496. This correspora@®@36 reduction in error
concentration when class imbalance is removed. If we oégitir attention to the
first 18 data sets, which contain at most 30% minority-classrples, then the dif-
ferences in error concentration are 28% (.387 for the balhdata sets versus .537
for the data sets with the natural class distributions). Méedfore conclude that for
data sets with class imbalance, part of the reason why sisalhdts have a higher
error rate than the large disjuncts is due to the fact thabritinclass predictions
are more likely to be erroneous due to the test distributitecedescribed earlier.
This is empirical evidence that class imbalance is pardpoasible for the problem
with small disjuncts. This also indicates that if one aritifily modifies the class dis-
tribution of the training data to be more balanced, then ther €@oncentration will
decrease. This observation may help explain why, as noted/digs and Provost
[22], classifiers built using balanced class distributitersl to be quite robust.
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9 Related Work

Research on small disjuncts can be placed into the follottireg categories, which
we use to organize our discussion of related work. These ttategories are based
on whether the purpose of the research is to:

1. Characterize and/or measure the role of small disjundesirning,

2. Provide a better understanding of small disjuncts (a/y, they are more error
prone than large disjuncts), or

3. Design better classifiers that address the problem witil stisjuncts.

Most previous research on small disjuncts only incidentaiéd to characterize
or measure the role of small disjuncts in learning and onghared one or two data
sets [1, 3, 8, 9, 17, 19]. This made it impossible to form anyegal conclusions.
We addressed this problem by analyzing thirty data sets.

Some research has focused on providing a better undenstaotlismall dis-
juncts. Danyluk and Provost [8] observed that in the domhaay twere studying,
when they trained using noisy data, classifier accuracgrdfseverely. They spec-
ulated that this occurred because: 1) it is difficult to digtiish between noise and
true exceptions and, 2) in their domain, errors in measunémed classification
often occur systematically rather than randomly. Thusy gpeculated that it was
difficult to distinguish between erroneous consistenaesarrect ones. This spec-
ulation formed the basis for the work by Weiss [17] and Weisd Hlirsh [19].
Weiss [17] investigates the interaction between noise,cases and small disjuncts
using synthetic datasets, for which the true “concept” isvim and can be ma-
nipulated. Some synthetic data sets were constructed foymoepts that included
many rare, or exceptional cases, while others were cortsttiditom concepts that
mainly included general cases. The research showed thaatheases tended to
form small disjuncts in the induced classifier. It furtheowled that systematic at-
tribute noise, class noise, and missing attributes can emebe the small disjuncts
to have higher error rates than the large disjuncts, anctalsse those test examples
that correspond to rare cases to be misclassified more bfterthhose test examples
corresponding to common cases. That paper also providegpanation for this
behavior: it is asserted that attribute noise in the trgoiata can cause the common
cases to look like the rare cases, thus "overwhelming” thegases and causing the
wrong subconcept to be learned

The majority of research on small disjuncts focuses on wagsltiress the prob-
lem with small disjuncts. Holte et al. [9] evaluate sevetedtegies for improving
learning in the presence of small disjuncts. They show thatstrategy of elimi-
nating all small disjuncts is ineffective, because the eripamted examples are then
even more likely to be misclassified. The authors focus orasegty of making small
disjuncts highly specific and argued that while a maximurnegality bias, which is
used by systems such as ID3, is appropriate for large diguindés not appropriate
for small disjuncts. To test this claim, they ran experirsemhere a maximum gen-
erality bias is used for the large disjuncts and a maximurnifpigy bias is used for
the small disjuncts (for a maximum specificity biaé conditions satisfied by the
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training examples covered by a disjunct are added to therdig}. The experimen-
tal results show that with the maximum specificity bias, #uiting disjuncts cover
fewer cases but have much lower error rates. Unfortunatedyemancipated exam-
ples increase the error rate of the large disjuncts to thenéxihat the overall error
rates remain roughly the same. Although the authors alsergwmpnt with a more

selective bias that produces interesting results, it do¢slamonstrably improve
learning.

Ting [15] evaluates a method for improving the performantcenoall disjuncts
that also uses a maximum specificity bias. However, unlikentiethod employed
by Holte et al. [9], this method does not affect (and thefmannot degrade) the
performance of the large disjuncts. The basic approachus&dC4.5 to determine
if an example is covered by a small or large disjunct. If it avered by a large
disjunct, then C4.5 is used to classify the example. Howéivire example is cov-
ered by a small disjunct, then IB1, an instance-based leasnased to classify the
example. Instance-based learning is used in this case $®daecan be considered
an extreme example of the maximum specificity bias. In ordarse this hybrid
learning method, there must be a specific criterion for deitgéng what is a small
disjunct. The paper empirically evaluates alternativeedda, based on a threshold
value and 1) the absolute size of the disjunct, 2) the raaize of the disjunct, or
3) the error rate of the disjunct. For each criterion, only best result, produced
using the best threshold, is displayed. The results arefibver overly optimistic,
because the criteria/threshold values are selected usintgs$t data rather than an
independent hold-out set. Thus, although the observedtseme encouraging, it
cannot be claimed that the composite learner is very suitdéssaddressing the
problem with small disjuncts.

Carvalho and Freitas [3] employ a hybrid method similar tat thsed by Ting
[15]. They also use C4.5 to build a decision tree and thengeéah training exam-
ple, use the size of the leaf covering that example to deternifithe example is
covered by a small or large disjunct. The training examgiasfall into each small
disjunct are then fed together into a genetic-algorithnetidsarner that forms rules
to specifically cover the examples that fall into that indival disjunct. Test exam-
ples that fall into leaves corresponding to large disjuactsthen assigned a class
label based on the decision tree; test examples that falbistnall disjunct are clas-
sified by the rules learned by the genetic algorithm for tlaatipular disjunct. Their
results are also encouraging, but, because they are basedianfew data sets, and
because, as with the results by Ting [15], the improvementsrior rate are only
seen for certain specific definitions of “small disjunct’cénnot be concluded that
this research substantially addresses the problem with disjncts.

Several other approaches are advocated for addressingablem with small
disjuncts. Quinlan [13] tries to minimize the problem by ioying the probability
estimates used to assign a class label to a disjunct. A natimae of the error
rate of a disjunct is the proportion of the training examplest it misclassifies.
However, this estimate performs quite poorly for small uhsits, due to the small
number of examples used to form the estimate. Quinlan desca method for im-
proving the accuracy estimates of the small disjuncts bintathe class distribution
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into account. The motivation for this work is that for unbatad class distribu-
tions one would expect the disjuncts that predict the migjatass to have a lower
error rate than those predicting the minority class (thithestest distribution ef-
fect described in Sect. 8). Quinlan incorporates thaser probabilities into the
error rate estimates. However, instead of using the oveladls distribution as the
prior probability, Quinlan generates a more represergatieasure by calculating
the class distribution only on those training examples #nat’close” to the small
disjunct—that is, fail to satisfy at most one condition i ttisjunct. The experi-
mental results demonstrate that Quinlan’s error rate asitom model outperforms
the naive method, most significantly for skewed distritnsio

Van den Bosch et al. [16] advocate the use of instance-basedihg for do-
mains with many small disjuncts. They are mainly interesteldnguage learning
tasks, which they claim result in many small disjuncts, avciets of exceptions.”
In particular, they focus on the problem of learning wordrnaciations. Because
instance-based learning does not form disjunctive coscegther than determining
disjunct sizes, they instead compute cluster sizes, whiep tiew as analogous to
disjunct size. They determine cluster sizes by repeatezdgcgng examples from
the data, forming a ranked list of the 100 nearest neighboithen they determine
the rank of the nearest neighbor with a different class valiles value minus one
is considered to be the cluster size. This method, as wellembre conventional
method of measuring disjunct size via a decision tree, shbaisthe word pro-
nunciation domain has many small disjuncts. The authostaysan information-
theoretic weighted similarity matching function, whiclfiesftively re-scales the fea-
ture space so that "more important” features have greatighivéVhen this is done,
the size of the average cluster is increased from 15 to 2%ortimfately, error rates
were not specified for the various clusters and hence oneftrercannot measure
how effective this strategy for dealing with the problemsmall disjuncts.

The problem of learning from imbalanced data where the ekaase represented
in unequal proportions is a common problem that has receivgekbat deal of at-
tention [4, 5, 10, 21]. Our results in Sect. 8 provide a linkween the problem
of learning from imbalanced data and the small disjunctblera. A similar link
was provided by Jo and Japkowicz [11], who also showed thatthed that deals
with the problem of small disjuncts, cluster-based ovepdang, can also improve
the performance of classifiers that learn from imbalanced. dehis supports the
notion that a better understanding of small disjuncts cad tbe design of better
classification methods.

10 Conclusion

This article makes several contributions to the study oflkdigjuncts and, more
generally, classifier learning. First, the degree to whilalsdisjuncts affect learn-
ing is quantified using a new measure, error concentratiesaBse error concen-
tration is measured for a large collection of data sets Heffirst time it is possible
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to draw general conclusions about the impact that smallidicss have on learn-
ing. The experimental results show that, as expected, foyrolassifiers errors are
highly concentrated toward the smaller disjuncts—howekierresults also show
that for a substantial number of classifiers this simply istnge. Our research also
indicates that the error concentration for the classifiedsiced using C4.5 and Rip-
per are highly correlated, indicating that error concditrameasures some “real”
aspect of the concept being learned, and is not totally afaerof the learner.
Finally, our results indicate that classifiers with relalywlow error rates almost al-
ways have high error concentrations while this is not truela$sifiers with high
error rates. Analysis indicates that this is due to the faat tlassifiers with low
error rates generally contain some very accurate largerditg. We conclude from
this that concepts that can be learned well tend to contain general cases and
that C4.5 and Ripper generate classifiers with similar eromcentrations because
they are both able to form accurate large disjuncts to chwe=e general cases.

Another contribution of this article is that it takes an iepth look at pruning.
This is particularly important because previous researtthsmall disjuncts largely
ignores pruning. Our results indicate that pruning elirtésanany of the small dis-
juncts in the induced classifier and that this leads to a ite@ui error concen-
tration. These results also show that pruning is more @ffeet reducing the error
rate of a classifier when the unpruned classifier has a high @ncentration. Prun-
ing is evaluated as a method for addressing the problem witl glisjuncts and is
shown to be of limited effectiveness. Our analysis also shihat because pruning
distributes the errors that were concentrated in smallidedf to the more accurate,
larger, disjuncts, pruning can actually degrade clasggéeiormance when one may
be selective in applying the induced classification rules.

In this article we also show how factors such as trainings&et, noise, and class
imbalance affect small disjuncts and error concentrafidns provides not only
a better understanding of small disjuncts, but of how theggortant, real-world,
factors affect inductive learning. As an example, the ftesil Sect. 6 permit us
to explain how increasing the amount of training data leadsnt improvement in
classifier accuracy. These results, which show that inorgdise amount of training
data leads to an increase in error concentration, suggedith additional training
data allows the general cases within the concept to be lédreger than before,
but that it also introduces many new small disjuncts. Thesalldisjuncts, which
correspond to rare cases in the concept, are formed bedarseig now sufficient
training data to ensure that they are sampled. These sraplhdis are error prone,
however, due to the small number of training examples uselétermine the clas-
sification. The small disjuncts in the induced classifier raBp be error prone be-
cause, as the results in Sect. 7 and previous research [Lihdi®ate, noisy data
causes erroneous small disjuncts to be formed. Our regdlisate that pruning is
somewhat effective at combating the effect of noise on iflasaccuracy, because
of its ability to handle small disjuncts. Finally, the resuih this article also indicate
that class imbalance can worsen the problem with noise amadl disjuncts. This
may help explain why a balanced class distribution ofteddda classifiers that are
more robust than those induced from the naturally occurlags distribution.
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We believe that an understanding of small disjuncts is itgwin order to prop-
erly appreciate the difficulties associated with classiéarning, because, as this
article clearly shows, it is often the small disjuncts thetisdmine the overall perfor-
mance of a classifier. We therefore hope that the metricdgedun this article can
be used to better evaluate the performance of classifiersvéingdtimately lead to
the design of better classifiers. The research in this aréildo enables us to better
understand how various real-world factors, like noise dadssimbalance, impact
classifier learning. This is especially important as dataimgj tackles more difficult
problems.
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