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Abstract - This paper demonstrates how methods borrowed 
from information fusion can improve the performance of a 
classifier by constructing (i.e., fusing) new features that are 
combinations of existing numeric features. The new features 
are constructed by mapping the numeric values for each 
feature to a rank and then averaging these ranks. The quality 
of the fused features is measured with respect to how well 
they classify minority-class examples, which makes this 
method especially effective for dealing with data sets that 
exhibit class imbalance. This paper evaluates our combinato-
rial feature fusion method on ten data sets, using three learn-
ing methods. The results indicate that our method can be 
quite effective in improving classifier performance. 

Keywords: Feature construction, class imbalance, informa-
tion fusion 

1 Introduction 
The performance of a classification algorithm is highly de-

pendent on the descriptions associated with the example. For 
this reason, good practitioners will choose the features used to 
describe the data very carefully. However, deciding which 
information to encode and how to encode it is quite difficult 
and the best way to do so depends not only on the domain, but 
on the learning method. For this reason, there have been a 
variety of attempts over the years to automate part of this 
process. This work has had a variety of names over the years 
(although sometimes the emphasis is different) and has been 
called constructive induction [13], feature engineering [17], 
feature construction [6] and feature mining [11]. In this paper 
we discuss how existing numerical features can be combined, 
without human effort, in order to improve classification per-
formance. 

The work described in this paper is notable for several rea-
sons. First, unlike the majority of work in this area, we are 
specifically concerned with improving the performance of 
data with substantial class imbalance. Such problems are 
challenging but quite common and are typical in domains 
such as medical diagnosis [7], fraud detection [4], and failure 
prediction [19]. Furthermore, there are reasons to believe that 
this important class of problems has the most to benefit from 
feature construction, since some learners may not be able to 
detect subtle patterns that only become apparent when several 
features are examined together [18]. Our work also differs 
from other work in that our feature combination operator does 
not directly use the values of the component features but 

rather their ranks. This allows us to combine numerical fea-
tures in a meaningful way, without worrying about issues 
such as scaling. This approach is particularly appropriate 
given the increased interest in the use of ranking in the data 
mining [10] and machine learning communities [5]. Our ap-
proach also can be viewed as an extension of work from the 
information fusion community, since techniques similar to the 
ones we use in this paper have been used to “fuse” informa-
tion from disparate sources [9]. The work in this paper can be 
viewed as a specific type of information fusion, which we 
refer to as feature fusion. 

We describe our combinatorial feature-fusion method in 
detail in Section 2 and then describe our experiments in Sec-
tion 3. The results from these experiments are described and 
analyzed in Section 4. Related work is discussed in Section 5. 
Our main conclusions and areas for future work are then 
described in Section 6. 

2 Combinatorial Feature Fusion 
This section describes the basic combinatorial feature-

fusion method. We introduce relevant terminology and de-
scribe some of the basic steps employed by the feature fusion 
method. We then describe some general schemes for fusing 
features and end the section with a detailed description of our 
combinatorial feature fusion algorithm. 

2.1 Terminology and Basic Steps 
In this section we will use a simple example to explain the 

relevant terminology and preliminary steps related to feature 
fusion. This example will also be used later in this Section to 
help explain the feature-fusion algorithm. Because our fea-
ture-fusion method only works with numeric features, for 
simplicity we assume all features are numeric. Non-numeric 
features are not a problem in practice—they simply will be 
passed, unaltered, to the classifier. 

A data set is made up of examples, or records, each of 
which has a fixed number of features. Consistent with previ-
ous work on information fusion [9, 10] we view the value of a 
feature as a score. Typical examples of scores are a person’s 
salary, a student’s exam score, and a baseball pitcher’s earned 
run average. In the first two cases a higher score is desirable 
but in the last case a lower one is preferable. 

Table 1 introduces a sample data set with eight examples, 
labeled A-H, with five numeric features, F1-F5, and a binary 
class variable. In this example class 1 is the minority class and 
comprises 3/8 or 37.5% of the examples. 



TABLE 1 
A SAMPLE DATASET 

 F1 F2 F3 F4 F5 Class
A 1 4 3 2 8 1
B 3 3 5 5 4 0
C 5 5 2 6 7 1
D 7 6 15 3 2 0
E 11 13 16 7 14 0
F 15 16 4 13 11 0
G 9 7 14 1 18 1
H 17 15 9 8 3 0

Early in our combinatorial feature-fusion method we re-
place each score with a rank, where a lower rank is better. We 
convert each score into a rank using a rank function, which 
adheres to the standard notion of a rank. We sort the score 
values for each feature in either increasing or decreasing order 
and then assign the rank based on this ordering. Table 2 
shows the values of the features for the sample data set after 
the scores have been replaced by ranks, where the ranks were 
assigned after sorting the feature values in increasing order. 
As a specific example, because the three lowest values for F3 
in Table 1 are 2, 3, 4 and these values appear in rows C, A, 
and F, respectively, the ranks in Table 2 for F3 for these re-
cords are 1, 2, and 3, respectively. 

TABLE 2 
SAMPLE DATASET WITH SCORES REPLACED BY RANKS 

  F1 F2 F3 F4 F5 
A 1 2 2 2 5 
B 2 1 4 4 3 
C 3 3 1 5 4 
D 4 4 7 3 1 
E 6 6 8 6 7 
F 7 8 3 8 6 
G 5 5 6 1 8 
H 8 7 5 7 2 

We determine whether the ranks should be assigned based 
on increasing or decreasing order of the score values by de-
termining the performance of the feature using both ordering 
schemes and selecting the ordering that yields the best per-
formance (we describe how to compute a feature’s perform-
ance shortly). In our method, once the scores are replaced 
with a rank the scores are never used again. The rank values 
are used when combining features and are the features values 
that are passed to the learning algorithm. 

Next we show how to compute the “performance” of a fea-
ture. This performance metric essentially measures how well 
the rank of the feature correlates with the minority-class ex-
amples. That is, for a feature, do the examples with a good 
rank tend to belong to the minority class? We explain how to 
compute this performance metric using feature F2 from the 
sample data set. First we sort the records in the data set by the 
rank value of F2. The results are shown in Table 3. The per-
formance of F2 is then computed as the fraction of the records 
at the “top” of the table that belong to the minority class. The 

number of “top” records that we examine is based on the 
percentage of minority-class examples in the training data. In 
this case 3 of 8 of the training examples (37.5%) belong to the 
minority class so we look at the top 3 records. In this example 
that means that the performance of F2 is 2/3, since two of the 
three class values for these records is a “1”, which is the mi-
nority-class value. Given this scheme, the best performance 
value that is achievable is 1.0. 

TABLE 3 
RANKED LIST FOR F2 

F2 Rank Class 
B 1 0 
A 2 1 
C 3 1 
D 4 0 
G 5 1 
E 6 0 
H 7 0 
F 8 0 

We may similarly compute the performances for all of the 
individual features. Table 4 shows that for this simple exam-
ple F1–F4 all have performances of 2/3 and F5 has a perform-
ance of 0. 

TABLE 4 
PERFORMANCE VALUES FOR ORIGINAL FEATURES 

Feature Performance 
F1 0.67 
F2 0.67 
F3 0.67 
F4 0.67 
F5 0.00 

This method is also used to compute the performance of the 
“fused” features. To do this we need to first determine the 
rank of a fused feature, so we can sort the examples by this 
rank. We compute this using a rank combination function that 
averages the ranks of the features to be combined. This is 
done for each record. As an example, suppose we want to fuse 
features F1–F5 and create a new feature, F1F2F3F4F5, which 
we will call F6. Table 5 shows the rank values for F6 for all 
eight records. The value for F6 for record A is computed as: 
(Rank(F1) + Rank(F2) + Rank(F3) + Rank(F4) + Rank(F5))/5 
= (1+2+2+2+5)/5 = 2.4. We see that for this new feature, 
record “A” has the best (lowest) rank. Given these values, one 
can now compute the performance of the feature F6. Note that 
even though the values in Table 5 are not integers we can still 
consider them ranks. In order to compute the performance of 
F6, we only need to be able to sort by these values. 

TABLE 5 
RANK VALUES FOR F6 (F1F2F3F4F5) 

 F6  F6 
A 2.4 E 6.6 
B 2.8 F 6.4 
C 3.2 G 5.0 
D 3.8 H 5.8 



2.2 Combinatorial Fusion Strategies 
The previous section introduced the terminology and basic 

steps required by our combinatorial fusion algorithm, but did 
not discuss how we decide which features to fuse. We discuss 
that topic in this section. 

There are many possible strategies for choosing features to 
“fuse.” In this paper we consider combinatorial strategies that 
look at all possible combinations or more restrictive variants 
that look at subsets of these combinations. Let n equal the 
number of numeric features available for combination. To 
look at all possible combinations would require that we try 
each single feature, all pairs of features, all triples, etc. The 
total number of combinations therefore equals C(n,1) + C(n,2) 
+ … C(n, n), which equals 2n – 1. We refer to such a combi-
natorial fusion strategy as a fully-exhaustive fusion strategy. 

We consider more restrictive variants of the fully-
exhaustive fusion strategy because, depending on the value of 
n, this strategy may not be practical. The k-exhaustive fusion 
strategy will create all possible combinations using k of the n 
(k < n) numeric features. For example, a 6-exhaustive strategy 
for a data set with 20 numeric features will select 6 features 
and then fuse them in all possible ways, reducing the number 
of feature combinations by a factor of 214. In our algorithm we 
choose the subset of k features based on the performance 
values for the features, such as the ones in Table 6. Because it 
will not be expensive to include all of the original features, we 
always include the n – k original features. The 6-exhaustive 
fusion strategy is one of the three strategies analyzed in this 
paper. 

The k-exhaustive fusion strategy trades off a reduced num-
ber of features for the ability to fully combine these features. 
In some cases it may be better to involve more features in the 
fusion process, even if they cannot be fused in all possible 
ways. The k-fusion strategy will use all n numeric features, 
but the length of the fused features is limited to length at most 
k. Thus if we have a data set with 20 numeric features and 
employ 2-fusion, all possible combinations of single features 
and pairs of features will be generated. This would yield 
C(20,1) + C(20,2) = 20 + 190 = 210 features. Similarly, 3-
fusion would consider C(20,1) + C(20, 2) + C(20, 3), or 1140 
feature combinations. 

Table 6 shows the number of features generated by the dif-
ferent fusion strategies. In all cases, as stated before, all origi-
nal features are included. Some cells are empty since k ≤ n. If 
k = n then the value computed is displayed in bold and corre-
sponds to the fully-exhaustive strategy. Table 6 demonstrates 
that, given a limit on the number of features we can evaluate, 
we have a choice of fusion strategies. For example, given ten 
numeric features, one can use all ten features and generate 
combinations of length four, which would generate 385 fea-
tures, or instead select the seven best ones and then fuse those 
in all possible ways (i.e., up to length 7), which would gener-
ate about 127 features (actually 130 when the three original 
features are included). 

TABLE 6 
COMBINATORIAL FUSION TABLE 

k-fusion for values of k shown below  Number 
 Features 1 2 3 4 5 6 7 8 9 10 

1 1          
2 2 3         
3 3 6 7        
4 4 10 14 15       
5 5 15 25 30 31      
6 6 21 41 56 62 63     
7 7 28 63 98 119 126 127    
8 8 36 92 162 218 246 254 255   
9 9 45 129 255 381 465 501 510 511  
10 10 55 175 385 637 847 967 1012 1022 1023

2.3 The Combinatorial Fusion Algorithm 
We now describe the algorithm for performing the combi-

natorial fusion. This algorithm is summarized in Table 7. We 
explain this algorithm by working through an example based 
on the data set introduced in Table 1. 

For this example, we will use the 5-exhaustive strategy, so 
that we select the five best performing features and then fuse 
them in all possible ways. On line 1 of the algorithm we pass 
into the Comb-Fusion function the data, the features, a k value 
of 5 and a value of True for the Exhaustive flag. The next few 
steps were already described in Section 2.1. We convert the 
scores to ranks (line 3) and then calculate the performance of 
the original (unfused) features in the loop from lines 4-6. 
Then in lines 7-11 we determine which features are available 
for fusion. Since the Exhaustive flag is set, we restrict our-
selves to the k best features (otherwise all features are avail-
able although they then may not be fused in all possible 
ways). 

TABLE 7 
THE FEATURE-FUSION ALGORITHM 

1. Function Comb-Fusion (Data, Features, k, Exhaustive) 
2. {  
3.    ConvertScoresToRanks(Data, Features); 
4.    for (f=1, f ≤ length(Features) , f++){ 
5.           Perf[f]=CalculatePerformance(f); 
6.   } 
7.   if (Exhaustive == TRUE) { 
8.         FeaturesForFusion = best k features from Perf[]; 
9.   } else { 
10.        FeaturesForFusion = Features; 
11.   } 
12.   New = FuseFeatures(FeaturesForFusion, k, Exhaustive); 
13.   for (f=1, f ≤ length(New) , f++){ 
14.         CalculateRank(f); 
15.         Perf2[f]=CalculatePerformance(f); 
16.   } 
17.    Sort(Perf2); 
18.    Candidates = Perf2.features; 
19.   // We now build up the final feature set 
20.   Keep = Features; // always use original features 
21.   partition(Data, *TrainValid, Test); 
22.    for (f in Candidates) 
23.   { 
24.         for (run=1; run ≤ 10, run++) 



25.        { 
26.             partition(TrainValid, *Training, *Validation); 
27.             classifier = build-classifier(Training, Keep); 
28.             PerfWithout[run] = evaluate(classifier, Validation); 
29.             cand = pop(Candidates); 
30.             classifier=build-classifier(Training, Keep ∪ cand); 
31.              PerfWith[run] = evaluate(classifier, Validation); 
32.        } 
33.        if ( average(PerfWith[ ]) > average(PerfWithout[ ]) ) 
34.        { 
35.               pval = t-test(PerfWith[], PerfWithout[]); 
36.               if (pval ≤ .10) { 
37.                   Keep = Keep ∪ cand; 
38.               } 
39.        } 
40.   }  // end for (f in Candidates) 
41.   final-classifier = build-classifier(Training, Keep); 
42.   final-performance = evaluate(Test, Keep); 

43. } // end Function Comb-Fusion 
 

The actual generation of the fused features occurs on line 
12. In this case, the five best features in FeaturesForFusion 
will be combined in all possible ways (in this example there 
are only five features to begin with). Given our decision to 
always include the original features to the classifier, the origi-
nal features need not be returned by FuseFeatures (they are 
handled later on line 20). 

Next, on lines 13-16 we calculate the rank for each fused 
feature and then calculate their performance. This is essen-
tially the same steps that were done earlier for the original 
features. We then sort the features by decreasing performance 
value (line 17) and extract the features from this sorted list 
and save them (line 18) in Candidates, the ordered list of 
candidate fused features. The results for the best 14 perform-
ing fused features for our simple example are shown in Table 
8. In this case Candidates equals {F3F4, F1F2, F1F3, …}. 

TABLE 8 
PERFORMANCE VALUES FOR 5-EXHAUSTIVE STRATEGY 

Priority Feature Perf. Priority Feature Perf. 
1 F3F4 1 8 F1F2F4 0.67 
2 F1F2 0.67 9 F1F3F4 0.67 
3 F1F3 0.67 10 F1F3F5 0.67 
4 F2F3 0.67 11 F2F3F4 0.67 
5 F2F4 0.67 12 F3F4F5 0.67 
6 F3F5 0.67 13 F1F2F3F4 0.67 
7 F1F2F3 0.67 14 F1F2F3F5 0.67 

In the second half of the algorithm, starting at line 19, we 
decide which of the Candidate features to include in the final 
feature set. We begin by initializing Keep to the set of original 
features. We then partition the data (line 21) into one set to be 
used for training and validation and another for testing. Be-
ginning on line 22 we iterate over all of the fused features in 
the Candidate set.  

A key question is how we determine when to add a feature. 
Even though a feature has a good performance score, it may 
not be useful. For example, the information encoded in the 
feature may be redundant with the features already included 

in the feature set. We adopt a pragmatic approach and only 
add a feature if it improves classifier performance on the 
validation set and the improvement is statistically significant. 
To determine this, within this main loop in the second half of 
the algorithm (lines 22 – 40) we execute ten runs (lines 24 – 
32), repeatedly partitioning the training data into a training set 
and a validation set (line 26). If, averaged over the 10 runs 
(line 33) the classifier generated with the candidate feature 
(line 30) outperforms the classifier generated without it (line 
28) and the p-value returned by the t-test (line 35) is ≤ .10 
(line 36), then we add the feature to Keep (line 37). A p-value 
≤ .10 means that we are 90% confident that the observed 
improvement reflects a true improvement in performance. In 
steps 41 and 42 we build the final classifier and evaluate it on 
the test set. 

We should point out a few things. First, the actual imple-
mentation is more efficient in that we only need to build one 
classifier in the main loop, since the classifier from the previ-
ous iteration, and its performance, is still available. Similarly, 
we do not need to rebuild the classifier as indicated on line 
41. Also, the performance of the classifier can be measured 
using either AUC or accuracy, and we use both measures in 
our experiments. 

Table 9 shows the behavior of our simple example as each 
feature is considered. We only show the performance for the 
first 3 features. The last column indicates the feature being 
considered and a “+” indicates that it is added while the lack 
of this symbol indicates that it is not added because the condi-
tions on lines 33 and 36 are not both satisfied. Each row cor-
responds to an iteration of the main loop starting at line 22 in 
the algorithm. The first row is based on the classifier built 
from the original feature set, containing features F1-F5. Note 
that the first and third features that are considered are added, 
because they show an improvement in AUC and the p-value is 
≤ .10. As we add features we also measure the performance of 
each classifier on the test set, although this is not used in any 
of the decision making. The AUC for the test set at the end is 
reported, however. If we stopped the algorithm after the three 
iterations, we can conclude that the performance improved 
from an AUC of .682 to .774. It is of course critical not to use 
the test set results to determine whether to add a feature (and 
we do not). 

TABLE 9 
THE EXECUTION OF THE ALGORITHM ON A SIMPLE EXAMPLE 

AUC Feature 
valid test 

p-value 
(+ means added) 

0.670 0.682 -- {F1,F2,F3,F4,F5}
0.766 0.757 0.001 +F3F4 
0.731   F1F2 
0.771 0.774 0.063 +F1F3 

3 Description of Experiments 
In this section we describe the datasets employed in our 

empirical study, the three learning methods that are utilized, 
and the methodology we use to conduct our experiments. 



Table 10 describes the ten data sets used in our study. Note 
that the data sets are ordered in terms of decreasing class 
imbalance. The data sets come from several sources. The 
hepatitis, bands, income and letter-a data sets were obtained 
from the UCI machine learning repository [14], the crx data 
set was provided in the Data directory that came with the C4.5 
code, the physics and bio data sets are from the 2004 KDD 
CUP challenge, the stock data set was provided by New York 
University’s Stern School of Business, and the boa1 data set 
was obtained from researchers at AT&T. 

TABLE 10 
THE DATA SETS 

Dataset 
Name 

% Minority 
Class 

Number 
Features 

Dataset
Size 

 protein+ 0.59 14 20,000 
 letter-a* 3.9 15 20,000 
 income*+ 5.9 12 10,000 
 stock*+ 9.9 27 7,112 
 hepatitis* 19.8 12 500 
 physics+ 24.9 8 20,000 
 german* 30.0 19 1,000 
 crx*+ 44.1 5 450 
 bands*+ 42.2 13 538 
 boa1+ 49.8 25 5,000 

 

In order to simplify the presentation and the analysis of our 
results, data sets with more than two classes were mapped to 
two-class problems. This was accomplished by designating 
one of the original classes, typically the least frequently oc-
curring class, as the minority class and then mapping the 
remaining classes into the majority class. The data sets that 
originally contained more than two classes are identified with 
an asterisk (*). The letter-a data set was generated from the 
letter-recognition data set by making the letter “a” the minor-
ity class. Because we are only employing feature fusion for 
the numeric features, we deleted any non-numeric features 
from the data sets. While this is not necessary, since our 
method could just ignore the non-numeric fields, we did this 
so that we could better determine the impact of the feature 
fusion method. The data sets that had any non-numeric fea-
tures are identified with a “+”. 

All of the learning methods that we use in this paper come 
from the WEKA data mining software [12]. The three learn-
ing methods that we use are Naïve Bayes, decision trees and 
1-nearest neighbor. The decision tree algorithm is called J48 
in WEKA and is an implementation of the C4.5 algorithm.  
The 1-nearest neighbor algorithm is referred to as IB1 in 
WEKA. 

The experiments in our study apply a combinatorial fea-
ture-fusion strategy to each of the ten data sets listed in Table 
10 and then record the performance with and without the 
fusion strategy. This performance is measured in terms of the 
area under the ROC curve (AUC), because ROC analysis [3] 
is a more appropriate performance metric than accuracy when 

there is class imbalance. Nonetheless we repeat some of our 
experiments with accuracy as the performance metric, since 
doing so it quite straightforward and accuracy is a very com-
monly used performance metric. The three combinatorial 
fusion strategies that are evaluated are the 2-fusion, 3-fusion 
and 6-exhaustive fusion strategies described in Section 2. In 
this study we utilize the three learning algorithms listed in 
Section 3 in order to see how the feature-fusion method bene-
fits each algorithm. In the algorithm in Table 7 the data is 
partitioned such that 50% is used for training, 20% for valida-
tion, and 30% for testing. 
 
4 Results 

In this section we describe our main results. Because we 
are interested in improving classifier performance on data sets 
with class imbalance, and because of the known deficiencies 
with accuracy as a performance metric [16], we use AUC as 
our main performance measure. These AUC results are sum-
marized in Table 11. The results are presented for ten data 
sets using the Naïve Bayes, decision tree, and 1-NN learning 
methods. Three combinatorial fusion strategies are evaluated: 
2-Fusion (2F), 3-fusion (3F) and 6-Exhaustive (6EX). The 
AUC results are presented first without (w/o) and then with 
(w) the combinatorial fusion strategy. The “diff” column 
shows the absolute improvement in AUC resulting from the 
combinatorial fusion strategy, with negative values indicating 
that combinatorial fusion degraded the performance. 

TABLE 11 
AUC IMPROVEMENT WITH COMBINATORIAL FUSION 

w/o w Diff w/o w Diff w/o w Diff
2F .923 -.020 .752 .256 .663 .164
3F .954 .010 .742 .247 .651 .152
6EX .926 -.017 .759 .264 .663 .164
2F .963 .000 .943 .021 .961 .024
3F .960 -.003 .919 -.003 .937 .000
6EX .962 -.001 .937 .014 .961 .024
2F .901 .000 .736 .241 .612 .020
3F .897 -.004 .734 .239 .621 .028
6EX .900 -.001 .739 .245 .612 .020
2F .762 .037 .755 .260 .575 .051
3F .767 .043 .751 .255 .578 .054
6EX .769 .044 .747 .252 .564 .040
2F .869 .005 .755 .000 .803 -.016
3F .868 .004 .759 .004 .826 .007
6EX .864 .000 .760 .005 .821 .002
2F .498 .000 .499 .000 .504 .000
3F .506 .008 .499 .000 .495 -.008
6EX .506 .008 .499 .000 .504 .000
2F .751 .011 .609 .118 .607 -.001
3F .723 -.017 .606 .115 .593 -.015
6EX .736 -.004 .654 .162 .609 .000
2F .762 .000 .646 .000 .653 .014
3F .779 .017 .670 .024 .673 .034
6EX .755 -.007 .722 .076 .667 .028
2F .779 .029 .611 .108 .559 -.096
3F .747 -.003 .603 .099 .644 -.012
6EX .744 -.006 .580 .076 .655 .000
2F .596 .024 .538 .041 .509 -.005
3F .602 .031 .548 .050 .509 -.006
6EX .589 .018 .553 .056 .509 -.005

1-NN

bio .943 .496 .499

Dataset Strat. Bayes Decision Trees

letter-a .963 .922 .937

income .901 .494 .593

stock .725 .496 .524

hepatitis .864 .755 .819

physics .498 .499 .504

german .740 .492 .609

crx .762 .646 .639

bands .750 .504 .655

boa1 .571 .497 .515

 



The results in Table 11 indicate that the combinatorial fea-
ture fusion method is effective and most effective for the 
decision tree learning method. The overall impact of the 
methods is shown in Table 12, which summarizes the results 
for each combinatorial fusion strategy and learning method, 
over the ten data sets. It displays the average absolute im-
provement in AUC as well as the win-lose-draw (W-L-D) 
record over the 10 data sets. 

TABLE 12 
SUMMARIZED AUC RESULTS FOR TEN DATA SETS 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0. 009 5-1-4 0.105 7-0-3 0.016 5-4 -1
3-fusion 0. 009 6-4-0 0.103 8-1-1 0.023 5-4 -1

6-exhaust ive 0. 003 3-6-1 0.115 9-0-1 0.027 6-1 -3

Bayes DT 1-NN

 

The results form both tables indicate that decision trees 
benefit most from combinatorial fusion, with the one-nearest 
neighbor learning method also showing substantial improve-
ment. We believe that the decision tree algorithm improves 
the most because without combinatorial fusion it is incapable 
of learning combinations of numeric features, since decision 
trees only examine a single feature at a time. 

The results do not demonstrate that any of the three combi-
natorial feature-fusion strategies is a clear winner over the 
other two. The 6-exhaustive strategy performs best for deci-
sion trees and one-nearest neighbor, but performs worst for 
naïve Bayes. The results for the 2-fusion and 3-fusion strate-
gies are comparable even though the 3-fusion strategy gener-
ates more combinations. Our detailed results indicate that with 
the 3-fusion method some “3-fused” features make it to the 
final feature set, but apparently these are not essential for 
good performance. The fact that the 2-fusion strategy per-
forms competitively indicates that most of the benefits that 
one can achieve with our combination operator can be 
achieved by combining only two features. 

We generated Table 13 to determine if the combinatorial 
feature fusion method is more effective for the four most 
skewed data sets, where less than 10% of the data belongs to 
the minority class. These results, when compared to Table 13, 
show that the combinatorial fusion method yields substan-
tially greater benefits when evaluated on the most highly 
unbalanced data sets, when the decision tree and one-nearest 
neighbor methods are used (the results for Bayes are much 
less convincing). Because of the limited number of datasets 
analyzed, these results cannot be considered conclusive, but 
nonetheless are quite suggestive. 

TABLE 13 
SUMMARIZED AUC RESULTS FOR FOUR SKEWED DATA SETS 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0. 004 1-1-2 0.195 4-0-0 0.065 4-0 -0
3-fusion 0. 012 2-2-0 0.185 3-1-0 0.059 3-0 -1

6-exhaust ive 0. 006 1-3-0 0.194 4-0-0 0.062 4-0 -0

Bayes DT 1-NN

 

It makes some sense that our method is most beneficial for 
highly unbalanced data sets. Given the performance measure 
described in Section 2, which is based on the correlation be-
tween the fused features and the minority-class examples, we 
expect to generate features that are useful for classifying 
minority-class examples. Furthermore, it is often quite diffi-
cult to identify “rare cases” in data and algorithms that look at 
multiple features in parallel are more likely to find the subtle 
classification rules that might otherwise get overlooked [18]. 

Although our primary interest is in improving classifier 
performance with respect to the area under the ROC curve, 
our method can be used to improve accuracy as well. We 
repeated a subset of our experiments using accuracy instead 
of AUC when determining whether adding a fused feature 
improves the performance with the required level of statistical 
confidence. Table 14 provides these results when using the 2-
fusion strategy. We did not repeat these experiments for the 
other two strategies because AUC is our primary measure of 
interest and because the three strategies appear to perform 
similarly. 

TABLE 14 
SUMMARIZED AUC RESULTS FOR FOUR SKEWED DATA SETS 

w/o w Diff w/o w Diff w/o w Diff
 bio 98.8 98.8 0.0 99.4 99.4 0.0 99.2 99.2 0.0
 letter-a 98.4 98.4 0.0 98.6 98.6 0.0 98.9 98.9 0.0
 income 92.0 92.0 0.0 94.5 94.5 0.0 92.4 92.4 0.0
 stock 80.4 80.4 0.0 90.3 90.3 0.0 86.3 86.3 0.0
 hepatitis 84.0 84.0 0.0 86.2 80.7 -5.6 89.3 89.3 0.0
 physics 68.9 75.3 6.5 75.1 75.2 0.1 62.6 75.0 12.4
 german 73.2 73.2 0.0 69.5 73.0 3.5 68.1 71.6 3.5
 crx 70.1 70.1 0.0 60.3 75.1 14.9 60.4 73.6 13.2
 bands 67.0 67.0 0.0 61.4 61.4 0.0 65.3 65.3 0.0
boa1 55.0 57.0 2.0 51.0 56.9 6.0 52.6 57.5 5.0

1-NNDecision TreesBayes
Dataset

 

The results in Table 14 indicate that our combinatorial fu-
sion method is also effective for accuracy. While many of the 
data sets show no improvement, in ten cases there was an 
increase in accuracy, while in only one case was there a de-
crease in accuracy. In virtually every case where the accuracy 
remains the same, the combinatorial fusion strategy did not 
add any fused features. Similar to what we saw for AUC, the 
naïve Bayes method shows the least improvement. 

5 Related Work 
There has been a significant amount of work on feature 

mining/feature construction and in this section we mention 
some representative work. We organize the work in this area 
based on the operator used to combine the features. In our 
work, for example, numeric features are combined by map-
ping their feature values to ranks and then averaging the val-
ues of these ranks. 

One approach is to assume that the features represent Boo-
lean values and then use the standard logical operators to 
combine the features [2]. Other methods, such as the X-of-N 



method [20] differ in some ways but can be used to imple-
ment most logical operators. These logic-based methods re-
quire that all features first be mapped into Boolean values. 
This is not necessarily difficult but loses information and can 
lead to other problems. For example, in a decision tree repeat-
edly partitioning a numeric feature into binary values can lead 
to data fragmentation. In contrast our method reduces this 
problem by combining multiple numeric features. 

Other methods are much more ambitious in the operators 
they implement. Some systems implement multiple mathe-
matical operators, such as +, -, ×, and ÷, and relational opera-
tors such as ≤ and ≥ [1] [15]. Because these systems provide a 
rich set of operators, it is not feasible for them to try all possi-
ble combinations and thus they tend to employ complex heu-
ristics. Thus our method has the advantage of simplicity. 
Again, a key difference is that our method combines ranks, 
whereas this other work combines the scores.  

Feature selection [8], which involves determining which 
features are useful and should be kept for learning, is often 
mentioned in the same context as feature construction. Al-
though we did not discuss feature selection in this paper, the 
techniques described in this paper have been used to imple-
ment feature selection and we hope to investigate this topic in 
the future. 

6 Conclusion 
This paper examined how a method from information fu-

sion could be applied to feature construction from numerical 
features. The method was described in detail and three com-
binatorial fusion strategies were evaluated on ten data sets and 
three learning methods. The results were quite positive, espe-
cially for the data sets with the greatest class imbalance. 
When measuring AUC, the methods were of greatest benefit 
to the decision tree learning method, although it also substan-
tially improved the 1-nearest neighbor method. Our results 
also indicate that our method can improve accuracy.  

The work described in this paper can be extended in many 
ways. Our analysis would benefit from additional data sets—
including several highly imbalanced data sets. It would also 
be interesting to evaluate additional combinatorial feature-
fusion strategies, other than the three we evaluated in this 
paper. However, we suspect more complex fusion strategies 
will not yield substantial further improvements, so we do not 
view this as a critical limitation of our current work. 

We also think that the basic algorithm can be extended in 
several ways. We plan on evaluating heuristic methods that 
would prune feature combinations that perform poorly. A 
heuristic method would enable us to evaluate more complex 
fusion schemes while potentially reducing the computation 
time. In this same vein, we also wish to consider simplifying 
the method for deciding whether to add a feature. Currently 
we use a validation set and only add a feature if the improve-
ment in performance passes a statistical significance test. 

While there are benefits to this strategy, it also increases the 
computational requirements of the algorithm. 
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