
  

 

Abstract— Smartwatches and smartphones contain 

accelerometers and gyroscopes that sense a user’s movements, 

and can help identify the activity a user is performing. 

Research into smartphone-based activity recognition has 

exploded over the past few years, but research into 

smartwatch-based activity recognition is still in its infancy. In 

this paper we compare smartwatch and smartphone-based 

activity recognition, and smartwatches are shown to be capable 

of identifying specialized hand-based activities, such as eating 

activities, which cannot be effectively recognized using a 

smartphone (e.g., smartwatches can identify the “drinking” 

activity with 93.3% accuracy while smartphones achieve an 

accuracy of only 77.3%). Smartwatch-based activity 

recognition can form the basis of new biomedical and health 

applications, including applications that automatically track a 

user’s eating habits. 

I. INTRODUCTION 

Activity recognition research originally utilized specially 
engineered devices distributed across a subject’s body  [2, 6, 
11] to identify  the subject’s physical activities, but in recent 
years much of this research began utilizing commercial 
smartphones [7, 9, 11, 14], which include the requisite 
sensors (i.e., accelerometers and gyroscopes).  The use of 
these ubiquitous commercial devices greatly expanded the 
applications of activity recognition, but also introduced 
limitations due to their placement on a user’s body and 
inconsistent orientation.  For example, the smartphone could 
shift in a person’s pocket and the pocket position (near the 
upper thigh) is not ideal for tracking hand-based activities. 
Smartphone-based activity recognition is especially limited 
for women, since they typically do not keep the phone in 
their pocket. Most of these limitations are addressed by 
smartwatches, which are worn in a consistent position and 
which are ideally situated for tracking hand-based activities. 
Furthermore, since virtually all smartwatches work in tandem 
with smartphones, the sensor information from both devices 
can be utilized for activity recognition. 

This paper examines the use of smartphones and 
smartwatches for activity recognition. The performance of 
smartphone-based activity recognition is compared with the 
performance of smartwatch-based activity recognition—
although we recognize that ultimately a combination of both 
devices may work best. The efficacy of the smartwatch 
accelerometer is also compared with the efficacy of the 
smartwatch gyroscope sensor for performing activity 
recognition. Our prior research demonstrated that 

 
*This material is based upon work supported by the National Science 

Foundation under Grant No. 1116124. 
All authors are with the Department of Computer and Information 

Science, Fordham University, Bronx, NY 10458 USA.  (Corresponding 

author: Phone 718-817-0785; email: gaweiss@fordham.edu). 
 

smartphone-based personal activity recognition models—
built with training data from the intended user—vastly 
outperform impersonal models, and this study shows that this 
advantage extends to smartwatch-based activity recognition 
models. Finally, this study also extends our prior work by 
recognizing many more activities, including hand-based 
activities (e.g., typing and writing). Of special note, this study 
includes many eating-related activities (e.g., eating soup, 
eating a sandwich, drinking), which opens up the possibility 
for new health-related activity recognition applications. The 
results in this paper demonstrate that smartwatches have the 
potential to accurately identify a large variety of activities, 
including hand-based and eating-based activities that cannot 
be effectively recognized by smartphones. Consistent with 
our prior smartphone work [7, 9], the classification models 
are induced from labeled training data using standard 
machine learning algorithms. 

Smartwatch and smartphone-based activity recognition 
has many applications [8]. Generally, these devices can 
operate more intelligently if they are aware of what their user 
is doing (e.g., forwarding a call to voicemail during a meal). 
However, the main application of our research has been to 
improve people’s health and wellbeing. Physical inactivity 
and unhealthy eating are two of the most powerful, 
modifiable risk factors for disease. Performing a sufficient 
amount of physical activity is important because physical 
inactivity dramatically increases the health risks for 
cardiovascular disease [4], colon cancer [5], and many other 
diseases—while a healthy amount of physical activity 
reduces the risk of all-cause mortality [1] and could prevent 
two million deaths per year [12]. Similarly, there are 
significant health risks associated with excessive caloric 
intake [10]. While many types of interventions seek to reduce 
the tendency toward overeating, long-term dietary adherence 
remains a major challenge [3].  Activity monitoring can help 
combat both inactivity and overeating by providing accurate, 
real-time information about sedentary behavior, exercise, and 
eating behavior. The smartwatch is perfectly poised to 
convey this information since it is always readily and 
unobtrusively accessible—which is one reason why 
smartwatch manufacturers tout its potential to improve 
health. While there are some basic activity recognition 
applications for smartwatches, our work involves much more 
specific activities (including a variety of eating activities). 
Smartwatch-based apps capable of tracking eating activities 
could ultimately replace (or augment) the manually intensive 
methods for maintaining a food diary. 

II. THE ACTIVITY RECOGNITION TASK 

The activity recognition task involves mapping time 
series sensor data from a smartwatch and/or smartphone to a 
single activity. In our approach the time series data is 
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aggregated into examples based on non-overlapping 10-
second intervals of data; an activity is recognized correctly if 
the single activity that occurred during the 10-second 
interval is correctly classified. Table I lists the eighteen 
activities included in this study. The activities are grouped 
into three general categories. The details associated with the 
data collection process are described in the next section. 

TABLE I.  EIGHTEEN ACTIVITIES UTILIZED IN THIS STUDY 

 General activities (not hand-oriented) 

o Walking 

o Jogging 

o Climbing Stairs 

o Sitting 

o Standing 

o Kicking Soccer Ball 

 General activities (hand-oriented) 

o Dribbling Basketball 

o Playing Catch with Tennis Ball (two people) 

o Typing 

o Handwriting 

o Clapping 

o Brushing Teeth 

o Folding Clothes 

 Eating activities (hand-oriented) 

o Eating Pasta 

o Eating Soup 

o Eating Sandwich 

o Eating Chips 

o Drinking from a Cup 

 

III. EXPERIMENT METHODOLOGY 

The methodology associated with generating and 
evaluating the activity recognition models is discussed in 
this section. This includes the data collection procedure, the 
method for transforming the low-level time-series sensor 
data into examples, and the model induction process. Some 
of this material has been presented in our prior smartphone-
based work [7, 9], so in these cases some details may be 
omitted and replaced by appropriate citations.  

A. Data Collection 

The data for this study was collected from 17 test 
subjects, each of whom were asked to perform the 18 
activities listed in Table I. Each activity was performed for 
two minutes while the subject wore a smartwatch on their 
dominant hand and a paired smartphone in their front-right 
pocket with the phone oriented upright with the screen 
facing outward. All data was collected using the LG G 
Watch smartwatch and the Samsung Galaxy S4 smartphone, 
both of which were running the Android Wear mobile 
operating system. The data collection process took 
approximately one hour per person. All test subjects 
provided written informed consent prior to participating in 
this study, which was approved by our university’s 
Institutional Review Board.  

The data collection process utilizes our custom designed 
smartwatch/smartphone app. The app collects data from the 

accelerometer and gyroscope on both the phone and watch at 
a rate of 20Hz, with each sensor providing data for the three 
spatial dimensions. After two minutes of data is collected for 
an activity, the smartphone automatically sends the data, in 
an email message, to a server for storage and later retrieval.  
Unfortunately, unresolved and sporadic issues with the 
phone’s gyroscope prevented sufficient phone-gyroscope 
data from being collected and hence this sensor is not 
incorporated into our analysis. The data received by the 
server was later trimmed to ensure that the collected data 
corresponded to an activity (sometimes test subjects delayed 
in starting the activity or ended early). The trimming 
resulted in having approximately 100 seconds of data for 
each activity rather than the full two minutes. 

B. Data Transformation 

Conventional classification algorithms do not operate on 
time-series data, so the raw time series sensor data was 
transformed into examples by taking 10-second chunks of 
data and generating higher level features that describe the 
behavior over this time period. The 43 higher level features 
involve computing averages, standard deviations, and other 
measures from the x, y, and z axis values for the sensor. The 
details of the data transformation process, including a 
description of the higher level features, is provided in our 
prior work on smartphone-based activity recognition [7, 9]. 
Note that in this study we generate examples from only one 
sensor at a time; thus when we present the results in Section 
IV, the activity recognition performance of each sensor is 
provided separately (i.e., the models utilize a single sensor). 

C. Model Induction 

The activity recognition models are induced from the 
labeled training examples using the WEKA [13] Random 
Forest (RF) algorithm, J48 decision tree algorithm, IB3 
instance-based learning algorithm, Naïve Bayes (NB) 
algorithm, and the multi-layer perceptron (MLP) algorithm. 
The default parameter settings for each algorithm are used, 
except for NB where kernel estimation is enabled, and the 
instance-based learning algorithm where 3 nearest neighbors 
are used (there are dozens of default parameters for the 
algorithms employed in this paper so please refer to WEKA 
online documentation for more details). 

Two types of models are induced. Personal models 
utilize data from only the intended user while impersonal 
models are built using training data from everyone but the 
intended user. Our prior research has shown that personal 
models vastly outperform impersonal models for activity 
recognition [9], but at the cost of requiring each user to 
provide labeled training data. In order to build and evaluate 
the personal models, data from each of the 17 subjects is 
partitioned into training and test sets using 10-fold cross 
validation. Therefore the results for the personal models in 
the next section are based on results averaged over 17 ×10 = 
170 models. The impersonal models are generated by taking 
training data from 16 users, building a model, and then 
evaluating that model on the remaining user; this is repeated 
17 times so that all subjects are evaluated. In this case 10-
fold cross validation is not used since we have plenty of 
training data. The results for the impersonal models are 
averages over the 17 generated models.  



  

IV. RESULTS 

The activity recognition results are presented and 
analyzed in this section. The results for the personal and 
impersonal activity recognition models are presented in 
Table II and Table III, respectively. Results are measured 
using classification accuracy, which in this case corresponds 
to the percentage of the classifications that correctly identify 
the activity the user is performing. Each model utilizes a 
single sensor—models using the watch-accelerometer, 
phone-accelerometer, and watch-gyroscope are all evaluated. 
A model is also generated using each of the five learning 
algorithms described earlier. All results in Table II and III 
are based on 17 test subjects who performed the 18 activities 
that were listed in Table I. 

TABLE II.  OVERALL ACCURACY FOR PERSONAL MODELS 

Algorithm 
Phone 

accel (%) 

Watch 

accel (%) 

Watch 

gyroscope (%) 

RF 75.5 93.3 79.0 

J48 65.5 86.1 73.0 

IB3 67.7 93.3 60.1 

NB 77.1 92.7 80.2 

MLP 77.0 94.2 70.0 

Ave 72.6 91.9 72.4 

TABLE III.  OVERALL ACCURACY FOR IMPERSONAL MODELS 

Algorithm 
Phone 

accel (%) 

Watch 

accel (%) 

Watch 

gyroscope (%) 

RF 35.1 70.3 57.5 

J48 24.1 59.3 49.6 

IB3 22.5 62.0 49.3 

NB 26.2 63.8 53.5 

MLP 18.9 64.6 57.7 

Ave 25.3 64.0 53.5 

 

The results show that, consistent with our previous 
smartphone-based activity recognition results [9], personal 
models outperform impersonal models, even though they are 
built using much less training data. The results also show 
that the watch accelerometer provides much better results 
than the phone accelerometer, with an average accuracy of 
91.9% versus 72.6% for personal models and 64.0% versus 
25.3% for impersonal models. These differences are largely 
due to the hand-based activities included in this study. The 
watch gyroscope performs much more poorly than the watch 
accelerometer, with an average accuracy of 72.4% versus 
91.9% for the personal models and 53.5% versus 64.0% for 
the impersonal models (as mentioned earlier there were 
technical difficulties in capturing the phone gyroscope data).  
While it makes sense to generate models using the fusion of 
multiple sensors, this is not done because of issues 
synchronizing the data from different sensors—possibly 
running on different devices. Since the watch accelerometer 
yields the best models for both personal and impersonal 
models, we focus most of our attention on this sensor.  It is 
worth emphasizing that the results for this sensor are quite 
impressive, given the diversity of activities that are tracked, 
the granularity of the activities (i.e., eating activities are not 
all grouped together), and the fact that a strategy of guessing 
the most common activity would yield an accuracy of only 
about 5% (i.e., about 1 in 18).  

TABLE IV.  PER-ACTIVITY ACCURACY FOR RF MODELS 

 Impersonal (%) Personal (%) 

Activity Watch 
accel 

Phone 
accel 

Watch 
gyro 

Watch 
accel 

Phone 
accel 

Watch 
gyro 

Walking 79.8 60.7 87.0 94.2 88.5 93.5 
Jogging 97.7 93.8 48.6 99.2 68.8 98.1 
Stairs 58.5 66.7 43.1 88.9 66.7 80.0 
Sitting 84.9 26.9 70.5 97.5 87.0 82.2 
Standing 96.3 65.9 57.9 98.1 73.1 68.6 
Kicking 71.3 72.5 41.4 88.7 91.7 67.9 
       
Dribbling 89.3 26.1 86.0 98.7 84.8 96.9 
Catch 66.0 26.1 68.9 93.3 78.3 94.6 
Typing 80.4 76.9 60.8 99.4 72.0 88.6 
Handwriting 85.2 12.9 63.1 100.0 75.9 80.5 
Clapping 76.3 40.9 67.9 96.9 77.3 95.6 
Brush Teeth 84.5 19.2 66.2 97.3 96.2 89.6 
Fold Clothes 80.8 8.3 37.8 95.0 79.2 73.1 
       
Eat Pasta 47.1 0.0 57.9 88.6 40.0 72.9 
Eat Soup 52.7 0.0 47.7 90.7 82.4 69.8 
Eat Sandwich 29.0 7.1 31.1 68.9 63.0 44.2 
Eat Chips 65.0 16.0 50.6 83.4 76.0 52.5 
Drink 62.7 31.8 61.1 93.3 77.3 78.5 

       

Overall 70.3 35.1 57.5 93.3 75.5 79.0 

 
It is informative to examine the accuracies associated 

with individual activities, in order to determine which 
activities are easy to recognize and which ones are difficult 
to recognize. Due to space limitations, we focus our analysis 
on models induced using the Random Forest (RF) algorithm, 
since this algorithm performs well over the 6 configurations 
(3 sensors and 2 types of models). The accuracies of the RF 
models, over the 18 activities for both personal and 
impersonal models, are shown in Table IV.  These results 
indicate that the accuracy for the activities varies widely. 
The last group of activities (i.e., eating activities) seems to 
have the lowest accuracy when compared to the results for 
the other two groupings. This suggests perhaps that the 
eating activities may be similar and may be getting confused 
with one another. We also see that the phone sensor 
performs much worse than the two watch sensors for the 
eating activity, for both the impersonal and personal 
models—but especially for the impersonal models. This is 
most likely due to that fact that many of the hand-based 
activities in the second grouping also involve significant 
body motion (e.g., dribbling and folding clothes). It is 
interesting that a phone in one’s pocket can be effective at 
identifying many hand-based activities, but is ineffective at 
identifying eating activities. We had previously seen that 
personal models outperform impersonal models, but the 
results in Table IV show that personal models are 
particularly effective at boosting the performance of the 
eating activities—perhaps suggesting that there is wide 
variance in how people eat.  

The results in Table IV do not tell us how there errors are 
distributed or—more to the point—which activities are 
confused with one another. A model’s confusion matrix can 
answer this, but since each confusion matrix has dimensions 
18×18, it is not practical to display them here. But we can 
analyze these matrices for the most problematic cases. For 
example, if we look at the results for the personal RF models 
built from the watch-accelerometer sensor, we see that the 
hardest activity to recognize is “eating a sandwich,” which 
has a 68.9% accuracy. The confusion matrix indicates that 



  

this activity is misclassified as “eating soup” 10.9% of the 
time, “eating chips” 9.4% of the time, and “eating pasta” 
5.8% of the time (other misclassifications occur less 
frequently). This shows that the common mistakes involve 
other eating activities, suggesting that much higher accuracy 
could be achieved by grouping all of the eating activities 
together. Similarly, the impersonal model using the phone 
accelerometer has a 0% accuracy for “eating soup” and the 
underlying confusion matrix shows that the single largest 
source of errors is due to misclassifying this activity as 
“drinking.” It seems reasonable that these two activities 
would appear similar based on the motion measured at a 
person’s upper thigh (i.e., by the pants pocket).  

V. CONCLUSION AND FUTURE WORK 

This paper demonstrates that smartwatch-based activity 
recognition is capable of recognizing a wide variety of 
activities—including some activities that a smartphone 
cannot effectively recognize. This paper also includes what 
is perhaps the first research study for tracking eating activity 
with a smartwatch.  Overall, the results in this paper suggest 
that commercial smartwatches can recognize a wide variety 
of activities with relatively good accuracy. The results 
further show that personal models perform best—especially 
for the eating activities. Thus, our observations about the 
superiority of personal models, previously demonstrated for 
smartphones [9], is now shown to hold for smartwatches and 
for a much more diverse set of activities. This paper also 
compares the performance of the accelerometer and 
gyroscope for activity recognition, and the watch 
accelerometer is shown to significantly outperform the 
watch gyroscope.  

The study described in this paper is at an early stage, and 
we expect to extend the study in several key ways. First, we 
plan to extend the study to include a minimum of 50-100 test 
subjects (this study included 17 subjects). The amount of 
data per activity will be increased to 3 minutes since after 
trimming the data we fell below our goal of having 2 
minutes of data per activity (prior research [9] indicates that 
performance plateaus at 2 minutes of personal training data 
per activity). We also expect to overcome the technical 
difficulties with collecting the phone gyroscope data so we 
can better compare the utility of the various sensors for 
activity recognition. Fusing the sensor data is likely to yield 
improved activity recognition results and we plan to evaluate 
such fusion strategies in the future, after developing methods 
to better synchronize the sensor data. Finally, our activity 
recognition models rely on the fact that a clear pattern will 
occur within 10 seconds of data. This was valid for the 
clearly repetitive activities that we initially studied—like 

walking, jogging, and stair climbing—but this may not be 
appropriate for eating activities that may not repeat in such a 
short time frame. We plan to explore alternative strategies 
for handling such activities.  
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