
DEVICE
 Stand-By Depends-On

TICKETALERT

PATTERN

Creates

Generates

ALARM

STATE

THRESHOLD

MESSAGE

Pattern-alarm Link

Receives

Has

Has

Receives

THE KNOWLEDGE BASE OBJECT MODEL

Part-Of

 UNIT

 SNE PROC CNI Input Output Cmd

Sends

alarm
type &
device

Note : that a Threshold is a function of Device and Alarm type.

rule Device::alert_if_standby_oos

{

 Device *stby = standby &&

 State *st = stby->state &&

 st->name == "oos"

 Alarm * mx @ self_msg &&

 (mp->systime <= mx->timestamp) &&

=>

 Time current_time = make_time("now");

 Alert *new_alert = new Alert(this, current_time,

 "Alert without thresholding.",

 "Stand-by partner OOS");

new_alert->display_alert();

}

The rule can be interpreted as follows:

1. if the device has a standby “stby”, and

2. the state of the standby is “out-of-service”, then

3. for each alarm message, mx, on “this” device,

4. if the message has not been consumed (i.e., its a
new message), then

5. send an alert.

Note that this rule is accessing the state and alarm message
information that is accessible from device. This means that,
rules in R++ are path based which is different from OPS5
like system where pattern matching is performed on all
objects in working memory.

4. Conclusions

This paper described amodel-based reasoning approach for
surveillance of the 4ESS-ES elements in the AT&T
communication network. We also presented some features of
R++ (a rule based extension of C++) to demonstrate how the
concept of "path based rules" can be useful in implementing
this system. In the future we will investigate how to extend
this approach for surveillance of other switching elements in
the AT&T communication network.

The authors would like to thank the R++ team consisting of
James Crawford, Daniel Dvorak, Diane Litman, Anil Mishra
and Peter F. Patel-Schneider for their valuable feedback.

5. Reference

1. Crawford, J., Dvorak, D., Litman, D., and Mishra,
A. (1995), Device Representation and Reasoning
with Affective Relations, InIJCAI-95: Int. Joint
Conf. on Artificial Intelligence, Montreal, Canada.

2. Crawford J., Dvorak D., Mishra A., Litman D., and
Schneider Peter [1996]. Path based rules in Object
Oriented Programming, In AAAI-96, Portland Ore-
gon. R++ Home Page, http://w1fa93.hr.att.com/
R++.

3. Dvorak D., Mishra A., Ros J., Singhal A., Weiss,
G. "Using Rules in Object Oriented Designs",
accepted as an Experience Report for OOPSLA
October 1996.

4. Rumbaugh, M. Blaha et al. , "Object Oriented Mod-
eling and Design", Prentice Hall, 1991.

depends-on

depends-on

stand-by

4ESS

TSI 4 TSM 0 CLOCK

CNTL 0 CNTL 1

Figure 1 Different relationships in the 4ESS object model

TSI 4

are very important in the diagnostic process of the KB.
Figure 1 shows an example of some of these relations in the
object model of the 4ESS using OMT.

2.2 Threshold

A number of thresholds are defined in the system and for
various reasons. A typical threshold object has the attributes
type, count1, count2, duration1 and duration2. The type of
the threshold specifies the type of alarm that the threshold is
defined on, the counts and duration are used to define a
window of time over which “count1” and “count2” number
of alarm messages are received.

2.3 State

A device, at any point in time is in some state. A number of
states that we have identified are used only internally to the
system and do not need to be discussed in detail here. The
three basic states that the reader will be interested in however
are: OOS (Out-Of-Service), INSVC (In-Service), and
DETERMINE (i.e., not known).

2.4 Command

The ESP sends several types of commands to the switching
(4E) element. There are two basic types of commands: (i)
commands with a return value expected, and (ii) commands
with no return value expected. For the latter type of
commands, ESP does not have to wait for any value, it
simply sends a command and continues where it left off.

2.5 Alarm

 An alarm object contains information such as an alarm id, a
time stamp indicating the time an alarm was received, the
unit, or sub-unit, and some fields containing some details
regarding the details of the event that caused the alarm
message. When an alarm message is received, information
regarding the relevant device, the state (from the event field),
and so on are extracted. This information is used to
download the appropriate threshold information. The
message is then linked to the appropriate device object (if an
instance already exists), or a new instance is created and is
linked to the alarm object.

2.6 Alerts and Ticket

When the alarms on a particular device exceed the maximum
threshold then the KB will generate an alert. Also when a
device goes out of service KB will first attempt to restore the
device. A TICKET will be created if attempts to restore the
failed component have failed. A ticket is used to present real
work for the technicians.

3. The Reasoning Model in the KB

3.1 R++: Rules and Objects

R++ [2,3] is an extension to the C++ programming language
where rules are associated with classes (very much like

methods are), and are inherited by derived classes. Rules in
R++ are path-based, in the sense that rules defined on an
object A can only reference (include in their condition) data
members of an object B, if and only if B is “accessible” from
A. C++ programmers familiar with the use of references
(pointers), should interpret accessibility in a similar fashion.
For the purpose of illustration consider the following
fragment of code:

class Device {

protected:

 String name; // Device type

 int number; // Device number

 monitored State *state; // State of the Device

 // Affective relations

monitored Device *ipo; // Pointer to containing
device.

 monitored Device *standby // Standby devices for
this

monitored Set_of_p<Device> sub_parts;
// Devices contained in this device

monitored Set_of_p<Device> part_of;
// Transitive closure of ipo.

monitored List_of_p<Alarm>self_msg;
// Alarm messages for this device.

 monitored List_of_p<Alarm>sub_parts_msg;
// Messages on any sub_parts;

 monitored List_of_p<Alarm> dependent_msg;
// Messages on dependent devices.

 ... etc.

}

The affective relations discussed in the previous section are
represented as pointers to other objects (or sets of objects) in
the model. The “monitored” keyword in R++ is used to
indicate that this data member (attribute) is to be used in the
condition of some rule defined on objects of this class. It is
important to note here that a rule with a condition on data
members of the Device object and the data members of some
instance of a State object can be defined since there is a path
(an accessibility relation) between Device and State
established through the reference of a State in the Device
object. In particular, consider the following rule:

 If a new alarm message is recieved on a device and its
standby is in an Out-of-Service state, then send an alert.

This rule applies to devices of all types, and so could be
defined on the device object and inherited by all derived
types of device. Such a rule can be defined in R++ as
follows:

Abstract

This paper describes amodel-based reasoning approach to
network monitoring that combines the strengths of object
oriented design and rule-based inference. In this approach,
the structure of the network equipment is implemented in an
object model with diagnostically important relations ("part-
of", "standby", "depends-on") linking pieces of the
equipment. Alarm processing is expressed in data driven
rules that monitor the state of the model, and are triggered as
each incoming alarm message is attached to the object
representing the alarming device. This approach has been
used to implement the Knowledge Base of ANSWER-4E, an
operations system for monitoring the 4ESS switching system
in the AT&T communication network. We have
implemented this paradigm in a language that is a rule based
extension to C++. We present the merits of this approach and
demonstrate how this paradigm can be extended for
diagnosis of highly complex systems.

1. Introduction

This paper describes a hybrid object oriented rule based
paradigm that has been used to help automate the
surveillance of 4ESS switching elements in the AT&T
communication network. The paradigm is based on
capturing the affective relations between components of a
system in the model. The following are some of the main
features of our approach

- A network equipment can be naturally broken
down into component devices such that the compo-
nents interact via known relations such as part-of,
dependent on. This structure is modeled explicitly
using objects.

- The paths through which alarms propagate to dif-
ferent parts of the equipment are modeled explic-
itly as inter-object relations.

- The reasoning for symptom propagation, alarm-
correlation and heuristic alerting is expressed in
"path-based" rules that monitor the model, instead
of a haphazard collection of situation-action heu-
ristics.

We also describe a rule-based extension to C++ language
that enables such an approach to be implemented with ease.
The language named R++ [2], bridges the gap between
object oriented programming and data-driven computation.

This document is organized as follows: Section 2 discusses
the object model of the system. In this model, the structure
of the network equipment is represented as a semantic
network using relations such as "part-of", "is-a", "stand-by",
"dependent-on" and so on. These relations [1] are used to
perform model-based reasoning in monitoring the network
equipment. Section 3 presents a reasoning model for the
system. Alarm processing (threshold-based alerting,
symptom-propagation, alarm-correlation) is expressed in
data driven rules that monitor the state of the model, and are
triggered as incoming alarm message is attached to the
object representing the alarming device. Finally, section 4
provides conclusions and direction for future work.

2. The Object Model

In this section we describe a hybrid object-oriented and rule-
based design of the expert system. A detailed model of the
system using Rumbaugh’s Object Modeling Technique
(OMT) is presented in figure 2.

2.1 Device

4ESS Switching equipment is composed of several
components. A component can in turn be composed of lower
level components until a primitive is reached. The entity
device is used to represent a unit of the switching equipment.
Some examples of the attributes of a device object are device
name and type. There are different “types” of devices,
examples of which are "peripheral unit", “clock”,
“processor”, etc. There are other relationships among
devices, in addition to the “Isa” relation. For example, a
device of type TSI contains two devices of type CNTL. In
addition to the "Part-of" relationship, there are a number of
one-to-many relationships among device objects, such as the
“stand-by” and “depends-on” relationships. These relations

A Model Based Reasoning Approach to Network Monitoring

Anoop Singhal Gary Weiss Johannes P. Ros
AT&T Network & Computing Services
{anoop,gweiss,hros}@hrmaple.att.com

