

Identifying Classification Algorithms Most Suitable

for Imbalanced Data

Ray Marie Tischio, Gary M. Weiss
Dept. of Computer & Info. Science

Fordham University
Bronx, New York, USA

{rtischio, gaweiss}@fordham.edu

Abstract—Many real-world data sets have significant levels of

class imbalance, which can impact the performance of the in-

duced classifiers. In such cases, classification algorithms may

produce models that have high accuracy but fail to perform well

on examples belonging to the minority class. Many techniques

have been developed to address class imbalance, including sam-

pling and cost-sensitive learning—but each of these has draw-

backs. One approach that has not been extensively studied is to

utilize classification algorithms that natively perform well in the

presence of class imbalance. The research study described in this

paper comprehensively evaluates the degree to which different

algorithms are impacted by class imbalance, with the goal of

identifying the algorithms that perform best and worst on imbal-

anced data. In particular, this study assesses the relative impact

of class imbalance on thirteen different algorithms as they are

applied to twenty-nine data sets with varying levels of class im-

balance. The results from this study demonstrate that certain

classification algorithms, such as decision trees, Adaboost, and

gradient boosting, perform very well in the presence of class im-

balance, while others algorithms, such as logistic regression, sup-

port vector machines, and Bernoulli Naïve Bayes, perform very

poorly.

Keywords—classification, class imbalance, classifier perfor-

mance, machine learning,

I. INTRODUCTION

Real world applications often are associated with data sets
with class imbalance. For example, predicting fraudulent cred-
it-card transactions, identifying telecommunication failures,
detecting oil spills from satellite images, and medical diagno-
sis all involve class imbalance. In applications such as these,
the minority class is typically of primary importance, but clas-
sification methods will generally optimize performance of the
more frequently occurring classes.

The issue of class imbalance has received a great deal of
attention, and researchers and practitioners utilize a variety of
techniques to improve performance of examples belonging to
the less frequently occurring classes. The most common
methods involve under-sampling the majority class [10]
and/or oversampling the minority class, in order to form a
more balanced training set. Cost-sensitive learning is also used
sometimes, since one can improve the performance on the
minority classes by assigning a higher relative cost to misclas-
sifying examples belonging to these classes.

The goal of the study described in this paper is to deter-
mine which classification algorithms naturally perform well—
or poorly—on imbalanced data. There are some reasons to
believe that not all algorithms will be affected equally.
Weiss [16] suggested that boosting methods may perform well
at classifying minority examples because boosting places
more emphasis on misclassified examples—which are more
likely to come from the minority classes. Drummond and
Holte [5] determined that decision tree splitting criteria are
relatively cost insensitive and hence would make them per-
form well for varying misclassification costs; this also means
they will perform well in the presence of class imbalance be-
cause of the relationship between class imbalance and non-
uniform misclassification costs. Interestingly, our results show
that boosting methods and decision tree methods tend to per-
form relatively well in the presence of class imbalance.

This article will analyze the performance of thirteen di-
verse classification algorithms on twenty-nine imbalanced
data sets, to determine the relative performance of these algo-
rithms on imbalanced data. Performance will be reported us-
ing accuracy, F1-measure, and AUC score, but our analysis
will focus on the latter two metrics since they are much more
appropriate in the presence of class imbalance.

II. EXPERIMENT METHODOLOGY

The experiments described in this paper will determine the
relative effectiveness of different classification algorithms in
the presence of class imbalance. This section will describe the
twenty-nine data sets, the thirteen classification algorithms,
the structure of the experiments, and the metrics used to assess
classifier performance.

A. Data Sets

The twenty-nine data sets employed in this study are de-
scribed in Table 1. Eight data sets (occ, c4, seism, lett9, lett25,
redw, choc, whw) are from the UCI Machine Learning Reposi-
tory [6], four data sets (hmeq [15], prom [13], findis [7],
train [17]) are from Kaggle, and the remaining data sets are
from the KEEL Dataset Repository [1].

The first two columns in Table 1 specify the abbreviated
and full data set names. The next column specifies the total
number of attributes, including the class. Our experiments
only utilize data sets with two classes, so the data sets with
more than two classes were mapped into two classes as speci-

fied by the “Map” field. The first (second) value specifies the
number of classes mapped into the majority (minority) class.
Then the “Min %” field specifies the percentage of examples
that belong to the minority class and the last field specifies the
total number of examples in the data set. Table 1 is sorted
based on increasing levels of class imbalance.

TABLE 1: DATA SET DESCRIPTION

Data
Set Full Name Attr. Map Min % Total

Size
glass1 glass1 10 35.5 214
hbman haberman 4 26.5 306
ecoli1 ecoli1 8 22.9 336
occ occupancy 7 21.2 8,143
hmeq hmeq 13 8.9 3,364
thy thyroid1 6 16.3 215
glass6 glass6 10 13.6 214
yeast3 yeast3 9 11.0 1,484
ecoli3 ecoli3 8 10.4 336
pbloc page-blocks0 11 10.2 5,472
c4 connect-4 43 2/1 9.5 67,556
vow0 vowel0 14 9.1 988
prom promoted 8 6.9 25,000
seism seismic-bumps 19 6.6 2,578
aba9 abalone9-18 9 5.7 731
car car-vgood 7 3.8 1,728
lett9 letter-recognition 17 25/1 3.7 19,999
findis financial distress 86 3.7 3,672
lett25 letter-recognition 17 25/1 3.7 19,999
yeast4 yeast4 9 3.4 1,484
yeast5 yeast5 9 3.0 1,482
choc flavors_of_ cacao 9 10/3 2.8 1,795
train train 18 2/1 2.9 31,378
yeast6 yeast6 9 2.4 1,484
redw winequality-red 12 4/2 1.8 1,599
poker poker8_vs_6 11 1.2 1,477
root kddcup-rootkit-imap_vs_back 42 1.0 2,225
aba1 abalone19 9 0.8 4,174
whw winequality-white 12 6/1 0.4 4,898

B. Classification Algorithms

The thirteen classification algorithms utilized in this study
are listed in Table 2, along with their abbreviations. The im-
plementations of these classifiers are from the scikit-learn
machine learning library for the Python programming lan-
guage [11], and the default settings are always used.

TABLE 2: CLASSIFIERS

LR Logistic Regression
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
KNN K-Nearest Neighbors
DT Decision Tree
RF Random Forest
SV Support Vector
MLP Multi-layer Perceptron

PercepPerceptronPerceptron ADB AdaBoost
GRB GradientBoosting
GNB Gaussian Naive Bayes
BNB Bernoulli Naive Bayes
CNB Complement Naive Bayes

LR is regularized logistic regression using the ‘liblinear’
library. LDA and QDA differ in that when using LDA, all
classes share a common covariance matrix whereas the QDA
implementation has a covariance matrix for each class. KNN
uses the default value of 5 nearest neighbors. DT is an opti-
mized version of the CART decision tree algorithm, and RF
uses the default of 10 trees in the random forest. SV is a sup-
port vector machine implementation based on the libsvm li-
brary and uses the default radial basis kernel. The MLP neural
network trains using backpropagation.

The next two classifiers in Table 2 are ensemble boosting
methods: ADB implements the AdaBoost-SAMME method
and uses the SAMME.R real boosting algorithm, and boosting
is terminated after the default maximum number of estimators
set to 50. GRB performs 100 boosting stages and the criterion
function to measure quality of each split is set to mean
squared error with improvement score by Friedman
(‘Friedman_mse’). For binary classification, a single regres-
sion tree is induced and in each stage fit on the negative gradi-
ent of the ‘deviance’ (default) loss function.

The final three classifiers in the table are variations of the
Naive Bayes algorithm. GNB assumes a Gaussian distribution
and continuous feature data, BNB assumes a binomial distri-
bution, and CNB is an adaption of multinomial naive Bayes
(which computes weights in terms of frequency) using
the complement of each class to compute the model’s weights.
CNB is cited as being a particularly suitable option when deal-
ing with imbalanced data. The CNB algorithm does not accept
non-positive input for training. Therefore, for the six data sets
with features with non-positive values, the feature values were
scaled to a new value between 0 and 1. The number of scaled
attributes for CNB for each of the six data set is as follows:
thy(1), vow0(10), prom(4), seism(2), finds(34), and choc(2).

C. Evaluation Procedure

The data is partitioned into training and test sets using
stratified 10-fold cross-validation, so that both sets maintain
the same class distribution [9]. Categorical attributes are
mapped to numerical values using label encoding.

Classifier performance is measured using accuracy, F1-
measure, and the Area Under the ROC curve (AUC). Accura-
cy is included because it is a common metric, but it is not very
meaningful in the presence of class imbalance [12], and hence
our analysis focuses more on the other two metrics. The F1-
measure and AUC values are asymmetric with respect to the
class, and in this study, as is usual, the positive class refers to
the minority class. The F1-measure represents the weighted
harmonic mean of precision and recall, where in this context
precision is the fraction of minority-class predictions that are
correct, and recall is the fraction of minority class examples
that are correctly classified. F1-score is defined as:

F1-score = 2  precision  recall / (precision + recall) (1)

The AUC metric is the area under the curve formed by
plotting the True Positive Rate against the False Positive Rate.
The AUC score is commonly used in studies of class imbal-
ance because it does not depend to the specific class distribu-
tion and is insensitive to changes in class distribution.

III. RESULTS

The thirteen classification algorithms from Table 2 were

applied to the twenty-nine data sets listed in Table 1, using

stratified 10-fold cross validation. The results of these experi-

ments are reported and analyzed in this section. We begin by

presenting the summary results, aggregated over all twenty-

nine data sets, and then look at some more refined results,

aggregated over the least and then the most imbalanced data

sets. We end this section by describing the lowest level results

at the data set level.

The summary results of our experiments are presented in
Table 3. There is a row for each classifier and the three evalu-
ation metrics are presented in the three sets of columns. Each
of the three metrics includes a raw score as well as a rank
score. The rank is computed by ranking the performance of
each of the thirteen classifiers for each data set and then taking
the average over all twenty-nine data sets. If there is a tie be-
tween two or more algorithms, then each algorithm receives
the average rank value within the associated range (e.g., if two
algorithms are tied for second and third place then each gets a
value of 2.5). Each rank value can vary from 1 (best) to 13
(worst). The rank values are useful because the raw scores
could be thrown off by a small number of very good or very
bad values. To facilitate the analysis of the results in Table 3,
each cell is placed into one of three categories: very good re-
sults (better than most) are highlighted in bold, poor results
(worse than most) are italicized, and the results between these
extremes are left unchanged (i.e., normal font). The best clas-
sifier value for the entire column is underlined.

Based on the results in Table 3, and recalling that accuracy
is not a very good measure of performance for imbalanced
data, we conclude that DT, ADB, and GRB are consistently
very good-performing classifiers: they are in the top category
for the F1-measure and AUC for both raw score and ranking.
DT also has the very best average values for three of the four
non-accuracy values. If we focus on AUC we may also con-
sider CNB to be high performing and if we focus on F1-
measure then RF can be considered high performing.

TABLE 3: SUMMARY OF MAIN RESULTS

 ACCURACY F1-MEASURE AUC
 RAW RANK RAW RANK RAW RANK

LR 93.2 5.8 .280 9.8 .620 9.4
LDA 93.2 6.5 .412 6.5 .681 6.7
QDA 82.3 9.5 .355 7.2 .661 6.7
KNN 93.7 4.9 .432 6.2 .688 6.6
DT 90.7 8.1 .477 4.5 .720 5.0
RF 93.5 4.6 .458 5.6 .698 6.7
SV 92.1 5.5 .240 9.8 .603 9.5
MLP 91.3 6.6 .362 6.8 .655 7.3
ADB 94.0 5.4 .471 5.2 .713 5.6
GRB 94.1 5.1 .485 4.6 .717 5.9
GNB 78.1 9.6 .349 7.1 .697 6.0
BNB 90.0 7.9 .169 10.4 .580 9.7
CNB 72.7 11.6 .346 7.2 .713 6.0

Table 3 also shows that several algorithms perform con-
sistently poorly—at least over the averages of the twenty-nine
data sets. In particular, LR, SV, and BNB all perform in the
worst category for all four F1-measure and AUC values.
Overall, we do see very substantial differences in the raw
scores for accuracy, F1-measure, and AUC, so it appears that
these classifiers perform very differently from DT, ADB, and
GRB in the presence of class imbalance. However, since none
of the classifiers achieve rankings very near to the best val-
ue (1) or worst value (13), we conclude that there is no classi-
fier that consistently performs best or worst for each of the
underlying data sets.

We next refine our analysis by noting the number of times
a classifier is ranked either top-1 or within the top-3. These
values are encoded as #top-1/#top-3 in Table 4 for the six
most competitive classification algorithms. The results are
further broken down based on whether the data set is within
the upper or lower part of Table 1 (the lower part begins with
the car data set and contains the fourteen most imbalanced
data sets). If class imbalance affects classifiers unequally, we
are most apt to see this in the “lower” data sets.

TABLE 4: FREQUENCY OF TOP RANKS

 ACCURACY F1-MEASURE AUC
 UPPER LOWER UPPER LOWER UPPER LOWER

KNN 0/3 0/9 0/2 2/6 0/1 2/4
DT 0/2 0/2 0/5 2/5 3/3 0/8
RF 1/5 4/5 1/4 0/1 1/4 0/0
ADB 0/7 0/1 1/6 0/4 1/3 0/2
GRB 4/6 1/4 3/6 2/6 1/5 1/3
CNB 0/0 0/0 3/4 0/4 3/5 7/7

The results in Table 4 generally agree with the results in
Table 3, but there are some interesting items to highlight.
Based on Table 3 we concluded that DT, ADB, and GRB,
performed very well for F1-measure and AUC. If we prioritize
the results in Table 4 for the “lower” data sets with more class
imbalance, we see that DT has the strongest performance of
these three algorithms due to its superiority on AUC, where it
is in the top-3 eight times. But perhaps the single most notable
result from Table 4 is that CNB has 7 first place rankings for
AUC for the lower (most imbalanced) data sets. Since there
are only 14 data sets in that part, CNB ranks first out of thir-
teen algorithms for half of these data sets. RF shows good
performance on the accuracy and F1-measure metrics, but
does not perform as well with AUC score or with more imbal-
anced data sets. Although ADB and GRB are among the top
performing algorithms, they both have a lesser frequency of
top-ranking scores in the lower half of data set results. The
KNN classifier also is notable in that it consistently scores
better for the more imbalanced data sets and for these data sets
is often in the top-3 of results.

Data set level results are provided for the F1-measure raw
score and rank, respectively, in Table 5 and Table 6. The im-
balance ratio (IR) field is computed as the number of majority
class examples divided by the number of minority class exam-
ples and measures the level of class imbalance.

TABLE 5: DATA SET LEVEL RESULTS (F1-MEASURE RAW SCORE)

 IR LR LDA QDA KNN DT RF SV MLP ADB GRB GNB BNB CNB
glass1 1.8 .20 .25 .58 .68 .62 .71 .59 .07 .67 .73 .58 .36 .54
hbmn 2.8 .21 .25 .29 .35 .38 .27 .05 .34 .38 .34 .29 .00 .50
ecoli1 3.4 .63 .72 .46 .70 .68 .66 .65 .67 .71 .74 .53 .00 .71

occ 3.7 .92 .92 .89 .79 .79 .82 .00 .87 .90 .91 .92 .73 .70
hmeq 4.0 .00 .36 .38 .09 .35 .35 .00 .07 .31 .35 .29 .05 .14
thy 5.1 .99 .78 .92 .86 .96 .96 .48 .77 .94 .88 .93 .6 .93

glass6 6.4 .77 .80 .78 .79 .81 .81 .85 .24 .86 .86 .81 .78 .67
yeast3 8.1 .15 .74 .24 .74 .68 .72 .00 .70 .75 .75 .24 .00 .52
ecoli3 8.6 .06 .67 .20 .58 .61 .61 .00 .10 .56 .63 .45 .00 .50
pbloc 8.8 .62 .68 .63 .73 .80 .82 .28 .78 .78 .82 .44 .00 .58

c4 9.5 .00 .01 .15 .05 .07 .06 .00 .06 .00 .01 .12 .03 .17
vow0 10.0 .72 .66 .69 .77 .70 .81 .86 .85 .83 .82 .71 .67 .54
prom 13.6 .00 .00 .02 .01 .09 .01 .00 .07 .00 .00 .00 .00 .12
seism 14.2 .05 .16 .12 .08 .11 .06 .00 .12 .08 .13 .19 .24 .09
aba9 16.4 .05 .59 .53 .17 .33 .24 .00 .09 .44 .37 .26 .00 .14
car 25.6 .07 .00 .07 .24 .83 .73 .76 .57 .77 .86 .24 .00 .28

lett9 25.8 .80 .72 .78 .95 .87 .92 .95 .95 .82 .88 .61 .07 .33
fd 26.0 .06 .37 .14 .15 .27 .25 .00 .19 .27 .33 .08 .42 .07

lett25 26.2 .74 .48 .77 .98 .93 .95 .98 .97 .90 .91 .59 .00 .30
yeast4 28.1 .00 .30 .09 .18 .30 .17 .00 .11 .26 .31 .07 .00 .28
yeast5 32.7 .00 .58 .07 .70 .64 .51 .00 .39 .65 .68 .15 .00 .39
cacao 34.9 .00 .07 .05 .00 .03 .05 .00 .10 .03 .03 .15 .00 .10
train 39.2 .16 .36 .35 .38 .42 .41 .00 .20 .23 .28 .28 .00 .17

yeast6 41.4 .00 .41 .05 .57 .42 .38 .00 .00 .44 .43 .06 .00 .26
redw 56.1 .00 .00 .03 .00 .03 .00 .00 .00 .00 .00 .07 .00 .05
poker 85.9 .00 .00 .00 .00 .07 .00 .00 .21 .00 .00 .00 .00 .01
root 100.1 .95 .90 .87 1.0 .95 .95 .53 .98 1.0 .95 .92 .96 .93
aba1 129.4 .00 .00 .00 .00 .06 .00 .00 .00 .00 .04 .01 .00 .02
whw 243.9 .00 0.18 .13 .00 .04 .08 .00 .07 .08 .04 .14 .00 .01
AVG .28 .41 .36 .43 .48 .46 .24 .36 .47 .49 .35 .17 .35

TABLE 6: DATA SET LEVEL RESULTS (F1-MEASURE RANK)

 IR LR LDA QDA KNN DT RF SV MLP ADB GRB GNB BNB CNB
glass1 1.8 12.0 11.0 7.0 3.0 5.0 2.0 6.0 13.0 4.0 1.0 8.0 10.0 9.0
hbmn 2.8 11.0 10.0 7.0 4.0 3.0 9.0 12.0 6.0 2.0 5.0 8.0 13.0 1.0
ecoli1 3.4 10.0 2.0 12.0 5.0 6.0 8.0 9.0 7.0 3.0 1.0 11.0 13.0 4.0
occ 3.7 1.0 2.0 6.0 9.0 10.0 8.0 13.0 7.0 5.0 4.0 3.0 11.0 12.0
hmeq 4.0 12.5 2.0 1.0 9.0 3.0 4.0 12.5 10.0 6.0 5.0 7.0 11.0 8.0
thy 5.1 1.0 10.0 7.0 9.0 2.0 3.0 13.0 11.0 4.0 8.0 5.0 12.0 6.0
glass6 6.4 11.0 7.0 9.5 8.0 5.0 4.0 3.0 13.0 1.0 2.0 6.0 9.5 12.0
yeast3 8.1 11.0 4.0 9.0 3.0 7.0 5.0 12.5 6.0 2.0 1.0 10.0 12.5 8.0
ecoli3 8.6 11.0 1.0 9.0 5.0 4.0 3.0 12.5 10.0 6.0 2.0 8.0 12.5 7.0
pbloc 8.8 9.0 7.0 8.0 6.0 3.0 1.0 12.0 4.0 5.0 2.0 11.0 13.0 10.0
c4 9.5 12.5 10.0 2.0 7.0 4.0 5.0 12.5 6.0 11.0 9.0 3.0 8.0 1.0
vow0 10.0 7.0 12.0 10.0 6.0 9.0 5.0 1.0 2.0 3.0 4.0 8.0 11.0 13.0
prom 13.6 10.5 10.5 4.0 6.0 2.0 5.0 10.5 3.0 7.0 10.5 10.5 10.5 1.0
seism 14.2 12.0 3.0 5.0 10.0 7.0 11.0 13.0 6.0 9.0 4.0 2.0 1.0 8.0
aba9 16.4 11.0 1.0 2.0 8.0 5.0 7.0 12.5 10.0 3.0 4.0 6.0 12.5 9.0
car 25.6 11.0 12.5 10.0 8.0 2.0 5.0 4.0 6.0 3.0 1.0 9.0 12.5 7.0
lett9 25.8 8.0 10.0 9.0 2.0 6.0 4.0 1.0 3.0 7.0 5.0 11.0 13.0 12.0
fd 26.0 12.0 2.0 9.0 8.0 4.0 6.0 13.0 7.0 5.0 3.0 10.0 1.0 11.0
lett25 26.2 9.0 11.0 8.0 2.0 5.0 4.0 1.0 3.0 7.0 6.0 10.0 13.0 12.0
yeast4 28.1 12.0 3.0 9.0 6.0 2.0 7.0 12.0 8.0 5.0 1.0 10.0 12.0 4.0
yeast5 32.7 12.0 5.0 10.0 1.0 4.0 6.0 12.0 7.0 3.0 2.0 9.0 12.0 8.0
cacao 34.9 11.5 4.0 5.0 11.5 7.0 6.0 11.5 2.0 8.0 9.0 1.0 11.5 3.0
train 39.2 11.0 4.0 5.0 3.0 1.0 2.0 12.5 9.0 8.0 7.0 6.0 12.5 10.0
yeast6 41.4 11.5 5.0 9.0 1.0 4.0 6.0 11.5 11.5 2.0 3.0 8.0 11.5 7.0
redw 56.1 9.0 9.0 3.0 9.0 4.0 9.0 9.0 9.0 9.0 9.0 1.0 9.0 2.0
poker 85.9 8.5 8.5 8.5 8.5 2.0 8.5 8.5 1.0 8.5 8.5 8.5 8.5 3.0
root 100.1 6.5 11.0 12.0 1.5 6.5 6.5 13.0 3.0 1.5 6.5 10.0 4.0 9.0
aba1 129.4 9.0 9.0 9.0 9.0 1.0 9.0 9.0 9.0 9.0 2.0 4.0 9.0 3.0
whw 243.9 11.5 1.0 3.0 11.5 8.0 4.5 11.5 6.0 4.5 7.0 2.0 11.5 9.0
AVG 9.8 6.5 7.2 6.2 4.5 5.6 9.8 6.9 5.2 4.6 7.1 10.3 7.2

The results in Table 5 and Table 6, and the corresponding
information for accuracy and AUC, were used to generate the
summary tables presented earlier in this section. Accuracy
results at the data set level are not provided since they are not
very meaningful when there is class imbalance. Data set level
results for AUC are not included to save space and because
they show similar patterns as the F1-measure results.

Table 3, which provides performance results aggregated
over all twenty-nine data sets, and Table 4, which provides
results aggregated over the most and least imbalanced data
sets, provide a good overview of the relative performance of
each algorithm. But Table 5 shows one behavior that is not
discernable from these other tables; the number of times that
an algorithm totally fails to identify any minority class exam-
ples, yielding an F1-measure of 0.00 (presumably because the
recall is 0). We expect this to happen only for the most imbal-
anced data sets. Table 7 lists how many times each algorithm
generates an F1-measure of 0.00 over the twenty-nine data
sets. The table is sorted in order of best performing to worst
performing algorithms, with respect to the number of 0.00
entries.

TABLE 7: NUMBER OF F1-MEASURE VALUES OF 0.00

Algorithm # 0.00

DT, CNB 0

GNB, QDA 2

RF, MLP, GRB 3

LDA 4

ADB, KNN 5

LR 8

BNB, SV 18

Table 7 shows that there is a tremendous difference in the
number of F1-measure values of 0.00 generated by the differ-
ent algorithms. Both DT and CNB, which were previously
identified as being within the group of six top performing al-
gorithms, never generate any F1-measure values of 0.00. Of
the four others within this group, three of them (GNB, RF, and
GRB) have between 2 and 3 of these “null” values, while
ADB has 5 null values. The three algorithms previously iden-
tified as being the worst performing, LR, BNB, and SV, have
the three largest numbers of null values—with BNB and SV
having null values for 18 of the 29 datasets. BNB and SV even
generate null F1-measure values for data sets that are not even
that imbalanced (i.e., with an imbalance ratio of less than 4).
Thus we see that the number of null F1-measure values is
highly related to the overall performance of the algorithm. It
would appear that algorithms that perform extremely poorly
do not have the expressive power to separate out very rare
groups of examples. This makes some sense in that logistic
regression and support vector machines have limited expres-
sive power.

IV. CONCLUSION

This paper provides a comprehensive empirical study that

evaluates the performance of thirteen different algorithms

when applied to twenty-nine data sets with varying levels of

class imbalance. The results clearly demonstrate that different

classification algorithms perform very differently. We summa-

rize our main empirical conclusions as follows:

 The DT, ADB, and GRB algorithms perform consist-

ently well on both F1-measure and AUC. The CNB

and RF algorithms perform well overall, but not quite

as consistently. KNN performs more poorly than

these other five algorithms, but still outperforms most

others. Thus we view DT, ADB, GRB, CNB, RF, and

KNN as the six best-performing algorithms.

 If we focus on the set of data sets with higher class

imbalance, DT and CNB perform most impressively.

If we focus on the number of times an algorithm fails

to produce an F1-measure above 0.00, then DT and

CNB perform the best, with RF and GRB a bit fur-

ther behind. This gives a boost to DT and CNB, es-

pecially if there is the potential for extreme levels of

class imbalance.

 The LR, SV, and BNB algorithms consistently per-

form quite poorly. Furthermore, in many cases they

cannot identify any minority examples and have an

F1-measure of 0.00 (this happens in more than 60%

of the cases for SV and BNB and even on data sets

that are not extremely imbalanced).

 Other algorithms perform between the best and worst

and include: GNB, LDA, QDA and MLP.

Thus we have identified three general performance groups

based on the algorithms performance on imbalanced data sets.

Our top group has six entries. If we had to pick a single algo-

rithm as the best, it would be DT since it performs consistent-

ly well over all twenty-nine data sets, performs among the top

two on the fourteen data sets that are most imbalanced, and is

one of only two algorithms that never produces an F1-measure

of 0. If we had to select our second best algorithm it would be

CNB because it performs very well on the fourteen most im-

balanced data sets and also never produces an F1-measure of

0. However, since performance varies by data set, we would

generally recommend that for imbalanced data sets the practi-

tioner try several of the algorithms listed in our top six, but

make sure to always include DT and CNB.

The good performance of certain types of algorithms on

imbalanced data was predicted by some prior work. Drum-

mond and Holte [5] suggested that the decision tree splitting

criteria would perform well on class imbalance and both tree-

based methods, DT and RF, were amongst the best-

performing algorithms. Weiss [16] asserted that boosting al-

gorithms would perform well on imbalanced data and the two

boosting algorithms, ADB and GRB, were also amongst the

best performing algorithms.

This study showed that some algorithms perform much
better than others on imbalanced data. We presume that this
means that they are specifically better suited to learning from
imbalanced data—but it could be that they are just generally
superior to the other algorithms in our study (i.e., even on bal-
anced data sets). In order to address this question, in future

work we plan to artificially balance each of the twenty-nine
data sets employed in this study and see if the observed supe-
riority of certain algorithms is eliminated or reduced. We will
also consider extending this study to include algorithms that
are specifically designed to handle class imbalance, including
methods that rely on sampling.

REFERENCES

1. J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sán-
chez, F. Herrera. KEEL Data-Mining Software Tool: Data Set Reposito-
ry, Integration of Algorithms and Experimental Analysis Framework.
Journal of Multiple-Valued Logic and Soft Computing 17(2-3): 255-
287, 2011.

2. A. Bradley. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7): 1145-1159,
1997.

3. N. V. Chawla. C4.5 and imbalanced data sets: investigating the effect of
sampling method, probabilistic estimate, and decision tree structure. In
Workshop on Learning from Imbalanced Datasets II, International Con-
ference on Machine Learning, 2003.

4. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Arti-
ficial Intelligence Research, 16: 321- 357, 2002.

5. C. Drummond, and R.C. Holte. Exploiting the cost(in)sensitivity of
decision tree splitting criteria. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, pages 239-246, 2000.

6. D. Dua, and C. Graff. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2019.

7. Ebrahimi. Financial Distress Prediction, Version 1. Retrieved October 1,
2018 from https://www.kaggle.com/shebrahimi/financial-distress, 2017.

8. N. Japkowicz, and S. Stephen. The class imbalance problem: a systemat-
ic study. Intelligent Data Analysis, 6(5):429-450, 2002.

9. R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. IJCAI'95 Proceedings of the 14th in-
ternational joint conference on Artificial intelligence, vol. 2: 1137-1143,
1995.

10. X. Liu, J. Wu and Z. Zhou, "Exploratory Undersampling for Class-
Imbalance Learning," in IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 39(2): 539-550, 2009.

11. Pedregosa et al., Scikit-learn: Machine Learning in Python. JMLR 12:
2825-2830, 2011.

12. F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy esti-
mation for comparing induction algorithms. In Proceedings of the Fif-
teenth International Conference on Machine Learning, 43–48. San Fran-
cisco: Morgan Kaufmann, 1998.

13. Regi. Promotion Response and Target Datasets, Version 1. Retrieved
October 1, 2018 from https://www.kaggle.com/regivm/promotion-
response-and-target-datasets, 2018.

14. K. M. Ting. The problem of small disjuncts: its remedy in decision trees.
In Proceeding of the Tenth Canadian Conference on Artificial Intelli-
gence, pages 91-97, 1994.

15. Vallala, A. HMEQ_Data, Version 1. Retrieved June 20, 2018 from
https://www.kaggle.com/ajay1735/hmeq-data, 2018.

16. G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD
Explorations, 6(1): 7-19, 2004.

17. Zyaj. Unbalanced_clf, Version 1. Retrieved December 20, 2018 from
https://www.kaggle.com/zyajnokid/train#train.csv, 2017.

https://www.kaggle.com/shebrahimi/financial-distress
https://www.kaggle.com/regivm/promotion-response-and-target-datasets
https://www.kaggle.com/regivm/promotion-response-and-target-datasets
https://www.kaggle.com/ajay1735/hmeq-data
https://www.kaggle.com/zyajnokid/train#train.csv

