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Abstract

Many important learning problems, from a wide variety of domains, involve

learning from imbalanced data. Because this learning task is quite challeng-

ing, there has been a tremendous amount of research on this topic over the

past fifteen years. However, much of this research has focused on methods for

dealing with imbalanced data, without discussing exactly how or why such

methods work—or what underlying issues they address. This is a significant

oversight, which this chapter helps to address. This chapter begins by de-

scribing what is meant by imbalanced data, and by showing the effects of

such data on learning. It then describes the fundamental learning issues that

arise when learning from imbalanced data, and categorizes these issues as
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2 FOUNDATIONS OF IMBALANCED LEARNING

either problem definition level issues, data level issues, or algorithm level is-

sues. The chapter then describes the methods for addressing these issues and

organizes these methods using the same three categories. As one example,

the data-level issue of “absolute rarity” (i.e., not having sufficient numbers

of minority-class examples to properly learn the decision boundaries for the

minority class) can best be addressed using a data-level method that acquires

additional minority-class training examples. But as we shall see in this chap-

ter, sometimes such a direct solution is not available and less direct methods

must be utlized. Common misconceptions are also discussed and explained.

Overall, this chapter provides an understanding of the foundations of imbal-

anced learning by providing a clear description of the relevant issues, and a

clear mapping from these issues to the methods that can be used to address

them.

2.1 INTRODUCTION

Many of the machine learning and data mining problems that we study,

whether they are in business, science, medicine, or engineering, involve some

form of data imbalance. The imbalance is often an integral part of the prob-

lem and in virtually every case the less frequently occurring entity is the one

that we are most interested in. For example, those working on fraud detec-

tion will focus on identifying the fraudulent transactions rather than the more

common legitimate transactions [1], a telecommunications engineer will be far

more interested in identifying equipment about to fail than equipment that

will remain operational [2], and an industrial engineer will be more likely to

focus on weld flaws than on welds that are completed satisfactorily [3].

In all of these situations it is far more important to accurately predict or

identify the rarer case than the more common case, and this is reflected in the

costs associated with errors in the predictions and classifications. For example,

if we predict that telecommunication equipment is going to fail and it does

not, we may incur some modest inconvenience and cost if the equipment is
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swapped out unnecessarily, but if we predict that equipment is not going to

fail and it does, then we incur a much more significant cost when service is

disrupted. In the case of medical diagnosis, the costs are even clearer: while a

false-positive diagnosis may lead to a more expensive follow-up test and some

patient anxiety, a false-negative diagnosis could result in death if a treatable

condition is not identified.

This chapter covers the foundations of imbalanced learning. It begins by

providing important background information and terminology and then de-

scribes the fundamental issues associated with learning from imbalanced data.

This description provides the foundation for understanding the imbalanced

learning problem. The chapter then categorizes the methods for handling

class imbalance and maps each to the fundamental issue that each method

addresses. This mapping is quite important since many research papers on

imbalanced learning fail to provide a comprehensive description of how or why

these methods work, and what underlying issue(s) they address. This chapter

provides a good overview of the imbalanced learning problem and describes

some of the key work in the area, but it is not intended to provide either a

detailed description of the methods used for dealing with imbalanced data

or a comprehensive literature survey. Details on many of the methods are

provided in subsequent chapters in this book.

2.2 BACKGROUND

A full appreciation of the issues associated with imbalanced data requires

some important background knowledge. In this section we look at what it

means for a data set to be imbalanced, what impact class imbalance has on

learning, the role of between-class imbalance and within-class imbalance, and

how imbalance applies to unsupervised learning tasks.
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4 FOUNDATIONS OF IMBALANCED LEARNING

2.2.1 What is an Imbalanced Data Set and what is its Impact on

Learning?

We begin with a discussion of the most fundamental question: “What is meant

by imbalanced data and imbalanced learning?” Initially we focus on classifi-

cation problems and in this context learning from imbalanced data means

learning from data in which the classes have unequal numbers of examples.

But since virtually no datasets are perfectly balanced, this is not a very useful

definition. There is no agreement, or standard, concerning the exact degree of

class imbalance required for a data set to be considered truly “imbalanced.”

But most practitioners would certainly agree that a data set where the most

common class is less than twice as common as the rarest class would only be

marginally unbalanced, that data sets with the imbalance ratio about 10:1

would be modestly imbalanced, and data sets with imbalance ratios above

1000:1 would be extremely unbalanced. But ultimately what we care about

is how the imbalance impacts learning, and, in particular, the ability to learn

the rare classes.

Learning performance provides us with an empirical—and objective—means

for determining what should be considered an imbalanced data set. Figure 2.1,

generated from data in an earlier study that analyzed twenty-six binary-class

data sets [4], shows how class imbalance impacts minority-class classification

performance. Specifically, it shows that the ratio between the minority class

error rate and majority class error rate is greatest for the most highly im-

balanced data sets and decreases as the amount of class imbalance decreases.

Figure 2.1 clearly demonstrates that class imbalance leads to poorer perfor-

mance when classifying minority-class examples, since the error rate ratios

are above 1.0. This impact is actually quite severe, since data sets with class

imbalance between 5:1 and 10:1 have a minority class error rate more than ten

times that of the error rate on the majority class. The impact even appears

quite significant for class imbalances between 1:1 and 3:1, which indicates that

class imbalance is problematic in more situations than commonly acknowl-
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Figure 2.1 Impact of class imbalance on minority class performance

edged. This suggests that we should consider data sets with even moderate

levels of class imbalance (e.g., 2:1) as “suffering” from class imbalance.

There are a few subtle points concerning class imbalance. First, class im-

balance must be defined with respect to a particular data set or distribu-

tion. Since class labels are required in order to determine the degree of class

imbalance, class imbalance is typically gauged with respect to the training

distribution. If the training distribution is representative of the underlying

distribution, as it is often assumed, then there is no problem; but if this is not

the case, then we cannot conclude that the underlying distribution is imbal-

anced. But the situation can be complicated by the fact that when dealing

with class imbalance, a common strategy is to artificially balance the training

set. In this case, do we have class imbalance or not? The answer in this

case is “yes”—we still do have class imbalance. That is, when discussing the

problems associated with class imbalance we really care about the underlying

distribution. Artificially balancing the training distribution may help with

the effects of class imbalance, but does not remove the underlying problem.
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6 FOUNDATIONS OF IMBALANCED LEARNING

A second point concerns the fact that while class imbalance literally refers

to the relative proportions of examples belonging to each class, the absolute

number of examples available for learning is clearly very important. Thus

the class imbalance problem for a data set with 10,000 positive examples and

1,000,000 negative examples is clearly quite different from a data set with

10 positive examples and 1,000 negative examples—even though the class

proportions are identical. These two problems can be referred to as problems

with relative rarity and absolute rarity. A data set may suffer from neither of

these problems, one of these problems, or both of these problems. We discuss

the issue of absolute rarity in the context of class imbalance because highly

imbalanced data sets very often have problems with absolute rarity.

2.2.2 Between-Class Imbalance, Rare Cases, and Small Disjuncts

Thus far we have been discussing class imbalance, or, as it has been termed,

between-class imbalance. A second type of imbalance, which is not quite as

well known or extensively studied, is within-class imbalance [5, 6]. Within-

class imbalance is the result of rare cases [7] in the true, but generally un-

known, classification concept to be learned. More specifically, rare cases corre-

spond to sub-concepts in the induced classifier that cover relatively few cases.

For example, in a medical dataset containing patient data where each pa-

tient is labeled as “sick” or “healthy”, a rare case might correspond to those

sick patients suffering from botulism, a relatively rare illness. In this domain

within-class imbalance occurs within the “sick” class because of the presence

of much more general cases, such as those corresponding to the common cold.

Just as the minority class in an imbalanced data set is very hard to learn

well, the rare cases are also hard to learn—even if they are part of the ma-

jority class. This difficulty is much harder to measure than the difficulty with

learning the rare class, since rare cases can only be defined with respect to

the classification concept, which, for real-world problems, is unknown, and

can only be approximated. However, the difficulty of learning rare cases can

be measured using artificial datasets that are generated directly from a pre-
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defined concept. Figure 2.2 shows the results generated from the raw data

from an early study on rare cases [7].

Figure 2.2 Impact of within-class imbalance on rare cases

Figure 2.2 shows the error rate for the cases, or subconcepts, within the

parity and voting data sets, based on how rare the case is relative to the most

general case in the classification concept associated with the data set. For

example, a relative degree of rarity of 16:1 means that the rare case is 16

times as rare as the most common case, while a value of 1:1 corresponds to

the most common case. For the two datasets shown in Figure 2.2 we clearly

see that the rare cases (i.e., those with a higher relative degree of rarity) have

a much higher error rate than the common cases, where, for this particular

set of experiments, the more common cases are learned perfectly and have

no errors. The concepts associated with the two data sets can be learned

perfectly (i.e., there is no noise) and the errors were introduced by limiting

the size of the training set.

Rare cases are difficult to analyze because one does not know the true

concept and hence cannot identify the rare cases. This inability to identify

these rare cases impacts the ability to develop strategies for dealing with
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8 FOUNDATIONS OF IMBALANCED LEARNING

them. But rare cases will manifest themselves in the learned concept, which

is an approximation of the true concept. Many classifiers, such as decision

tree and rule-based learners, form disjunctive concepts, and for these learners

the rare cases will form small disjuncts—the disjuncts in the learned classifier

that cover few training examples [8]. The relationship between the rare and

common cases in the true (but generally unknown) concept, and the disjuncts

in the induced classifier, is depicted in Figure 2.3.

Figure 2.3 Relationship between rare/common cases and small/large disjuncts

Figure 2.3 shows a concept made up of two positively-labeled cases, one a

rare case and one a common case, and the small disjunct and large disjunct

that the classifier forms to cover them. Any examples located within the solid

boundaries corresponding to these two cases should be labeled as positive and

data points outside of these boundaries should be labeled as negative. The

training examples are shown using the plus (“+”) and minus (“-”) symbols.

Note that the classifier will have misclassification errors on future test exam-

ples, since the boundaries for the rare and common cases do not match the

decision boundaries, represented by the dashed rectangles, which are formed

by the classifier. Because approximately 50% of the decision boundary for the
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small disjunct falls outside of the rare case, we expect this small disjunct to

have an error rate near 50%. Applying similar reasoning, the error rate of the

large disjunct in this case will only be about 10%. Because the uncertainty

in this noise-free case mainly manifests itself near the decision boundaries, in

such cases we generally expect the small disjuncts to have a higher error rate,

since a higher proportion of its “area” is near the decision boundary of the

case to be learned. The difference between the induced decision boundaries

and the actual decision boundaries in this case is mainly due to an insufficient

number of training examples, although the bias of the learner also plays a

role. In real-world situations, other factors, such as noise, will also have an

effect.

The pattern of small disjuncts having a much higher error rates than large

disjuncts, suggested by Figure 2.3, has been observed in practice in numerous

studies [7, 8, 9, 10, 11, 12, 13]. This pattern is shown in Figure 2.4 for the

classifier induced by C4.5 from the move data set [13]. Pruning was disabled in

this case since pruning has been shown to obscure the effect of small disjuncts

on learning [12]. The disjunct size, specified on the x-axis, is determined by

the number of training examples correctly classified by the disjunct (i.e., leaf

node). The impact of the error prone small disjuncts on learning is actually

much greater than suggested by Figure 2.4, since the disjuncts of size 0-3,

which correspond to the left-most bar in the figure, cover about 50% of the

total examples and 70% of the errors.

In summary, we see that both rare classes and rare cases are difficult to

learn and both lead to difficulties when learning from imbalanced data. When

we discuss the foundational issues associated with learning from imbalanced

data, we will see that these two difficulties are connected, in that rare classes

are disproprotionately made up of rare cases.

2.2.3 Imbalanced Data for Unsupervised Learning Tasks

Virtually all work that focuses explicitly on imbalanced data focuses on imbal-

anced data for classification. While classification is a key supervised learning
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Figure 2.4 Impact of disjunct size on classifier performance (move data set)

task, imbalanced data can affect unsupervised learning tasks as well, such as

clustering and association rule mining. There has been very little work on

the effect of imbalanced data with respect to clustering, largely because it is

difficult to quantify “imbalance” in such cases (in many ways this parallels

the issues with identifying rare cases). But certainly if there are meaningful

clusters containing relatively few examples, existing clustering methods will

have trouble identifying them. There has been more work in the area of asso-

ciation rule mining, especially with regard to market basket analysis, which

looks at how the items purchased by a customer are related. Some groupings

of items, such as peanut butter and jelly, occur frequently and can be consid-

ered common cases. Other associations may be extremely rare, but represent

highly profitable sales. For example cooking pan and spatula will be an ex-

tremely rare association in a supermarket, not because the items are unlikely

to be purchased together, but because neither item is frequently purchased in

a supermarket [14]. Association rule mining algorithms should ideally be able

to identify such associations.
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2.3 FOUNDATIONAL ISSUES

Now that we have established the necessary background and terminology, and

demonstrated some of the problems associated with class imbalance, we are

ready to identify and discuss the specific issues and problems associated with

learning from imbalanced data. These issues can be divided into three major

categories/levels: problem definition issues, data issues, and algorithm issues.

Each of these categories is briefly introduced and then described in detail in

subsequent subsections.

Problem definition issues occur when one has insufficient information to

properly define the learning problem. This includes the situation when there

is no objective way to evaluate the learned knowledge, in which case one can-

not learn an optimal classifier. Unfortunately, issues at the problem definition

level are commonplace. Data issues concern the actual data that is available

for learning and includes the problem of absolute rarity, where there are in-

sufficient examples associated with one or more classes to effectively learn the

class. Finally, algorithm issues occur when there are inadequacies in a learn-

ing algorithm that make it perform poorly for imbalanced data. A simple

example involves applying an algorithm designed to optimize accuracy to an

imbalanced learning problem where it is more important to classify minority-

class examples correctly than to classify majority-class examples correctly.

2.3.1 Problem Definition Level Issues

A key task in any problem solving activity is to understand the problem.

As just one example, it is critically important for computer programmers to

understand their customer’s requirements before designing, and then imple-

menting, a software solution. Similarly, in data mining it is critical for the data

mining practitioner to understand the problem and the user requirements. For

classification tasks, this includes understanding how the performance of the

generated classifier will be judged. Without such an understanding it will be

impossible to design an optimal or near-optimal classifier. While this need for
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evaluation information applies to all data mining problems, it is particularly

important for problems with class imbalance. In these cases, as noted earlier,

the costs of errors are often asymmetric and quite skewed, which violates the

default assumption of most classifier induction algorithms, which is that er-

rors have uniform cost and thus accuracy should be optimized. The impact

of using accuracy as an evaluation metric in the presence of class imbalance is

well known—in most cases poor minority class performance is traded off for

improved majority class performance. This makes sense from an optimization

standpoint, since overall accuracy is the weighted average of the accuracies

associated with each class, where the weights are based on the proportion of

training examples belonging to each class. This effect was clearly evident in

Figure 2.1, which showed that the minority-class examples have a much lower

accuracy than majority-class examples. What was not shown in Figure 2.1,

but is shown by the underlying data [4], is that minority class predictions oc-

cur much less frequently than majority-class predictions, even after factoring

in the degree of class imbalance.

Accurate classifier evaluation information, if it exists, should be passed to

the classifier induction algorithm. This can be done in many forms, one of the

simplest forms being a cost matrix. If this information is available, then it is

the algorithm’s responsibility to utilize this information appropriately; if the

algorithm cannot do this, then there is an algorithm-level issue. Fortunately,

over the past decade most classification algorithms have increased in sophis-

tication so that they can handle evaluation criteria beyond accuracy, such as

class-based misclassification costs and even costs that vary per example.

The problem definition issue also extends to unsupervised learning prob-

lems. Association rule mining systems do not have very good ways to evaluate

the value of an association rule. But unlike the case of classification, since

no single quantitative measure of quality is generated, this issue is probably

better understood and acknowledged. Association rules are usually tagged

with support and confidence values, but many rules with either high support

or confidence values—or even both—will be uninteresting and potentially of

D R A F T July 9, 2012, 11:10pm D R A F T



FOUNDATIONAL ISSUES 13

little value. The lift of an association rule is a somewhat more useful mea-

surement, but still does not consider the context in which the association will

be used (lift measures how much more likely the antecedent and consequent

of the rule are to occur together than if they where statistically independent).

But as with classification tasks, imbalanced data causes further problems for

the metrics most commonly used for association rule mining. As mentioned

earlier, association rules that involve rare items are not likely to be generated,

even if the rare items, when they do occur, often occur together (e.g., cooking

pan and spatula in supermarket sales). This is a problem because such as-

sociations between rare items are more likely to be profitable because higher

profit margins are generally associated with rare items.

2.3.2 Data Level Issues

The most fundamental data level issue is the lack of training data that often

accompanies imbalanced data, which was previously referred to as an issue

of absolute rarity. Absolute rarity does not only occur when there is im-

balanced data, but is very often present when there are extreme degrees of

imbalance—such as a class ratio of one to one million. In these cases the

number of examples associated with the rare class, or rare case, is small in an

absolute sense. There is no predetermined threshold for determining absolute

rarity and any such threshold would have to be domain specific and would

be determined based on factors such as the dimensionality of the instance

space, the distribution of the feature values within this instance space, and,

for classification tasks, the complexity of the concept to be learned.

Figure 2.5 visually demonstrates the problems that can result from an

“absolute” lack of data. The figure shows a simple concept, identified by the

solid rectangle; examples within this rectangle belong to the positive class and

examples outside of this rectangle belong to the negative class. The decision

boundary induced by the classifier from the labeled training data is indicated

by the dashed rectangle. Figure 2.5a and 2.5b shows the same concept but

with Figure 2.5b having approximately half as many training examples as in
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14 FOUNDATIONS OF IMBALANCED LEARNING

Figure 2.5a. As one would expect, we see that the induced classifier more

closely approximates the true decision boundary in Figure 2.5a, due to the

availability of additional training data.

Figure 2.5 The impact of absolute rarity on classifier performance

Having a small amount of training data will generally have a much larger

impact on the classification of the minority-class (i.e., positive) examples. In

particular, it appears that about 90% of the space associated with the positive

class (in the solid rectangle) is covered by the learned classifier in Figure 2.5a,

while only about 70% of it is covered in Figure 2.5b. One paper summa-

rized this effect as follows: “A second reason why minority-class examples are

misclassified more often than majority-class examples is that fewer minority-

class examples are likely to be sampled from the distribution D. Therefore,

the training data are less likely to include (enough) instances of all of the

minority-class subconcepts in the concept space, and the learner may not

have the opportunity to represent all truly positive regions. Because of this,

some minority-class test examples will be mistakenly classified as belonging

to the majority class.” [4, page 325].

Absolute rarity also applies to rare cases, which may not contain sufficiently

many training example to be learned accurately. One study that used very

simple artificially generated data sets found that once the training set dropped

below a certain size, the error rate for the rare cases rose while the error rate

D R A F T July 9, 2012, 11:10pm D R A F T



FOUNDATIONAL ISSUES 15

for the general cases remained at zero. This occurred because with the reduced

amount of training data, the common cases were still sampled sufficiently to

be learned, but some of the rare cases were missed entirely [7]. The same study

showed, more generally, that rare cases have a much higher misclassification

rate than common cases. We refer to this as the problem with rare cases. This

research also demonstrated something that had previously been assumed—

that rare cases cause small disjuncts in the learned classifier. The problem

with small disjuncts, observed in many empirical studies, is that they (i.e.,

small disjuncts) generally have a much higher error rate than large disjuncts

[7, 8, 9, 10, 11, 12]. This phenomenon is again the result of a lack of data. The

most thorough empirical study of small disjuncts analyzed thirty real-world

data sets and showed that, for the classifiers induced from these data sets, the

vast majority of errors are concentrated in the smaller disjuncts [12].

These results suggest that absolute rarity poses a very serious problem for

learning. But the problem could also be that small disjuncts sometimes do

not represent rare, or exceptional, cases, but instead represent noise. The

underlying problem, then, is that there is no easy way to distinguish between

those small disjuncts that represent rare/exceptional cases, which should be

kept, and those that represent noise, which should be discarded (i.e., pruned).

We have seen that rare cases are difficult to learn due to a lack of training

examples. It is generally assumed that rare classes are difficult to learn for

similar reasons. But in theory it could be that rare classes are not dispropor-

tionately made up of rare cases, when compared to the makeup of common

classes. But one study showed that this is most likely not the case since,

across twenty-six data sets, the disjuncts labeled with the minority class were

much smaller than the disjuncts with majority-class labels [4]. Thus, rare

classes tend to be made up of more rare cases (on the assumption that rare

cases form small disjuncts) and since these are harder to learn than common

cases, the minority class will tend to be harder to learn than the majority

class. This effect is therefore due to an absolute lack of training examples for

the minority class.
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Another factor that may exacerbate any issues that already exist with

imbalanced data is noise. While noisy data is a general issue for learning,

its impact is magnified when there is imbalanced data. In fact, we expect

noise to have a greater impact on rare cases than on common cases. To see

this, consider Figure 2.6. Figure 2.6a includes no noisy data while Figure 2.6b

includes a few noisy examples. In this case a decision tree classifier is used

which is configured to require at least two examples at the terminal nodes

as a mean of overfitting avoidance. We see that in Figure 2.6b, when one of

the two training examples in the rare positive case is erroneously labeled as

belonging to the negative class, the classifier misses the rare case completely,

since two positive training examples are required to generate a leaf node. The

less rare positive case, however, is not significantly affected since most of the

examples in the induced disjunct are still positive and the two erroneously

labeled training examples are not sufficient to alter the decision boundaries.

Thus, noise will have a more significant impact on the rare cases than on

the common cases. Another way to look at things is that it will be hard to

distinguish between rare cases and noisy data points. Pruning, which is often

used to combat noise, will remove the rare cases and the noisy cases together.

Figure 2.6 The effect of noise on rare cases

It is worth noting that while this section highlights the problem with ab-

solute rarity, it does not highlight the problem with relative rarity. This
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is because we view relative rarity as an issue associated with the algorithm

level. The reason is that class imbalance, which generally focuses on the rel-

ative differences in class proportions, is not fundamentally a problem at the

data level—it is simply a property of the data distribution. We maintain that

the problems associated with class imbalance and relative rarity are due to

the lack of a proper problem formulation (with accurate evaluation criteria)

or with algorithmic limitations with existing learning methods. The key point

is that relative rarity/class imbalance is a problem only because learning algo-

rithms cannot effectively handle such data. This is a very fundamental point,

but one that is not often acknowledged.

2.3.3 Algorithm Level Issues

There are a variety of algorithm-level issues that impact the ability to learn

from imbalanced data. One such issue is the inability of some algorithms to

optimize learning for the target evaluation criteria. While this is a general

issue with learning, it affects imbalanced data to a much greater extent than

balanced data since in the imbalanced case the evaluation criteria typically

diverge much further from the standard evaluation metric—accuracy. In fact,

most algorithms are still designed and tested much more thoroughly for accu-

racy optimization than for the optimization of other evaluation metrics. This

issue is impacted by the metrics used to guide the heuristic search process.

For example, decision trees are generally formed in a top down manner and

the tree construction process focuses on selecting the best test condition to

expand the extremities of the tree. The quality of the test condition (i.e., the

condition used to split the data at the node) is usually determined by the

“purity” of a split, which is often computed as the weighted average of the

purity values of each branch, where the weights are determined by the fraction

of examples that follow that branch. These metrics, such as information gain,

prefer test conditions that result in a balanced tree, where purity is increased

for most of the examples, in contrast to test conditions that yield high purity

for a relatively small subset of the data but low purity for the rest [15]. The
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problem with this is that a single high purity branch that covers only a few

examples may identify a rare case. Thus, such search heuristics are biased

against identifying highly accurate rare cases, which will also impact their

performance on rare classes (which as discussed earlier are often comprised of

rare cases).

The bias of a learning algorithm, which is required if the algorithm is to

generalize from the data, can also cause problems when learning from imbal-

anced data. Most learners utilize a bias that encourages generalization and

simple models to avoid the possibility of overfitting the data. But studies have

shown that such biases work well for large disjuncts but not for small disjuncts

[8], leading to the observed problem with small disjuncts (these biases tend

to make the small disjuncts overly general). Inductive bias also plays a role

with respect to rare classes. Many learners prefer the more common classes

in the presence of uncertainty (i.e., they will be biased in favor of the class

priors). As a simple example, imagine a decision tree learner that branches

on all possible feature values when splitting a node in the tree. If one of

the resulting branches covers no training examples, then there is no evidence

on which to base a classification. Most decision-tree learners will predict the

most frequently occurring class in this situation, biasing the results against

rarer classes.

The algorithm-level issues discussed thus far concern the use of search

heuristics and inductive biases that favor the common classes and cases over

the rare classes and cases. But the algorithm-level issues do not just involve

favoritism. It is fundamentally more difficult for an algorithm to identify rare

patterns than to identify relatively common patterns. There may be quite a

few instances of the rare pattern, but the sheer volume of examples belonging

to the more common patterns will obscure the relatively rare patterns. This

is perhaps best illustrated with a variation of a common idiom in English:

finding relatively rare patterns is “like finding needles in a haystack.” The

problem in this case is not so much that there are few needles, but rather that

there is so much more hay.
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The problem with identifying relatively rare patterns is partly due to the

fact that these patterns are not easily located using the greedy search heuris-

tics that are in common use. Greedy search heuristics have a problem with

relative rarity because the rare patterns may depend on the conjunction of

many conditions, and therefore examining any single condition in isolation

may not provide much information, or guidance. While this may also be

true of common objects, with rare objects the impact is greater because the

common objects may obscure the true signal. As a specific example of this

general problem, consider the association rule mining problem described ear-

lier, where we want to be able to detect the association between cooking pan

and spatula. The problem is that both items are rarely purchased in a su-

permarket, so that even if the two are often purchased together when either

one is purchased, this association may not be found. To find this association,

the minimum support threshold for the algorithm would need to be set quite

low. However, if this is done, there will be a combinatorial explosion because

frequently occurring items will be associated with one another in an enormous

number of ways. This association rule mining problem has been called the

rare item problem [14] and it is an analog of the problem of identifying rare

cases in classification problems. The fact that these random co-occurrences

will swamp the meaningful associations between rare items is one example of

the problem with relative rarity.

Another algorithm-level problem is associated with the divide-and-conquer

approach that is used by many classification algorithms, including decision

tree algorithms. Such algorithms repeatedly partition the instance space (and

the examples that belong to these spaces) into smaller and smaller pieces. This

process leads to data fragmentation [16], which is a significant problem when

trying to identify rare patterns in the data, because there is less data in each

partition from which to identify the rare patterns. Repeated partitioning can

lead to the problem of absolute rarity within an individual partition, even if

the original data set only exhibits the problem of relative rarity. Data mining
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algorithms that do not employ a divide-and-conquer approach therefore tend

to be more appropriate when mining rare classes/cases.

2.4 METHODS FOR ADDRESSING IMBALANCED DATA

This section describes methods that address the issues with learning from

imbalanced data that were identified in the previous section. These methods

are organized based on whether they operate at the problem definition, data,

or algorithm level. As methods are introduced the underlying issues that they

address are highlighted. While this section covers most of the major methods

that have been developed to handle imbalanced data, the list of methods is

not exhaustive.

2.4.1 Problem Definition Level Methods

There are a number of methods for dealing with imbalanced data that op-

erate at the problem definition level. Some of these methods are relatively

straightforward in that they directly address foundational issues that operate

at this same level. But due to the inherent difficulty of learning from imbal-

anced data, some methods have been introduced that simplify the problem

in order to produce more reasonable results. Finally, it is important to note

that in many cases there simply is insufficient information to properly define

the problem and in these cases the best option is to utilize a method that

moderates the impact of this lack of knowledge.

2.4.1.1 Use Appropriate Evaluation Metrics It is always preferable to use

evaluation metrics that properly factor in how the mined knowledge will be

used. Such metrics are essential when learning from imbalanced data since

they will properly value the minority class. These metrics can be contrasted

with accuracy, which places more weight on the common classes and assigns

value to each class proportional to its frequency in the training set. The

proper solution is to use meaningful and appropriate evaluation metrics and

for imbalanced data this typically translates into providing accurate cost in-
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formation to the learning algorithms (which should then utilize cost-sensitive

learning to produce an appropriate classifier).

Unfortunately, it is not always possible to acquire the base information

necessary to design good evaluation metrics that properly value the minority

class. The next best solution is to provide evaluation metrics that are robust

given this lack of knowledge, where “robust” means that the metrics yield

good results over a wide variety of assumptions. If these metrics are to be

useful for learning from imbalanced data sets, they will tend to value the

minority class much more than accuracy, which is now widely recognized as a

poor metric when learning from imbalanced data. This recognition has led to

the ascension of new metrics to replace accuracy for learning from unbalanced

data.

A variety of metrics are routinely used when learning from imbalanced

data when accurate evaluation information is not available. The most common

metric involves ROC analysis and AUC, the area under the ROC curve [17, 18].

ROC analysis can sometimes identify optimal models and discard suboptimal

ones independent from the cost context or the class distribution (i.e., if one

ROC curve dominates another), although in practice ROC curves tend to

intersect so that there is no one dominant model. ROC analysis does not

have any bias towards models that perform well on the majority class at

the expense of the majority class—a property that is quite attractive when

dealing with imbalanced data. AUC summarizes this information into a single

number, which facilitates model comparison when there is not a dominating

ROC curve. Recently there has been some criticism concerning the use of

ROC analysis for model comparison [19], but nonetheless this measure is still

the most common metric used for learning from imbalanced data.

Other common metrics used for imbalanced learning are based upon preci-

sion and recall. The precision of classification rules is essentially the accuracy

associated with those rules, while the recall of a set of rules (or a classifier) is

the percentage of examples of a designated class that are correctly predicted.

For imbalanced learning, recall is typically used to measure the coverage of
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the minority class. Thus, precision and recall make it possible to assess the

performance of a classifier on the minority class. Typically one generates pre-

cision and recall curves by considering alternative classifiers. Just like AUC is

used for model comparison for ROC analysis, there are metrics that combine

precision and recall into a single number to facilitate comparisons between

models. These include the geometric mean (the square root of precision times

recall) and the F-measure [20]. The F-measure is parameterized and can be

adjusted to specify the relative importance of precision versus recall, but the

F1-measure, which weights precision and recall equally, is the variant most

often used when learning from imbalanced data.

It is also important to use appropriate evaluation metrics for unsupervised

learning tasks that must handle imbalanced data. As described earlier, asso-

ciation rule mining treats all items equally even though rare items are often

more important than common ones. Various evaluation metrics have been

proposed to deal with this imbalance and algorithms have been developed to

mine association rules that satisfy these metrics. One simple metric assigns

uniform weights to each item to represent its importance, perhaps its per-

unit profit [21]. A slightly more sophisticated metric allows this weight to

vary based on the transaction it appears in, which can be used to reflect the

quantity of the item [22, 23]. But such measures still cannot represent simple

metrics like total profit. Utility mining [24, 25] provides this capability by

allowing one to specify a uniform weight to represent per-item profit and a

transaction weight to represent a quantity value. Objective oriented associa-

tion rule mining [26] methods, which make it possible to measure how well an

association rule meets a user’s objective, can be used to find association rules

in a medical dataset where only treatments that have minimal side effects and

minimum levels of effectiveness are considered.

2.4.1.2 Redefine the Problem One way to deal with a difficult problem is

to convert it into a simpler problem. The fact that the problem is not an

equivalent problem may be outweighed by the improvement in results. This

topic has received very little attention in the research community, most likely
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because it is not viewed as a research-oriented solution and is highly domain

specific. Nonetheless, this is a valid approach that should be considered. One

relatively general method for redefining a learning problem with imbalanced

data is to focus on a subdomain, or partition of the data, where the degree

of imbalance is lessened. As long as this subdomain or partition is easily

identified, this is a viable strategy. It may also be a more reasonable strategy

than removing the imbalance artificially via sampling. As a simple example,

in medical diagnosis one could restrict the population to people over ninety

years of age, especially if the targeted disease tends to be more common in

the aged. Even if the disease occurs much more rarely in the young, using

the entire population for the study could complicate matters if the people

under ninety, due to their much larger numbers, collectively contribute more

examples of the disease. Thus the strategy is to find a subdomain where the

data is less imbalanced, but where the subdomain is still of sufficient interest.

Other alternative strategies might be to group similar rare classes together

and then simplify the problem by predicting only this “super-class.”

2.4.2 Data Level Methods

The main data level issue identified earlier involves absolute rarity and a lack

of sufficient examples belonging to rare classes and, in some cases, to the rare

cases that may reside in either a rare or common class. This is a very difficult

issue to address, but methods for doing this are described in this section. This

section also describes methods for dealing with relative rarity (the standard

class imbalance problem), even though, as we shall discuss, we believe that

issues with relative rarity are best addressed at the algorithms level.

2.4.2.1 Active Learning and Other Information Acquisition Strategies The most

direct way of addressing the issue of absolute rarity is to acquire additional

labeled training data. Randomly acquiring additional labeled training data

will be helpful and there are heuristic methods to determine if the projected

improvement in classification performance warrants the cost of obtaining more

training data—and how many additional training examples should be acquired
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[27]. But a more efficient strategy is to preferentially acquire data from the

rare classes or rare cases. Unfortunately, this cannot easily be done directly

since one cannot identify examples belonging to rare classes and rare cases

with certainty. But there is an expectation that active learning strategies will

tend to preferentially sample such examples. For example, uncertainty sam-

pling methods [28] are likely to focus more attention on rare cases, which will

generally yield less certain predictions due to the smaller number of training

examples to generalize from. Put another way, since small disjuncts have a

much higher error rate than large disjuncts, it seems clear that active learn-

ing methods would focus on obtaining examples belonging to those disjuncts.

Other work on active learning has further demonstrated that active learning

methods are capable of preferentially sampling the rare classes by focusing the

learning on the instances around the classification boundary [29]. This general

information acquisition strategy is supported by the empirical evidence that

shows that balanced class distributions generally yield better performance

than unbalanced ones [4].

Active learning and other simpler information acquisition strategies can

also assist with the relative rarity problem, since such strategies, which acquire

examples belonging to the rarer classes and rarer cases, address the relative

rarity problem while addressing the absolute rarity problem. Note that this is

true even if uncertainty sampling methods tend to acquire examples belonging

to rare cases, since prior work has shown that rare cases tend to be more

associated with the rarer classes [4]. In fact, this method for dealing with

relative rarity is to be preferred to the sampling methods addressed next,

since those methods do not obtain new knowledge (i.e., valid new training

examples).

2.4.2.2 Sampling Methods Sampling methods are a very popular method

for dealing with imbalanced data. These methods are primarily employed

to address the problem with relative rarity but do not address the issue of

absolute rarity. This is because, with the exception of some methods that

utilize some intelligence to generate new examples, these methods do not
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attack the underlying issue with absolute rarity—a lack of examples belonging

to the rare classes and rare cases. But, as will be discussed in Section 2.4.3,

our view is also that sampling methods do not address the underlying problem

with relative rarity either. Rather, sampling masks the underlying problem

by artificially balancing the data, without solving the basic underlying issue.

The proper solution is at the algorithm level and requires algorithms that are

designed to handle imbalanced data.

The most basic sampling methods are random undersampling and random

oversampling. Random undersampling randomly eliminates majority-class

examples from the training data while random oversampling randomly du-

plicates minority-class training examples. Both of these sampling techniques

decrease the degree of class imbalance. But since no new information is in-

troduced, any underlying issues with absolute rarity are not addressed. Some

studies have shown random oversampling to be ineffective at improving recog-

nition of the minority class [30, 31] while another study has shown that random

undersampling is ineffective [32]. These two sampling methods also have sig-

nificant drawbacks. Undersampling discards potentially useful majority-class

examples, while oversampling increases the time required to train a classi-

fier and also leads to overfitting that occurs to cover the duplicated training

examples [31, 33].

More advanced sampling methods use some intelligence when removing or

adding examples. This can minimize the drawbacks that were just described

and, in the case of intelligently adding examples, has the potential to address

the underlying issue of absolute rarity. One undersampling strategy only re-

moves majority-class examples that are redundant with other examples or

border regions with minority-class examples, figuring that they may be the

result of noise [34]. SMOTE, on the other hand, oversamples the data by in-

troducing new, non-replicated minority-class examples from the line segments

that join the 5 minority-class nearest neighbors [33]. This tends to expand the

decision boundaries associated with the small disjuncts/rare cases, as opposed

to the overfitting associated with random oversampling. Another approach
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is to identify a good class distribution for learning and then generate sam-

ples with that distribution. Once this is done multiple training sets with

the desired class distribution can be formed using all minority-class examples

and a subset of the majority-class examples. This can be done so that each

majority-class example is guaranteed to occur in at least one training set, so

no data is wasted. The learning algorithm is then applied to each training

set and meta-learning is used to form a composite learner from the resulting

classifiers. This approach can be used with any learning method and it was

applied to four different learning algorithms [1]. The same basic approach

for partitioning the data and learning multiple classifiers has also been used

with support vector machines and an SVM ensemble has outperformed both

undersampling and oversampling [35].

All of these more sophisticated methods attempt to reduce some of the

drawbacks associated with the simple random sampling methods. But for the

most part it seems unlikely that they introduce any new knowledge and hence

they do not appear to truly address any of the underlying issues previously

identified. Rather, they at best compensate for learning algorithms that are

not well suited to dealing with class imbalance. This point is made quite

clearly in the description of the SMOTE method, when it is mentioned that

the introduction of the new examples effectively serves to change the bias

of the learner, forcing a more general bias, but only for the minority class.

Theoretically such a modification to the bias could be implemented at the

algorithm level. As discussed later, there has been research at the algorithm

level in modifying the bias of a learner to better handle imbalanced data.

The sampling methods just described are designed to reduce between-class

imbalance. Although research indicates that reducing between-class imbal-

ance will tend to also reduce within-class imbalances [4], it is worth consid-

ering whether sampling methods can be used in a more direct manner to

reduce within-class imbalances—and if this is beneficial. This question has

been studied using artificial domains and the results indicate that it is not

sufficient to eliminate between-class imbalances (i.e., rare classes) in order to
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learn complex concepts that contain within-class imbalances (i.e., rare cases)

[5]. Only when the within-class imbalances are also eliminated can the con-

cept be learned well. This suggests that sampling should be used to improve

the performance associated with rare cases. Unfortunately, there are prob-

lems with implementing the strategy for real-world domains where one cannot

identify the rare cases. The closest we can get to this approach is to assume

that rare cases correspond to small disjuncts in the induced classifier and

then sample based on disjunct size, with the goal of equalizing the sizes of the

disjuncts in the induced classifier.

2.4.3 Algorithm Level Methods

A number of algorithm level methods have been developed to handle imbal-

anced data. The majority of these techniques involve using search methods

that are well suited for identifying rare patterns in data when common pat-

terns abound.

2.4.3.1 Search Methods that Avoid Greed and Recursive Partitioning Greedy

search methods and search methods than use a divide and conquer approach

to recursively partition the search space have difficulty finding rare patterns,

for the reasons provided in Section 2.3.3. Thus learning methods that avoid,

or minimize these two approaches, will tend to perform better when there is

imbalanced data. The advances in computational power that have occurred

since many of the basic learning methods were introduced make it more prac-

tical to utilize less greedy search heuristics. Perhaps the best example of

this is genetic algorithms, which are global search techniques that work with

populations of candidate solutions rather than a single solution and employ

stochastic operators to guide the search process [36]. These methods tend

to be far less greedy than many popular learning methods and these char-

acteristics permit genetic algorithms to cope well with attribute interactions

[36, 37] and avoid getting stuck in local maxima, which together make ge-

netic algorithms very suitable for dealing with rarity. In addition, genetic

algorithms also do not rely on a divide and conquer approach that leads to
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the data fragmentation problem. Several systems have relied on the power

of genetic algorithms to handle rarity. Timeweaver [38] uses a genetic algo-

rithm to predict very rare events while Carvalho and Freitas [39, 40] use a

genetic algorithm to discover “small disjunct rules.” Certainly other search

methods are less greedy than decision trees and also do not suffer from the

data fragmentation problems. However, no truly comprehensive study has

examined a large variety of different search methods over a large variety of

imbalanced data sets, so definitive conclusions cannot be drawn. Such studies

would be useful and it is interesting to note that these types of large scale

empirical studies have been conducted to compare the effectiveness of sam-

pling methods—which have garnered much more focused attention from the

imbalanced data community.

2.4.3.2 Search Methods that Use Metrics Designed to Handle Imbalanced Data

One problem level method for handling class imbalance involves using eval-

uation metrics that properly value the learned/mined knowledge. However,

evaluation metrics also play a role at the algorithm level, to guide the heuris-

tic search process. Some metrics have been developed to improve this search

process when dealing with imbalanced data—most notably metrics based on

precision and recall. Search methods that focus on simultaneously maximizing

precision and recall may fail due to the difficulty of optimizing these competing

values, so some systems adopt more sophisticated approaches. Timeweaver

[38], a genetic algorithm-based classification system, periodically modifies the

parameter to the F-measure that controls the relative importance of precision

and recall in the fitness function, so that a diverse set of classification rules

is evolved, with some rules having high precision and others high recall. The

expectation is that this will eventually lead to rules with both high preci-

sion and recall. A second approach optimizes recall in the first phase of the

search process and precision in the second phase, by eliminating false positives

covered by the rules [41]. Returning to the needle and haystack analogy, this

approach identifies regions likely to contain needles in the first phase and then

discards strands of hay within these regions in the second phase.
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2.4.3.3 Inductive Biases Better Suited for Imbalanced Data Most inductive

learning systems heavily favor generality over specialization. While an induc-

tive bias that favors generality is appropriate for learning common cases, it is

not appropriate for rare cases and may even cause rare cases to be totally ig-

nored. There have been several attempts to improve the performance of data

mining systems with respect to rarity by choosing a more appropriate bias.

The simplest approach involves modifying existing systems to eliminate some

small disjuncts based on tests of statistical significance or using error estima-

tion techniques—often as part of an overfitting avoidance strategy. The hope

is that these will remove only improperly learned disjuncts but such methods

will also remove those disjuncts formed to cover rare cases. The basic prob-

lem is that the significance of small disjuncts cannot be reliably estimated and

consequently significant small disjuncts may be eliminated along with the in-

significant ones. Error estimation techniques are also unreliable when there

are only a few examples, and hence they suffer from the same basic problem.

These approaches work well for large disjuncts because in these cases statis-

tical significance and error rate estimation techniques yield relatively reliable

estimates—something they do not do for small disjuncts.

More sophisticated approaches have been developed but the impact of these

strategies on rare cases cannot be measured directly, since the rare cases in

the true concept are generally not known. Furthermore, in early work on this

topic the focus was on the performance of small disjuncts, so it is difficult

to assess the impact of these strategies on class imbalance. In one study the

learner’s maximum generality bias was replaced with a maximum specificity

bias for the small disjuncts, which improved the performance of the small

disjuncts but degraded the performance of the larger disjuncts and the overall

accuracy [8]. Another study also utilized a maximum specificity bias but

took steps to ensure that this did not impact the performance of the large

disjuncts, by using a different learning method classify them [11]. A similar

hybrid approach was also used in one additional study [39, 40].
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Others advocate the use of instance-based learning for domains with many

rare cases/small disjuncts due to the highly specific bias associated with this

learning method [10]. In such methods all training examples are generally

stored in memory and utilized, as compared to other approaches where ex-

amples when they fall below some utility threshold are ignored (e.g., due to

pruning). In summary, there have been several attempts to select an induc-

tive bias that will perform better in the presence of small disjuncts, which are

assumed to represent rare cases. But these methods have shown only mixed

success and, most significantly, this work has not directly examined class im-

balance; these methods may assist with class imbalance since rare classes are

believed to be formed disproportionately from rare cases. Such approaches,

which have not garnered much attention in the past decade, are quite relevant

and should be reexamined in the more modern context of class imbalance.

2.4.3.4 Algorithms that Implicitly or Explicitly Favor Rare Classes and Cases

Some algorithms preferentially favor the rare classes or cases and hence tend

to perform well on classifying rare classes and cases. Cost-sensitive learn-

ing algorithms are one of the most popular such algorithms for handling

imbalanced data. While the assignment of costs in response to the prob-

lem characteristics is done at the problem level, cost-sensitive learning must

ultimately be implemented at the algorithm level. There are several algo-

rithmic methods for implementing cost sensitive learning, including weighting

the training examples in a cost proportionate manner [42] and building the

cost-sensitivity directly into the learning algorithm [43]. These iterative algo-

rithms place different weights on the training distribution after each iteration

and increase (decrease) the weights associated with the incorrectly (correctly)

classified examples. Because rare classes/cases are more error-prone than

common classes/cases [4, 38] it is reasonable to believe that boosting will

improve their classification performance. Note that because boosting effec-

tively alters the distribution of the training data, one could consider it a type

of advanced adaptive sampling technique. AdaBoost’s weight-update rule has

also been made cost-sensitive, so that misclassified examples belonging to rare
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classes are assigned higher weights than those belonging to common classes.

The resulting system, Adacost [44], has been empirically shown to produce

lower cumulative misclassification costs than AdaBoost and thus, like other

cost-sensitive learning methods, can be used to address the problem with rare

classes.

Boosting algorithms have also been developed to directly address the prob-

lem with rare classes. RareBoost [45] scales false-positive examples in propor-

tion to how well they are distinguished from true-positive examples and scales

false-positive examples in proportion to how well they are distinguished from

true-negative examples. A second algorithm that uses boosting to address

the problems with rare classes is SMOTEBoost [46]. This algorithm recog-

nizes that boosting may suffer from the same problems as oversampling (e.g.,

overfitting), since boosting will tend to weight examples belonging to the rare

classes more than those belonging to the common classes—effectively dupli-

cating some of the examples belonging to the rare classes. Instead of changing

the distribution of training data by updating the weights associated with each

example, SMOTEBoost alters the distribution by adding new minority-class

examples using the SMOTE algorithm [33].

2.4.3.5 Learn only the Rare Class The problem of relative rarity often causes

the rare classes to be ignored by classifiers. One method for addressing this

data level problem is to employ an algorithm that only learns classification

rules for the rare class, since this will prevent the more common classes from

overwhelming the rarer classes. There are two main variations to this ap-

proach. The recognition-based approach learns only from examples associ-

ated with the rare class, thus recognizing patterns shared by the training

examples, rather than discriminating between examples belonging to different

class. Several systems have used such recognition-based methods to learn rare

classes [47, 48].

The other approach, which is more common and supported by several learn-

ing algorithms, learns from examples belonging to all classes but first learns

rules to cover the rare classes [15, 49, 50]. Note that this approach avoids
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most of the problems with data fragmentation, since examples belonging to

the rare classes will not be allocated to the rules associated with the common

classes, before any rules are formed that cover the rare classes. Such methods

are also free to focus only on the performance of the rules associated with

the rare class and not worry about how this affects the overall performance of

the classifier [15, 50]. Probably the most popular such algorithm is the Rip-

per algorithm [49], which builds rules using a separate-and-conquer approach.

Ripper normally generates rules for each class from the rarest class to the

most common class. At each stage it grows rules for the one targeted class

by adding conditions until no examples are covered that belong to the other

classes. This leads to highly specialized rules, which are good for covering

rare cases. Ripper then covers the most common class using a default rule

that is used when no other rule is applicable.

2.4.3.6 Algorithms for Mining Rare Items Association rule mining is a well

understood area. However, when metrics other than support and confidence

are used to identify itemsets or their association rules, algorithmic changes

are required. In Section 2.4.1 we briefly discussed a variety of metrics for

finding association rules when additional metrics are added to support and

confidence. We did not describe the corresponding changes to the association

rule mining algorithms, but they are described in detail in the relevant papers

[21, 22, 23, 24, 25, 26].

There is also an algorithmic solution to the rare item problem, in which

significant associations between rarely occurring items may be missed, because

the minimum support value, minsup, cannot be set too low, because a very

low value would cause a combinatorial explosion of associations. This problem

can be solved by specifying multiple minimum levels of support to reflect the

frequencies of the associated items in the distribution [14]. Specifically, the

user can specify a different minsup value for each item. The minimum support

for an association rule is then the lowest minsup value amongst the items in

the rule. Association rule mining systems are tractable mainly because of the

downward closure property of support: if a set of items satisfies minsup then
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so do all of its subsets. While this downward closure property does not hold

with multiple minimum levels of support, the standard Apriori algorithm for

association rule mining can be modified to satisfy the sorted closure property

for multiple minimum levels of support [14]. The use of multiple minimum

levels of support then becomes tractable. Empirical results indicate that the

new algorithm is able to find meaningful associations involving rare items

without producing a huge number of meaningless rules involving common

items.

2.5 MAPPING FOUNDATIONAL ISSUES TO SOLUTIONS

This section briefly summarizes the foundational problems with imbalanced

data described in Section 2.3 and how they can be addressed by the various

methods described in Section 2.4. This section is organized using the three

basic categories identified earlier in this chapter: problem definition level,

data level, and algorithm level.

The problem definition level issues arise because researchers and practi-

tioners often do not have all of the necessary information about a problem

to solve it optimally. Most frequently this involves not possessing the nec-

essary metrics to accurately assess the utility of the mined knowledge. The

solution to this problem is simple, although often not achievable: obtain the

requisite knowledge and from this generate the metrics necessary to properly

evaluate the mined knowledge. Because this is not often possible, one must

take the next best course of action—use the best available metric or one that

is at least “robust” such that it will lead to good, albeit suboptimal solutions,

given incomplete knowledge and hence inexact assumptions. In dealing with

imbalanced data this often means using ROC analysis when the necessary

evaluation information is missing. One alternate solution that was briefly dis-

cussed involves redefining the problem to a simpler problem for which more

exact evaluation information is available. Fortunately the state of the art in

data mining technology has advanced to the point where in most cases if we
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do have the precise evaluation information, we can utilize it; in the past data

mining algorithms were often not sufficiently sophisticated to incorporate such

knowledge.

Data level issues also arise when learning from imbalanced data. These

issues mainly relate to absolute rarity. Absolute rarity occurs when one or

more classes do not have sufficient numbers of examples to adequately learn

the decision boundaries associated with that class. Absolute rarity has a much

bigger impact on the rare classes than on common classes. Absolute rarity

also applies to rare cases, which may occur for either rare classes or common

classes, but are disproportionately associated with rare classes. The ideal and

most straightforward approach to handling absolute rarity, in either of its

two main forms, is to acquire additional training examples. This can often

be done most efficiently via active learning and other information acquisition

strategies.

It is important to understand that we do not view class imbalance, which

results from a relative difference in frequency between the classes, as a prob-

lem at the data level—the problem only exists because most algorithms do

not respond well to such imbalances. The straightforward method for deal-

ing with class imbalance is via sampling, a method that operates at the data

level. But this method for dealing with class imbalance has many problems, as

we discussed previously (e.g., undersampling involves discarding potentially

useful data) and is far from ideal. A much better solution would be to de-

velop algorithms that can handle the class imbalance. At the current moment

sampling methods do perform competitively and therefore cannot be ignored,

but it is important to recognize that such methods will always have limited

value and that algorithmic solutions can potentially be more effective. We

discuss these methods next (e.g., one-class learning) because we view them as

addressing foundational algorithmic issues.

Algorithm level issues mainly involve the ability to find subtle patterns in

data that may be obscured due to imbalanced data and class imbalance in

particular (i.e., relative rarity). Finding patterns, such as those that identify
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examples belonging to a very rare class, is a very difficult task. To accom-

plish this task it is important to have an appropriate search algorithm, a good

evaluation metric to guide the heuristic search process, and an appropriate

inductive bias. It is also important to deal with issues such as data fragmen-

tation, which can be especially problematic for imbalanced data. The most

common mechanism for dealing with this algorithm level problem is to use

sampling, a data level method, to reduce the degree of class imbalance. But

for reasons outlined earlier, this strategy does not address the foundational

underlying issue—although it does provide some benefit. The strategies that

function at the algorithm level include: using a non-greedy search algorithm

and one that does not repeatedly partition the search space, using search

heuristics that are guided by metrics that are appropriate for imbalanced

data, using inductive biases that are appropriate for imbalanced data, and

using algorithms that explicitly or implicitly focus on the rare classes or rare

cases, or only learn the rare class.

2.6 MISCONCEPTIONS ABOUT SAMPLING METHODS

Sampling methods are the most common methods for dealing with imbalanced

data, but yet there are widespread misconceptions related to these methods.

The most basic misconception concerns the notion that sampling methods

are equivalent to certain other methods for dealing with class imbalance. In

particular, Breiman [51] establishes the connection between the distribution of

training-set examples, the costs of mistakes on each class, and the placement

of the decision threshold. Thus, for example, one can make false negatives

twice as costly as false positives by assigning appropriate costs or by increasing

the ratio of positive to negative examples in the training set by a factor of

two or by setting the probability threshold for determining the class label to

two-thirds rather than one-half. Unfortunately, as implemented in real-world

situations, these equivalences do not hold.
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As a concrete example, suppose a training set has 10,000 examples and a

class distribution of 100:1, so that there are only 100 positive examples. One

way to improve the identification of the rare class is to impose a greater cost

for false negatives than for false positives. A cost ratio of 100:1 is theoreti-

cally equivalent to modifying the training distribution so that it is balanced,

with a 1:1 class ratio. To generate such a balanced distribution in practice,

one would typically oversample the minority class, undersample the majority

class, or do both. But if one undersamples the majority class, then potentially

valuable data is thrown away and if one oversamples the minority class, then

one is making exact copies of examples, which can lead to overfitting. For the

equivalence to hold, one should randomly select new minority class examples

from the original distribution, which would include examples that are not al-

ready available for training. But this is almost never feasible. Even generating

new, synthetic, minority-class examples violates the equivalence, since these

examples will, at best, only be a better approximation of the true distribution.

Thus sampling methods are not equivalent in practice to other methods for

dealing with imbalanced data and they have drawbacks that other methods,

such as cost-sensitive learning, do not have, if implemented properly.

Another significant concern with sampling is that its impact is often not

fully understood—or even considered. Increasing the proportion of examples

belonging to the rare class has two distinct effects. First, it will help address

the problems with relative rarity, and, if the examples are new examples, will

also address the problem with absolute rarity by injecting new knowledge.

However, if no corrective action is taken, it will also have a second effect—it

will impose non-uniform error costs, causing the learner to be biased in favor

of predicting the rare class. In many situations this second effect is desired

and is the actually the main reason for altering the class distribution of the

training data. But in other cases, namely when new examples are added (e.g.,

via active learning), this effect is not desirable. That is, in these other cases

the intent is to improve performance with respect to the rare class by having
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more data available for that class, not by biasing the data mining algorithm

toward that class. In these cases this bias should be removed.

The bias introduced toward predicting the oversampled class can be re-

moved using the equivalences noted earlier to account for the differences be-

tween the training distribution and the underlying distribution [4, 43]. For

example, the bias can be removed by adjusting the decision thresholds, as

was done in one study which demonstrated the positive impact of removing

this unintended bias [4]. That study showed that adding new examples to

alter the class distribution of the training data, so that it deviates from the

natural, underlying, distribution, improved classifier performance. However,

classifier performance was improved even more when the bias just described

was removed by adjusting the decision thresholds within the classifier. Other

research studies that investigate the use of sampling to handle rare cases and

class imbalance almost never remove this bias—and worse yet, do not even

discuss the implications of this decision. This issue must be considered much

more carefully in future studies.

2.7 RECOMMEDATIONS AND GUIDELINES

This chapter categorized some of the major issues with imbalanced data and

then described the methods most appropriate for handling each type of is-

sue. Thus one recommendation is to try to use those methods for handling

imbalanced data that are most appropriate for dealing with the underlying

issue. This usually means utilizing methods at the same level as the issue,

when possible. But often the ideal method is not feasible—like using active

learning to obtain more training data when there is an issue of absolute rar-

ity. Thus, one must often resort to sampling, but in such cases one should be

aware of the drawbacks associated with these methods and avoid the common

misconceptions associated with these methods. Unfortunately, it is not easy

to effectively deal with imbalanced data because of the fundamental issues

that are involved—which is probably why even after more than a decade of
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intense scrutiny, the research community still has much work remaining to

come up with effective methods for dealing with these problems. Even meth-

ods that had become accepted, such as the use of AUC to generate robust

classifiers when good evaluation metrics are not available, are now coming

into question [19]. Nonetheless, there has been progress, and certainly there

is a much better appreciation of the problem than in the past.
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