
A Semi-Supervised Approach for Web Spam Detection
using Combinatorial Feature-Fusion

Ye Tian, Gary M. Weiss, Qiang Ma

Department of Computer and Information Science
Fordham University

441 East Fordham Road
Bronx, NY 10458

{tian,gweiss,ma}@cis.fordham.edu

Abstract: This paper describes a machine learning approach for detecting web
spam. Each example in this classification task corresponds to 100 web pages
from a host and the task is to predict whether this collection of pages represents
spam or not. This task is part of the 2007 ECML/PKDD Graph Labeling
Workshop’s Web Spam Challenge (track 2). Our approach begins by adding
several human-engineered features constructed from the raw data. We then
construct a rough classifier and use semi-supervised learning to classify the
unlabelled examples provided to us. We then construct additional link-based
features and incorporate them into the training process. We also employ a
combinatorial feature-fusion method for “compressing” the enormous number
of word-based features that are available, so that conventional machine learning
algorithms can be used. Our results demonstrate the effectiveness of semi-
supervised learning and the combinatorial feature-fusion method.

Keywords: feature construction, classification, link mining, information
fusion, class imbalance.

1 Introduction

Search engines perform a vital role in permitting users to quickly and efficiently find
information on the World Wide Web. Because web pages that are pointed to by many
other web pages are favored by most search engines, spam web pages, which are
created for the sole purpose of influencing search engine results, have become quite
common. If the quality of search engine results is to be preserved, automated means
of identifying these spam pages must be developed. The ECML/PKDD Graph
Labeling Workshop’s Web Spam Challenge supports the development of these
methods, by providing a forum for researchers to develop, evaluate, and compare the
effectiveness of a variety of methods. The second track of this challenge focuses on
machine learning methods for identifying web spam, and in this paper we describe
our machine learning entry for that challenge.

Our machine learning approach starts by supplementing the raw data provided by
the Web Spam Challenge with additional, human-engineered content-based [1] and
link-based [2] features. We then build a rough classifier using the raw data and these
supplemental features, and use this classifier to label all of the unlabeled graph nodes

provided by the Web Spam Challenge. Thus, we perform semi-supervised learning.
We use the actual labels for the training data and the predicted labels for the other
nodes to generate additional link-based features. In addition to the use of semi-
supervised learning, we also use a combinatorial feature-fusion method, described in
previous work [3,4], to “compress” the enormous number of content-based features,
so that conventional classifier induction algorithms, which do not handle sparse
features, can be used. Our results indicate that both semi-supervised learning and
combinatorial feature fusion are effective at improving web spam detection.

This paper is organized as follows. In Section 2 we provide background on the
combinatorial feature-fusion method. Then in Section 3 we describe the Web Spam
Challenge data and the features that we manually engineer in order to improve the
performance of our system. Section 4 describes our experimental methodology,
including the feature-fusion method and use of semi-supervised learning. Our results
from the Web Spam Challenge are then presented in Section 5. Finally, we describe
our conclusions and areas for future work in Section 6.

2 Background on the Combinatorial Feature Fusion Method

In this section we describe the terminology and concepts associated with the
combinatorial feature-fusion method, described in detail in previous work [3,4]. We
use a simple example to describe the method. Our feature fusion method currently
only handles numeric features, but this is not an issue for the Web Spam Challenge.

A data set is made up of examples, or records, each of which has a fixed number of
features. Consistent with previous work on information fusion [3], we view the value
of a feature as a score. Table 1 introduces a sample data set, with the score values in
Table 1a replaced by rank values in Table 1b. The ranks in Table 1b have been
computed in the straightforward manner, where a low score yields a low rank. This
will not always be the case. As we will shortly see, the higher scores will receive
lower ranks if this ranking scheme yields improved predictive performance.

Table 1. A sample data set with the data (a) unmodified and (b) with score values replaced by
rank. The original data set contains eight examples, labeled A-H, with five numeric features
and a binary class variable. In this example class 1 is the minority class and accounts for 3/8, or
37.5%, of the examples.

 (a) (b)

 F1 F2 F3 F4 F5 Class
A 1 4 3 2 8 1
B 3 3 5 5 4 0
C 5 5 2 6 7 1
D 7 6 15 3 2 0
E 11 13 16 7 14 0
F 15 16 4 13 11 0
G 9 7 14 1 18 1
H 17 15 9 8 3 0

F1 F2 F3 F4 F5
A 1 2 2 2 5
B 2 1 4 4 3
C 3 3 1 5 4
D 4 4 7 3 1
E 6 6 8 6 7
F 7 8 3 8 6
G 5 5 6 1 8
H 8 7 5 7 2

Next we show how to compute the performance of a feature, using feature F2 from
the sample data set as an example. For our purposes, the performance of a feature
indicates how well its rank performs at predicting minority-class examples. The
records in the data set are sorted by the rank value of F2 and the results are shown in
Table 2a. The performance of F2 is then computed as the fraction of the records at the
“top” of the table that belong to the minority class. The number of records considered
is based on the percentage of minority-class examples in the training data, so in this
case we look at the top 37.5%, or 3, records. In this case the performance of F2 is 2/3.
Table 2b shows the performance values for all of the features.

Table 2. The results of ordering the examples by the rank of F2 is shown in Table 2a. The top
three records are then used to compute the performance of F2, which in this case is 2/3, since 2
of the 3 records are associated with the minority class. The performance of all five feataures is
provided in Table 2b.

 (a) (b)

This method is also used to compute the performance of combined (i.e., fused)
features. However, to do this we need to determine the rank of a fused feature, so we
can sort the examples by this rank. We compute this using a rank combination
function, which averages the ranks of the features to be combined. This is done for
each record. As an example, if we want to fuse features F1–F5 and create a new
feature, then the rank of this fused feature for record A is computed as: (rank(F1) +
rank(F2) + rank(F3) + rank(F4) + rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. Once the rank
values are computed, the performance value can be computed as before.

3 Data and Data Engineering

In this section we describe the raw data provided to us as part of the Web Spam
Challenge and then describe the features that we design/engineer based on this raw
data. We do not discuss the features automatically generated by our feature-fusion
method or the link-based features generated as part of semi-supervised learning until
Section 4.

The data utilized in this paper was provided as part of the Web Spam Challenge
(track II, Corpus #1), held in conjunction with the 2007 ECML/PKDD Graph
Labeling workshop. The data describes the content and link structure of about 9,000
examples, where each example describes 100 web pages from an Internet host. Each
example can be viewed as a node in a graph, where nodes are connected if there are

 F2 Rank Class
B 1 0
A 2 1
C 3 1
D 4 0
G 5 1
E 6 0
H 7 0
F 8 0

Feature Performance
F1 0.67
F2 0.67
F3 0.67
F4 0.67
F5 0

hyperlinks between them. The data is physically distributed over the following four
data sets:

1. Feature Vectors: these vectors correspond to the TF-IDF vectors over the 100
web pages for a host. Thus this data set contains word frequency information.
These are sparse vectors in that if a word does not occur, then it is not
represented in the vector.

2. Link Matrix: each non-zero entry in this data set represents an edge in the
graph and thus determines which nodes are connected by hyperlinks.

3. Training Labels: identifies the class label (spam or normal) for each node in the
training set.

4. Validation Labels: identifies the class label (spam or normal) for each node in
the “validation” set.

The raw data from the first two data sets are used to generate the examples for our
classifier (we discuss this shortly). The training labels data set determines which
examples are used for training while the validation labels data set determines which
examples are used to evaluate the classifier to generate our preliminary results. The
training data consists of 907 examples (hosts) and the validation data set contains
1800 examples. The test set labels are maintained by the Web Spam Challenge
organizers, who use these labels to score the classifier results that are submitted by
the challenge competitors. The class distribution of data, for both the training and
validation set, is approximately 80% normal and 20% spam. This data is skewed,
which can lead to some difficulties when learning a predictive model [5]. Since the
training and validation data sets contain a total of 2,707 examples, 6,365 of the 9,072
examples are left unclassified. These examples could be ignored, but we use semi-
supervised learning [6] to exploit them and improve our predictive model.

We manually engineered (i.e., constructed) seven features from the raw Web Spam
Challenge data. Each feature is associated with a node/host and is computed based on
information associated with that node/host. Table 3 summarizes the engineered
features used in this study. Note hotwords are the words (i.e., content-based features)
that appear in the greatest percentage of the 9,072 nodes provided in the Web
Challenge Data. In order to limit the number of features for consideration we track
only the top 500 hotwords (this may be too restrictive and should be increased in
future work).

Table 3. Summary of Engineered Features. The first three features are content-based features
and the remaining featurs are link-based features.

1 %HotwordsCovered Percentage of the 500 hotwords found in the node
2 %Hotwords Percentage of unique words in a node that are hotwords
3 TFIDF-Above-0.2 1 if any of the TF-IDF values is above 0.2; 0 otherwise

4 InboundLinks The number of inbound links to this host
5 OutboundLinks The number of outbound links from this host
6 InboundFraction The fraction of total links that are inbound links
7 OutboundFraction The fraction of total links that are outbound links

4 Experimental Methodology

We describe our experiments in this section. In Section 4.1 we describe the learning
algorithms that we employ. Then in Section 4.2 we describe the basic procedure for
encoding the examples for our learning problem. In Section 4.3 we describe how we
generate new link-based features by using semi-supervised learning and in Section
4.4 we describe how we use combinatorial feature-fusion to construct new features.

4.1 Learning Algorithm

In this paper we evaluate three classifier induction algorithms, which are part of the
Weka data mining package [7]. These algorithms are ADTree, an alternating decision
tree algorithm [8], SMO, an implementation of a support vector machine, and Bayes,
an implementation of a naïve Bayes classifier. Note that for alternating decision trees
the ultimate classification is determined by multiple paths through the tree rather than
a single path through the tree. Since our preliminary results showed that ADTree
performed best, only classifiers induced using this algorithm were used as part of the
official Web Spam Challenge.

4.2 Example Generation

The examples for the training and validation data sets start with the features included
in the feature vector data set described in Section 3. These include the TF-IDF values
for the content-based features. Since this information is provided using a sparse
representation and our machine learning methods do not handle sparse
representations of features, we insert null entries for the missing features. Because
our learning algorithms can not handle the enormous number of resulting content-
based features, we prune all but the top 200 such features based on the performance
values produced by our feature-fusion method on the training data, as described in
Section 2. This should keep the features that are best able to predict web spam, since
the performance metric is based on the ability to predict the minority-class examples.
Next, we join these 200 features with the seven engineered features listed in Table 3.
We then add the class labels for the training and validation data using the class
information provided as part of the Web Spam Challenge.

4.3 Semi-Supervised Learning

Once the examples are generated as described in Section 4.2, we use the training data
to build a “rough” classifier. This is then used to classify the nodes not in the training
set. We then use the predicted class labels for these non-training set nodes and the
actual class labels for the training set nodes to determine, for each link in the link
matrix, whether the inbound or outbound side is spam or normal. From this we
construct four new link-based features, which indicate the prevalence of spam for the
neighbors of a node. These features represent, for each node, the number of inbound
(outbound) spam links and the percentage of inbound (outbound) links that are spam.

We could use these four newly constructed features to build our final model, but
instead choose to include an additional round of semi-supervised learning, on the
assumption that it will yield superior results. That is, we train a classifier using all
previous features plus these four new ones and then again predict the class labels for
the nodes that are not in the training set. We then recompute these four link-based
features using the updated labels. These link-based feature values are then included
for use in building our final classification model, once the combinatorial feature-
fusion method described in Section 4.4 is used to construct some additional features.

4.4 Use of Combinatorial Feature-Fusion

Next we use our combinatorial feature-fusion strategy to introduce new “fused”
features. Section 2 described how to fuse features and evaluate their performance, but
did not discuss how we decide which features to fuse and how to determine which of
these fused features to keep. In previous work we tried a variety of fusion strategies
[4], but in this paper we simply fuse all pairs of features. Given that we have a total of
211 features, this leads to C(211,2), or 22,155, possible pairings. While restricting the
fusion to only two features is limiting, we will see that it still improves classifier
performance.

We next decide which of the fused features to keep. We order the fused features by
their performance value and then tentatively add them in one by one. After adding
each feature, we regenerate the classifier from the training data and compare the
performance of the classifier on a hold-out set (selected from the training data) with
the performance prior to adding the feature. If the feature yields an improvement in
performance with a t-test confidence of at least .9, then we keep the feature;
otherwise we discard it. Since we measure classifier performance using AUC and the
F-measure, for the purpose of deciding whether to keep a feature or not we measure
performance using the average value of AUC and the F-measure.

5 Results

In this section we report our preliminary results on the validation data provided to us,
using three classifiers, and then present the official Web Spam Challenge results,
calculated by the competition organizers. Our preliminary results are summarized in
Table 4. These results are reported with and without the various enhancements so the
impact of these enhancements can be evaluated. In all cases the seven basic
engineered features from Table 3 are included. The results in Table 4 show that when
neither semi-supervised learning nor feature-fusion is used, the results are not very
good, and that both of these enhancements yield consistent improvements in all
measures of classifier performance. The results also demonstrate that the classifier
generated by ADTree yields the best overall performance, and hence we submit only
the classifiers induced using this algorithm for the Web Spam Challenge.

Table 4. Summary of Preliminary Classifier Performance Results. The table shows the results
without any enhancements, then using semi-supervised learning, then using semi-supervised
learning and the feature-fusion method.

Classifier Metric Enhancements

 Initial Semi-supervised
learning

Semi-supervised
learning + fusion

AUC .753 .824 .931
F-Measure .291 .523 .716
Precision .553 .611 .797

ADTree

Recall .370 .457 .649
AUC .581 .613 .628

F-Measure .301 .373 .410
Precision .320 .368 .392

SMO

Recall .285 .247 .284
AUC .703 .762 .772

F-Measure .451 .495 .517
Precision .345 .368 .392

Bayes

Recall .651 .758 .763

The results for the official Web Spam Challenge are provided in Table 5. These
results are presented separately for the validation data and the test data even though
the validation data was not used to train the classifier (the class labels for the test data
were not provided to the competitors). Two sets of results are reported since the
competition permitted two classifiers to be submitted. In our case the differences
were minor in that a few features were ommitted for the second classifier.

Table 5. Summary of our Classifier Perrformance for the Official Competition. All results are
based on the ADTree classifier, using both the semi-supervised and fusion enhancements.

Evaluated
Data AUC Precision Recall Accuracy

(thresh=0.5)
Accuracy

(thresh=optimal)
Validation .889 .766 .438 .839 .850
Validation .884 .794 .338 .821 .838

Test .864 .725 .406 .825 .842
Test .854 .738 .318 .803 .832

The results in Table 5 show reasonable values for AUC, but show relatively low
values for recall. In particular, the values for the validation data in Table 5 are worse
than those for the same data in Table 4. Although some last minute changes that were
made for the competition may have negatively impacted our results, the only change
that we are aware of that should have had a negative impact is that for our
preliminary results the validation data was inadvertently used to calculate the
performance values for the feature fusion method—but not used to train the actual
classifier. It is not clear to us that this should cause a substantial difference in overall
performance.

6 Conclusion and Future Work

In this paper we describe a machine learning approach for identifying web spam. Our
approach involves adding human-engineered features and then using semi-supervised
learning to exploit the unlabeled examples that are provided as part of the Web Spam
Challenge data. We also use our combinatorial feature-fusion method in order to
reduce the number of TF-IDF content-based features and to construct new features
that are combinations of these features. We feel that our final results are reasonable
and, perhaps more significantly, we show that both our feature-fusion strategy and
use of semi-supervised learning lead to dramatically improved classification
performance.

We see many opportunities for future work. Many of these opportunities relate to
our feature fusion method. First, we would like to employ a heuristic version of the
feature fusion method so that we can handle more than 200 features and also generate
more complex feature combinations. Also, the rank combination used in our feature
fusion method assigns equal weight to each feature and we would like to learn the
optimal weights for combining these ranks. Since we assign a rank based only on the
positive or negative magnitude of the score value, our method will not handle the
case well where the most predictive value occurs in the middle. We could address this
by binning the numerical values and then ranking the bins based on their predictive
value. Using a similar idea we could also use the feature fusion method to handle
non-numerical values.

We would also like to further study the semi-supervised learning method that we
employed. We would like to try to generate more sophisticated link-based features,
determine how the number of iterations of semi-supervised learning impacts classifier
performance, and determine if the values of the link-based features that we construct
converge after several iterations of semi-supervised learning.

References

1. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D. Detecting spam web pages through
content analysis, Proceedings of the 15th International World Wide Web Conference (2006)

2. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R. Link Based
Characterization and Detection of Web Spam, Workshop on Adversarial Information
Retrieval on the Web (2006)

3. Hsu, D.F., Chung, Y., Kristal, B. Combinatorial fusion analysis: methods and practices of
combining multiple scoring systems. Advanced Data Mining Technologies in
Bioinformatics. Hershey, PA: Idea Group Publishing; 32–62 (2006)

4. Tian, Y., Weiss, G., Hsu, D.F., Ma, Q. A Combinatorial Fusion Method for Feature Mining,
Proceedings of KDD'07 Workshop on Mining Multiple Information Sources (2007)

5. Weiss, G. M. Mining with rarity: A unifying framework. SIGKDD Explorations, 6(1): 7-19.
6. Chapelle, O., Scholkopf, B., Zien, A. Semi-Supervised Learning. MIT Press, Cambridge,

MA. (2006).
7. Freund, Y., Mason, L. The alternating decision tree learning algorithm. Proceedings of the

Sixteenth International Conference on Machine Learning, 124-133 (1999).
8. Markov, Z., Russell, I. An introduction to the WEKA data mining system. In Proceedings of

the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. 367–368 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

