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Abstract: This paper describes a machine learning approach for detecting web 
spam. Each example in this classification task corresponds to 100 web pages 
from a host and the task is to predict whether this collection of pages represents 
spam or not. This task is part of the 2007 ECML/PKDD Graph Labeling 
Workshop’s Web Spam Challenge (track 2). Our approach begins by adding 
several human-engineered features constructed from the raw data. We then 
construct a rough classifier and use semi-supervised learning to classify the 
unlabelled examples provided to us. We then construct additional link-based 
features and incorporate them into the training process. We also employ a 
combinatorial feature-fusion method for “compressing” the enormous number 
of word-based features that are available, so that conventional machine learning 
algorithms can be used. Our results demonstrate the effectiveness of semi-
supervised learning and the combinatorial feature-fusion method. 

Keywords: feature construction, classification, link mining, information 
fusion, class imbalance. 

1   Introduction 

Search engines perform a vital role in permitting users to quickly and efficiently find 
information on the World Wide Web. Because web pages that are pointed to by many 
other web pages are favored by most search engines, spam web pages, which are 
created for the sole purpose of influencing search engine results, have become quite 
common. If the quality of search engine results is to be preserved, automated means 
of identifying these spam pages must be developed. The ECML/PKDD Graph 
Labeling Workshop’s Web Spam Challenge supports the development of these 
methods, by providing a forum for researchers to develop, evaluate, and compare the 
effectiveness of a variety of methods. The second track of this challenge focuses on 
machine learning methods for identifying web spam, and in this paper we describe 
our machine learning entry for that challenge. 

Our machine learning approach starts by supplementing the raw data provided by 
the Web Spam Challenge with additional, human-engineered content-based [1] and 
link-based [2] features. We then build a rough classifier using the raw data and these 
supplemental features, and use this classifier to label all of the unlabeled graph nodes 



provided by the Web Spam Challenge. Thus, we perform semi-supervised learning. 
We use the actual labels for the training data and the predicted labels for the other 
nodes to generate additional link-based features. In addition to the use of semi-
supervised learning, we also use a combinatorial feature-fusion method, described in 
previous work [3,4], to “compress” the enormous number of content-based features, 
so that conventional classifier induction algorithms, which do not handle sparse 
features, can be used. Our results indicate that both semi-supervised learning and 
combinatorial feature fusion are effective at improving web spam detection. 

This paper is organized as follows. In Section 2 we provide background on the 
combinatorial feature-fusion method. Then in Section 3 we describe the Web Spam 
Challenge data and the features that we manually engineer in order to improve the 
performance of our system. Section 4 describes our experimental methodology, 
including the feature-fusion method and use of semi-supervised learning. Our results 
from the Web Spam Challenge are then presented in Section 5. Finally, we describe 
our conclusions and areas for future work in Section 6. 

2   Background on the Combinatorial Feature Fusion Method 

In this section we describe the terminology and concepts associated with the 
combinatorial feature-fusion method, described in detail in previous work [3,4]. We 
use a simple example to describe the method. Our feature fusion method currently 
only handles numeric features, but this is not an issue for the Web Spam Challenge. 

A data set is made up of examples, or records, each of which has a fixed number of 
features. Consistent with previous work on information fusion [3], we view the value 
of a feature as a score. Table 1 introduces a sample data set, with the score values in 
Table 1a replaced by rank values in Table 1b. The ranks in Table 1b have been 
computed in the straightforward manner, where a low score yields a low rank. This 
will not always be the case. As we will shortly see, the higher scores will receive 
lower ranks if this ranking scheme yields improved predictive performance. 

Table 1. A sample data set with the data (a) unmodified and (b) with score values replaced by 
rank. The original data set contains eight examples, labeled A-H, with five numeric features 
and a binary class variable. In this example class 1 is the minority class and accounts for 3/8, or 
37.5%, of the examples. 

 
 
 
 
 
 
 
 
 
 

 
                    (a)                                  (b) 

 F1 F2 F3 F4 F5 Class
A 1 4 3 2 8 1
B 3 3 5 5 4 0
C 5 5 2 6 7 1
D 7 6 15 3 2 0
E 11 13 16 7 14 0
F 15 16 4 13 11 0
G 9 7 14 1 18 1
H 17 15 9 8 3 0

F1 F2 F3 F4 F5 
A 1 2 2 2 5 
B 2 1 4 4 3 
C 3 3 1 5 4 
D 4 4 7 3 1 
E 6 6 8 6 7 
F 7 8 3 8 6 
G 5 5 6 1 8 
H 8 7 5 7 2 



Next we show how to compute the performance of a feature, using feature F2 from 
the sample data set as an example. For our purposes, the performance of a feature 
indicates how well its rank performs at predicting minority-class examples. The 
records in the data set are sorted by the rank value of F2 and the results are shown in 
Table 2a. The performance of F2 is then computed as the fraction of the records at the 
“top” of the table that belong to the minority class. The number of records considered 
is based on the percentage of minority-class examples in the training data, so in this 
case we look at the top 37.5%, or 3, records. In this case the performance of F2 is 2/3. 
Table 2b shows the performance values for all of the features. 

Table 2.  The results of ordering the examples by the rank of F2 is shown in Table 2a. The top 
three records are then used to compute the performance of F2, which in this case is 2/3, since 2 
of the 3 records are associated with the minority class. The performance of all five feataures is 
provided in Table 2b. 

 
 
 
 
 
 
 
 
 

              (a)                                    (b) 

This method is also used to compute the performance of combined (i.e., fused) 
features. However, to do this we need to determine the rank of a fused feature, so we 
can sort the examples by this rank. We compute this using a rank combination 
function, which averages the ranks of the features to be combined. This is done for 
each record. As an example, if we want to fuse features F1–F5 and create a new 
feature, then the rank of this fused feature for record A is computed as: (rank(F1) + 
rank(F2) + rank(F3) + rank(F4) + rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. Once the rank 
values are computed, the performance value can be computed as before. 

3   Data and Data Engineering 

In this section we describe the raw data provided to us as part of the Web Spam 
Challenge and then describe the features that we design/engineer based on this raw 
data. We do not discuss the features automatically generated by our feature-fusion 
method or the link-based features generated as part of semi-supervised learning until 
Section 4. 

The data utilized in this paper was provided as part of the Web Spam Challenge 
(track II, Corpus #1), held in conjunction with the 2007 ECML/PKDD Graph 
Labeling workshop. The data describes the content and link structure of about 9,000 
examples, where each example describes 100 web pages from an Internet host. Each 
example can be viewed as a node in a graph, where nodes are connected if there are 

  F2 Rank Class 
B 1 0 
A 2 1 
C 3 1 
D 4 0 
G 5 1 
E 6 0 
H 7 0 
F 8 0 

Feature Performance 
F1 0.67 
F2 0.67 
F3 0.67 
F4 0.67 
F5 0 



hyperlinks between them. The data is physically distributed over the following four 
data sets: 

1. Feature Vectors: these vectors correspond to the TF-IDF vectors over the 100 
web pages for a host. Thus this data set contains word frequency information. 
These are sparse vectors in that if a word does not occur, then it is not 
represented in the vector. 

2. Link Matrix: each non-zero entry in this data set represents an edge in the 
graph and thus determines which nodes are connected by hyperlinks. 

3. Training Labels: identifies the class label (spam or normal) for each node in the 
training set. 

4. Validation Labels: identifies the class label (spam or normal) for each node in 
the “validation” set.  

The raw data from the first two data sets are used to generate the examples for our 
classifier (we discuss this shortly). The training labels data set determines which 
examples are used for training while the validation labels data set determines which 
examples are used to evaluate the classifier to generate our preliminary results. The 
training data consists of 907 examples (hosts) and the validation data set contains 
1800 examples. The test set labels are maintained by the Web Spam Challenge 
organizers, who use these labels to score the classifier results that are submitted by 
the challenge competitors. The class distribution of data, for both the training and 
validation set, is approximately 80% normal and 20% spam. This data is skewed, 
which can lead to some difficulties when learning a predictive model [5]. Since the 
training and validation data sets contain a total of 2,707 examples, 6,365 of the 9,072 
examples are left unclassified. These examples could be ignored, but we use semi-
supervised learning [6] to exploit them and improve our predictive model. 

We manually engineered (i.e., constructed) seven features from the raw Web Spam 
Challenge data. Each feature is associated with a node/host and is computed based on 
information associated with that node/host. Table 3 summarizes the engineered 
features used in this study. Note hotwords are the words (i.e., content-based features) 
that appear in the greatest percentage of the 9,072 nodes provided in the Web 
Challenge Data. In order to limit the number of features for consideration we track 
only the top 500 hotwords (this may be too restrictive and should be increased in 
future work). 

Table 3. Summary of Engineered Features. The first three features are content-based features 
and the remaining featurs are link-based features. 

1 %HotwordsCovered Percentage of the 500 hotwords found in the node 
2 %Hotwords Percentage of unique words in a node that are hotwords 
3 TFIDF-Above-0.2 1 if any of the TF-IDF values is above 0.2; 0 otherwise 

4 InboundLinks The number of inbound links to this host 
5 OutboundLinks The number of outbound links from this host 
6 InboundFraction The fraction of total links that are inbound links 
7 OutboundFraction The fraction of total links that are outbound links 



4   Experimental Methodology 

We describe our experiments in this section. In Section 4.1 we describe the learning 
algorithms that we employ. Then in Section 4.2 we describe the basic procedure for 
encoding the examples for our learning problem. In Section 4.3 we describe how we 
generate new link-based features by using semi-supervised learning and in Section 
4.4 we describe how we use combinatorial feature-fusion to construct new features. 

4.1   Learning Algorithm 

In this paper we evaluate three classifier induction algorithms, which are part of the 
Weka data mining package [7]. These algorithms are ADTree, an alternating decision 
tree algorithm [8], SMO, an implementation of a support vector machine, and Bayes, 
an implementation of a naïve Bayes classifier. Note that for alternating decision trees 
the ultimate classification is determined by multiple paths through the tree rather than 
a single path through the tree. Since our preliminary results showed that ADTree 
performed best, only classifiers induced using this algorithm were used as part of the 
official Web Spam Challenge. 

4.2   Example Generation 

The examples for the training and validation data sets start with the features included 
in the feature vector data set described in Section 3. These include the TF-IDF values 
for the content-based features. Since this information is provided using a sparse 
representation and our machine learning methods do not handle sparse 
representations of features, we insert null entries for the missing features. Because 
our learning algorithms can not handle the enormous number of resulting content-
based features, we prune all but the top 200 such features based on the performance 
values produced by our feature-fusion method on the training data, as described in 
Section 2. This should keep the features that are best able to predict web spam, since 
the performance metric is based on the ability to predict the minority-class examples. 
Next, we join these 200 features with the seven engineered features listed in Table 3. 
We then add the class labels for the training and validation data using the class 
information provided as part of the Web Spam Challenge. 

4.3   Semi-Supervised Learning 

Once the examples are generated as described in Section 4.2, we use the training data 
to build a “rough” classifier. This is then used to classify the nodes not in the training 
set. We then use the predicted class labels for these non-training set nodes and the 
actual class labels for the training set nodes to determine, for each link in the link 
matrix, whether the inbound or outbound side is spam or normal. From this we 
construct four new link-based features, which indicate the prevalence of spam for the 
neighbors of a node. These features represent, for each node, the number of inbound 
(outbound) spam links and the percentage of inbound (outbound) links that are spam. 



We could use these four newly constructed features to build our final model, but 
instead choose to include an additional round of semi-supervised learning, on the 
assumption that it will yield superior results. That is, we train a classifier using all 
previous features plus these four new ones and then again predict the class labels for 
the nodes that are not in the training set. We then recompute these four link-based 
features using the updated labels. These link-based feature values are then included 
for use in building our final classification model, once the combinatorial feature-
fusion method described in Section 4.4 is used to construct some additional features. 

4.4   Use of Combinatorial Feature-Fusion 

Next we use our combinatorial feature-fusion strategy to introduce new “fused” 
features. Section 2 described how to fuse features and evaluate their performance, but 
did not discuss how we decide which features to fuse and how to determine which of 
these fused features to keep. In previous work we tried a variety of fusion strategies 
[4], but in this paper we simply fuse all pairs of features. Given that we have a total of 
211 features, this leads to C(211,2), or 22,155, possible pairings. While restricting the 
fusion to only two features is limiting, we will see that it still improves classifier 
performance. 

We next decide which of the fused features to keep. We order the fused features by 
their performance value and then tentatively add them in one by one. After adding 
each feature, we regenerate the classifier from the training data and compare the 
performance of the classifier on a hold-out set (selected from the training data) with 
the performance prior to adding the feature. If the feature yields an improvement in 
performance with a t-test confidence of at least .9, then we keep the feature; 
otherwise we discard it. Since we measure classifier performance using AUC and the 
F-measure, for the purpose of deciding whether to keep a feature or not we measure 
performance using the average value of AUC and the F-measure. 

5   Results 

In this section we report our preliminary results on the validation data provided to us, 
using three classifiers, and then present the official Web Spam Challenge results, 
calculated by the competition organizers. Our preliminary results are summarized in 
Table 4. These results are reported with and without the various enhancements so the 
impact of these enhancements can be evaluated. In all cases the seven basic 
engineered features from Table 3 are included. The results in Table 4 show that when 
neither semi-supervised learning nor feature-fusion is used, the results are not very 
good, and that both of these enhancements yield consistent improvements in all 
measures of classifier performance. The results also demonstrate that the classifier 
generated by ADTree yields the best overall performance, and hence we submit only 
the classifiers induced using this algorithm for the Web Spam Challenge. 



Table 4. Summary of Preliminary Classifier Performance Results. The table shows the results 
without any enhancements, then using semi-supervised learning, then using semi-supervised 
learning and the feature-fusion method. 

Classifier   Metric Enhancements 

    Initial Semi-supervised 
learning 

Semi-supervised 
learning + fusion 

AUC .753 .824 .931 
F-Measure .291 .523 .716 
Precision .553 .611 .797 

ADTree 

Recall .370 .457 .649 
AUC .581 .613 .628 

F-Measure .301 .373 .410 
Precision .320 .368 .392 

SMO 

Recall .285 .247 .284 
AUC .703 .762 .772 

F-Measure .451 .495 .517 
Precision .345 .368 .392 

Bayes 

Recall .651 .758 .763 

The results for the official Web Spam Challenge are provided in Table 5. These 
results are presented separately for the validation data and the test data even though 
the validation data was not used to train the classifier (the class labels for the test data 
were not provided to the competitors). Two sets of results are reported since the 
competition permitted two classifiers to be submitted. In our case the differences 
were minor in that a few features were ommitted for the second classifier. 

Table 5. Summary of our Classifier Perrformance for the Official Competition. All results are 
based on the ADTree classifier, using both the semi-supervised and fusion enhancements. 

Evaluated 
Data AUC Precision Recall Accuracy 

(thresh=0.5) 
Accuracy 

(thresh=optimal) 
Validation .889 .766 .438 .839 .850 
Validation .884 .794 .338 .821 .838 

Test .864 .725 .406 .825 .842 
Test .854 .738 .318 .803 .832 

The results in Table 5 show reasonable values for AUC, but show relatively low 
values for recall. In particular, the values for the validation data in Table 5 are worse 
than those for the same data in Table 4. Although some last minute changes that were 
made for the competition may have negatively impacted our results, the only change 
that we are aware of that should have had a negative impact is that for our 
preliminary results the validation data was inadvertently used to calculate the 
performance values for the feature fusion method—but not used to train the actual 
classifier. It is not clear to us that this should cause a substantial difference in overall 
performance. 



6   Conclusion and Future Work 

In this paper we describe a machine learning approach for identifying web spam. Our 
approach involves adding human-engineered features and then using semi-supervised 
learning to exploit the unlabeled examples that are provided as part of the Web Spam 
Challenge data. We also use our combinatorial feature-fusion method in order to 
reduce the number of TF-IDF content-based features and to construct new features 
that are combinations of these features. We feel that our final results are reasonable 
and, perhaps more significantly, we show that both our feature-fusion strategy and 
use of semi-supervised learning lead to dramatically improved classification 
performance. 

We see many opportunities for future work. Many of these opportunities relate to 
our feature fusion method. First, we would like to employ a heuristic version of the 
feature fusion method so that we can handle more than 200 features and also generate 
more complex feature combinations. Also, the rank combination used in our feature 
fusion method assigns equal weight to each feature and we would like to learn the 
optimal weights for combining these ranks. Since we assign a rank based only on the 
positive or negative magnitude of the score value, our method will not handle the 
case well where the most predictive value occurs in the middle. We could address this 
by binning the numerical values and then ranking the bins based on their predictive 
value. Using a similar idea we could also use the feature fusion method to handle 
non-numerical values. 

We would also like to further study the semi-supervised learning method that we 
employed. We would like to try to generate more sophisticated link-based features, 
determine how the number of iterations of semi-supervised learning impacts classifier 
performance, and determine if the values of the link-based features that we construct 
converge after several iterations of semi-supervised learning. 
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