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Abstract—Many real-world data sets have significant levels of 

class imbalance, which can impact the performance of the in-

duced classifiers. In such cases, classification algorithms may 

produce models that have high accuracy but fail to perform well 

on examples belonging to the minority class. Many techniques 

have been developed to address class imbalance, including sam-

pling and cost-sensitive learning—but each of these has draw-

backs. One approach that has not been extensively studied is to 

utilize classification algorithms that natively perform well in the 

presence of class imbalance. The research study described in this 

paper comprehensively evaluates the degree to which different 

algorithms are impacted by class imbalance, with the goal of 

identifying the algorithms that perform best and worst on imbal-

anced data. In particular, this study assesses the relative impact 

of class imbalance on thirteen different algorithms as they are 

applied to twenty-nine data sets with varying levels of class im-

balance. The results from this study demonstrate that certain 

classification algorithms, such as decision trees, Adaboost, and 

gradient boosting, perform very well in the presence of class im-

balance, while others algorithms, such as logistic regression, sup-

port vector machines, and  Bernoulli Naïve Bayes, perform very 

poorly.  

Keywords—classification, class imbalance, classifier perfor-

mance, machine learning,  

I. INTRODUCTION 

Real world applications often are associated with data sets 
with class imbalance. For example, predicting fraudulent cred-
it-card transactions, identifying telecommunication failures, 
detecting oil spills from satellite images, and medical diagno-
sis all involve class imbalance. In applications such as these, 
the minority class is typically of primary importance, but clas-
sification methods will generally optimize performance of the 
more frequently occurring classes. 

The issue of class imbalance has received a great deal of 
attention, and researchers and practitioners utilize a variety of 
techniques to improve performance of examples belonging to 
the less frequently occurring classes. The most common 
methods involve under-sampling the majority class [10] 
and/or oversampling the minority class, in order to form a 
more balanced training set. Cost-sensitive learning is also used 
sometimes, since one can improve the performance on the 
minority classes by assigning a higher relative cost to misclas-
sifying examples belonging to these classes.  

The goal of the study described in this paper is to deter-
mine which classification algorithms naturally perform well—
or poorly—on imbalanced data. There are some reasons to 
believe that not all algorithms will be affected equally. 
Weiss [16] suggested that boosting methods may perform well 
at classifying minority examples because boosting places 
more emphasis on misclassified examples—which are more 
likely to come from the minority classes. Drummond and 
Holte [5] determined that decision tree splitting criteria are 
relatively cost insensitive and hence would make them per-
form well for varying misclassification costs; this also means 
they will perform well in the presence of class imbalance be-
cause of the relationship between class imbalance and non-
uniform misclassification costs. Interestingly, our results show 
that boosting methods and decision tree methods tend to per-
form relatively well in the presence of class imbalance.  

This article will analyze the performance of thirteen di-
verse classification algorithms on twenty-nine imbalanced 
data sets, to determine the relative performance of these algo-
rithms on imbalanced data. Performance will be reported us-
ing accuracy, F1-measure, and AUC score, but our analysis 
will focus on the latter two metrics since they are much more 
appropriate in the presence of class imbalance. 

II. EXPERIMENT METHODOLOGY 

The experiments described in this paper will determine the 
relative effectiveness of different classification algorithms in 
the presence of class imbalance. This section will describe the 
twenty-nine data sets, the thirteen classification algorithms, 
the structure of the experiments, and the metrics used to assess 
classifier performance. 

A. Data Sets 

The twenty-nine data sets employed in this study are de-
scribed in Table 1. Eight data sets (occ, c4, seism, lett9, lett25, 
redw, choc, whw) are from the UCI Machine Learning Reposi-
tory [6], four data sets (hmeq [15], prom [13], findis [7], 
train [17]) are from Kaggle, and the remaining data sets are 
from the KEEL Dataset Repository [1]. 

The first two columns in Table 1 specify the abbreviated 
and full data set names. The next column specifies the total 
number of attributes, including the class. Our experiments 
only utilize data sets with two classes, so the data sets with 
more than two classes were mapped into two classes as speci-



fied by the “Map” field. The first (second) value specifies the 
number of classes mapped into the majority (minority) class. 
Then the “Min %” field specifies the percentage of examples 
that belong to the minority class and the last field specifies the 
total number of examples in the data set. Table 1 is sorted 
based on increasing levels of class imbalance. 

TABLE 1: DATA SET DESCRIPTION 

Data  
Set Full Name Attr. Map Min % Total 

Size 
glass1 glass1 10  35.5 214 
hbman haberman 4  26.5 306 
ecoli1 ecoli1 8  22.9 336 
occ  occupancy 7  21.2 8,143 
hmeq hmeq 13  8.9 3,364 
thy thyroid1 6  16.3 215 
glass6 glass6 10  13.6 214 
yeast3 yeast3 9  11.0 1,484 
ecoli3 ecoli3 8  10.4 336 
pbloc page-blocks0 11  10.2 5,472 
c4 connect-4 43 2/1 9.5 67,556 
vow0 vowel0 14  9.1 988 
prom promoted 8  6.9 25,000 
seism seismic-bumps 19  6.6 2,578 
aba9 abalone9-18 9  5.7 731 
car car-vgood 7  3.8 1,728 
lett9 letter-recognition 17 25/1 3.7 19,999 
findis financial distress 86  3.7 3,672 
lett25 letter-recognition 17 25/1 3.7 19,999 
yeast4 yeast4 9  3.4 1,484 
yeast5 yeast5 9  3.0 1,482 
choc flavors_of_ cacao 9 10/3 2.8 1,795 
train train 18 2/1 2.9 31,378 
yeast6 yeast6 9  2.4 1,484 
redw winequality-red 12 4/2 1.8 1,599 
poker poker8_vs_6 11  1.2 1,477 
root kddcup-rootkit-imap_vs_back 42  1.0 2,225 
aba1 abalone19 9  0.8 4,174 
whw winequality-white 12 6/1 0.4 4,898 

B. Classification Algorithms 

The thirteen classification algorithms utilized in this study 
are listed in Table 2, along with their abbreviations. The im-
plementations of these classifiers are from the scikit-learn 
machine learning library for the Python programming lan-
guage [11], and the default settings are always used. 

TABLE 2: CLASSIFIERS 

LR Logistic Regression 
LDA Linear Discriminant Analysis 
QDA Quadratic Discriminant Analysis 
KNN K-Nearest Neighbors 
DT Decision Tree 
RF Random Forest 
SV Support Vector 
MLP Multi-layer Perceptron 

PercepPerceptronPerceptron ADB AdaBoost 
GRB GradientBoosting 
GNB Gaussian Naive Bayes 
BNB Bernoulli Naive Bayes 
CNB Complement Naive Bayes 

 

LR is regularized logistic regression using the ‘liblinear’ 
library. LDA and QDA differ in that when using LDA, all 
classes share a common covariance matrix whereas the QDA 
implementation has a covariance matrix for each class. KNN 
uses the default value of 5 nearest neighbors. DT is an opti-
mized version of the CART decision tree algorithm, and RF 
uses the default of 10 trees in the random forest. SV is a sup-
port vector machine implementation based on the libsvm li-
brary and uses the default radial basis kernel. The MLP neural 
network trains using backpropagation. 

The next two classifiers in Table 2 are ensemble boosting 
methods: ADB implements the AdaBoost-SAMME method 
and uses the SAMME.R real boosting algorithm, and boosting 
is terminated after the default maximum number of estimators 
set to 50.  GRB performs 100 boosting stages and the criterion 
function to measure quality of each split is set to mean 
squared error with improvement score by Friedman 
(‘Friedman_mse’). For binary classification, a single regres-
sion tree is induced and in each stage fit on the negative gradi-
ent of the ‘deviance’ (default) loss function.  

The final three classifiers in the table are variations of the 
Naive Bayes algorithm. GNB assumes a Gaussian distribution 
and continuous feature data, BNB assumes a binomial distri-
bution, and CNB is an adaption of multinomial naive Bayes 
(which computes weights in terms of frequency) using 
the complement of each class to compute the model’s weights. 
CNB is cited as being a particularly suitable option when deal-
ing with imbalanced data. The CNB algorithm does not accept 
non-positive input for training. Therefore, for the six data sets 
with features with non-positive values, the feature values were 
scaled to a new value between 0 and 1. The number of scaled 
attributes for CNB for each of the six data set is as follows: 
thy(1), vow0(10), prom(4), seism(2), finds(34), and choc(2).  

C. Evaluation Procedure 

The data is partitioned into training and test sets using 
stratified 10-fold cross-validation, so that both sets maintain 
the same class distribution [9]. Categorical attributes are 
mapped to numerical values using label encoding. 

Classifier performance is measured using accuracy, F1-
measure, and the Area Under the ROC curve (AUC). Accura-
cy is included because it is a common metric, but it is not very 
meaningful in the presence of class imbalance [12], and hence 
our analysis focuses more on the other two metrics. The F1-
measure and AUC values are asymmetric with respect to the 
class, and in this study, as is usual, the positive class refers to 
the minority class. The F1-measure represents the weighted 
harmonic mean of precision and recall, where in this context 
precision is the fraction of minority-class predictions that are 
correct, and recall is the fraction of minority class examples 
that are correctly classified. F1-score is defined as: 

F1-score = 2  precision  recall / (precision + recall)   (1) 

The AUC metric is the area under the curve formed by 
plotting the True Positive Rate against the False Positive Rate. 
The AUC score is commonly used in studies of class imbal-
ance because it does not depend to the specific class distribu-
tion and is insensitive to changes in class distribution.  



III. RESULTS 

The thirteen classification algorithms from Table 2 were 

applied to the twenty-nine data sets listed in Table 1, using 

stratified 10-fold cross validation. The results of these experi-

ments are reported and analyzed in this section. We begin by 

presenting the summary results, aggregated over all twenty-

nine data sets, and then look at some more refined results, 

aggregated over the least and then the most imbalanced data 

sets. We end this section by describing the lowest level results 

at the data set level. 

The summary results of our experiments are presented in 
Table 3. There is a row for each classifier and the three evalu-
ation metrics are presented in the three sets of columns. Each 
of the three metrics includes a raw score as well as a rank 
score. The rank is computed by ranking the performance of 
each of the thirteen classifiers for each data set and then taking 
the average over all twenty-nine data sets. If there is a tie be-
tween two or more algorithms, then each algorithm receives 
the average rank value within the associated range (e.g., if two 
algorithms are tied for second and third place then each gets a 
value of 2.5). Each rank value can vary from 1 (best) to 13 
(worst). The rank values are useful because the raw scores 
could be thrown off by a small number of very good or very 
bad values. To facilitate the analysis of the results in Table 3, 
each cell is placed into one of three categories: very good re-
sults (better than most) are highlighted in bold, poor results 
(worse than most) are italicized, and the results between these 
extremes are left unchanged (i.e., normal font). The best clas-
sifier value for the entire column is underlined. 

Based on the results in Table 3, and recalling that accuracy 
is not a very good measure of performance for imbalanced 
data, we conclude that DT, ADB, and GRB are consistently 
very good-performing classifiers: they are in the top category 
for the F1-measure and AUC for both raw score and ranking.  
DT also has the very best average values for three of the four 
non-accuracy values. If we focus on AUC we may also con-
sider CNB to be high performing and if we focus on F1-
measure then RF can be considered high performing.  

TABLE 3: SUMMARY OF MAIN RESULTS 

 ACCURACY  F1-MEASURE  AUC 
 RAW RANK  RAW RANK  RAW RANK 

LR 93.2 5.8  .280 9.8  .620 9.4 
LDA 93.2 6.5  .412 6.5  .681 6.7 
QDA 82.3 9.5  .355 7.2  .661 6.7 
KNN 93.7 4.9  .432 6.2  .688 6.6 
DT 90.7 8.1  .477 4.5  .720 5.0 
RF 93.5 4.6  .458 5.6  .698 6.7 
SV 92.1 5.5  .240 9.8  .603 9.5 
MLP 91.3 6.6  .362 6.8  .655 7.3 
ADB 94.0 5.4  .471 5.2  .713 5.6 
GRB 94.1 5.1  .485 4.6  .717 5.9 
GNB 78.1 9.6  .349 7.1  .697 6.0 
BNB 90.0 7.9  .169 10.4  .580 9.7 
CNB 72.7 11.6  .346 7.2  .713 6.0 

Table 3 also shows that several algorithms perform con-
sistently poorly—at least over the averages of the twenty-nine 
data sets. In particular, LR, SV, and BNB all perform in the 
worst category for all four F1-measure and AUC values. 
Overall, we do see very substantial differences in the raw 
scores for accuracy, F1-measure, and AUC, so it appears that 
these classifiers perform very differently from DT, ADB, and 
GRB in the presence of class imbalance. However, since none 
of the classifiers achieve rankings very near to the best val-
ue (1) or worst value (13), we conclude that there is no classi-
fier that consistently performs best or worst for each of the 
underlying data sets.  

We next refine our analysis by noting the number of times 
a classifier is ranked either top-1 or within the top-3. These 
values are encoded as #top-1/#top-3 in Table 4 for the six 
most competitive classification algorithms. The results are 
further broken down based on whether the data set is within 
the upper or lower part of Table 1 (the lower part begins with 
the car data set and contains the fourteen most imbalanced 
data sets). If class imbalance affects classifiers unequally, we 
are most apt to see this in the “lower” data sets.  

TABLE 4: FREQUENCY OF TOP RANKS 

 ACCURACY  F1-MEASURE  AUC 
 UPPER LOWER  UPPER LOWER  UPPER LOWER 

KNN 0/3 0/9  0/2 2/6  0/1 2/4 
DT 0/2 0/2  0/5 2/5  3/3 0/8 
RF 1/5 4/5  1/4 0/1  1/4 0/0 
ADB 0/7 0/1  1/6 0/4  1/3 0/2 
GRB 4/6 1/4  3/6 2/6  1/5 1/3 
CNB 0/0 0/0  3/4 0/4  3/5 7/7 

The results in Table 4 generally agree with the results in 
Table 3, but there are some interesting items to highlight. 
Based on Table 3 we concluded that DT, ADB, and GRB, 
performed very well for F1-measure and AUC. If we prioritize 
the results in Table 4 for the “lower” data sets with more class 
imbalance, we see that DT has the strongest performance of 
these three algorithms due to its superiority on AUC, where it 
is in the top-3 eight times. But perhaps the single most notable 
result from Table 4 is that CNB has 7 first place rankings for 
AUC for the lower (most imbalanced) data sets. Since there 
are only 14 data sets in that part, CNB ranks first out of thir-
teen algorithms for half of these data sets. RF shows good 
performance on the accuracy and F1-measure metrics, but 
does not perform as well with AUC score or with more imbal-
anced data sets. Although ADB and GRB are among the top 
performing algorithms, they both have a lesser frequency of 
top-ranking scores in the lower half of data set results. The 
KNN classifier also is notable in that it consistently scores 
better for the more imbalanced data sets and for these data sets 
is often in the top-3 of results. 

Data set level results are provided for the F1-measure raw 
score and rank, respectively, in Table 5 and Table 6. The im-
balance ratio (IR) field is computed as the number of majority 
class examples divided by the number of minority class exam-
ples and measures the level of class imbalance. 



TABLE 5: DATA SET LEVEL RESULTS (F1-MEASURE RAW SCORE) 

 IR LR LDA QDA KNN DT RF SV MLP ADB GRB GNB BNB CNB 
glass1 1.8 .20 .25 .58 .68 .62 .71 .59 .07 .67 .73 .58 .36 .54 
hbmn 2.8 .21 .25 .29 .35 .38 .27 .05 .34 .38 .34 .29 .00 .50 
ecoli1 3.4 .63 .72 .46 .70 .68 .66 .65 .67 .71 .74 .53 .00 .71 

occ 3.7 .92 .92 .89 .79 .79 .82 .00 .87 .90 .91 .92 .73 .70 
hmeq 4.0 .00 .36 .38 .09 .35 .35 .00 .07 .31 .35 .29 .05 .14 
thy 5.1 .99 .78 .92 .86 .96 .96 .48 .77 .94 .88 .93 .6 .93 

glass6 6.4 .77 .80 .78 .79 .81 .81 .85 .24 .86 .86 .81 .78 .67 
yeast3 8.1 .15 .74 .24 .74 .68 .72 .00 .70 .75 .75 .24 .00 .52 
ecoli3 8.6 .06 .67 .20 .58 .61 .61 .00 .10 .56 .63 .45 .00 .50 
pbloc 8.8 .62 .68 .63 .73 .80 .82 .28 .78 .78 .82 .44 .00 .58 

c4 9.5 .00 .01 .15 .05 .07 .06 .00 .06 .00 .01 .12 .03 .17 
vow0 10.0 .72 .66 .69 .77 .70 .81 .86 .85 .83 .82 .71 .67 .54 
prom 13.6 .00 .00 .02 .01 .09 .01 .00 .07 .00 .00 .00 .00 .12 
seism 14.2 .05 .16 .12 .08 .11 .06 .00 .12 .08 .13 .19 .24 .09 
aba9 16.4 .05 .59 .53 .17 .33 .24 .00 .09 .44 .37 .26 .00 .14 
car 25.6 .07 .00 .07 .24 .83 .73 .76 .57 .77 .86 .24 .00 .28 

lett9 25.8 .80 .72 .78 .95 .87 .92 .95 .95 .82 .88 .61 .07 .33 
fd 26.0 .06 .37 .14 .15 .27 .25 .00 .19 .27 .33 .08 .42 .07 

lett25 26.2 .74 .48 .77 .98 .93 .95 .98 .97 .90 .91 .59 .00 .30 
yeast4 28.1 .00 .30 .09 .18 .30 .17 .00 .11 .26 .31 .07 .00 .28 
yeast5 32.7 .00 .58 .07 .70 .64 .51 .00 .39 .65 .68 .15 .00 .39 
cacao 34.9 .00 .07 .05 .00 .03 .05 .00 .10 .03 .03 .15 .00 .10 
train 39.2 .16 .36 .35 .38 .42 .41 .00 .20 .23 .28 .28 .00 .17 

yeast6 41.4 .00 .41 .05 .57 .42 .38 .00 .00 .44 .43 .06 .00 .26 
redw 56.1 .00 .00 .03 .00 .03 .00 .00 .00 .00 .00 .07 .00 .05 
poker 85.9 .00 .00 .00 .00 .07 .00 .00 .21 .00 .00 .00 .00 .01 
root 100.1 .95 .90 .87 1.0 .95 .95 .53 .98 1.0 .95 .92 .96 .93 
aba1 129.4 .00 .00 .00 .00 .06 .00 .00 .00 .00 .04 .01 .00 .02 
whw 243.9 .00 0.18 .13 .00 .04 .08 .00 .07 .08 .04 .14 .00 .01 
AVG  .28 .41 .36 .43 .48 .46 .24 .36 .47 .49 .35 .17 .35 

TABLE 6: DATA SET LEVEL RESULTS (F1-MEASURE RANK) 

 IR LR  LDA  QDA   KNN    DT     RF  SV MLP   ADB    GRB   GNB  BNB   CNB 
glass1 1.8 12.0 11.0   7.0   3.0   5.0   2.0   6.0 13.0   4.0   1.0   8.0 10.0   9.0 
hbmn 2.8 11.0 10.0   7.0   4.0   3.0   9.0 12.0   6.0   2.0   5.0   8.0 13.0   1.0 
ecoli1 3.4 10.0   2.0 12.0   5.0   6.0   8.0   9.0   7.0   3.0   1.0 11.0 13.0   4.0 
occ 3.7   1.0   2.0   6.0   9.0 10.0   8.0 13.0   7.0   5.0   4.0   3.0 11.0 12.0 
hmeq 4.0 12.5   2.0   1.0   9.0   3.0   4.0 12.5 10.0   6.0   5.0   7.0 11.0   8.0 
thy 5.1   1.0 10.0   7.0   9.0   2.0   3.0 13.0 11.0   4.0   8.0   5.0 12.0   6.0 
glass6 6.4 11.0   7.0   9.5   8.0   5.0   4.0   3.0 13.0   1.0   2.0   6.0   9.5 12.0 
yeast3 8.1 11.0   4.0   9.0   3.0   7.0   5.0 12.5   6.0   2.0    1.0 10.0 12.5   8.0 
ecoli3 8.6 11.0   1.0   9.0   5.0   4.0   3.0 12.5 10.0   6.0   2.0   8.0 12.5   7.0 
pbloc 8.8   9.0   7.0   8.0   6.0   3.0   1.0 12.0   4.0   5.0   2.0 11.0 13.0 10.0 
c4 9.5 12.5 10.0   2.0   7.0   4.0   5.0 12.5   6.0 11.0   9.0   3.0   8.0   1.0 
vow0 10.0   7.0 12.0 10.0   6.0   9.0   5.0   1.0   2.0   3.0   4.0   8.0 11.0 13.0 
prom 13.6 10.5 10.5   4.0   6.0   2.0   5.0 10.5   3.0   7.0 10.5 10.5 10.5   1.0 
seism 14.2 12.0   3.0   5.0 10.0   7.0 11.0 13.0   6.0   9.0   4.0   2.0   1.0   8.0 
aba9 16.4 11.0   1.0   2.0   8.0   5.0   7.0 12.5 10.0   3.0   4.0   6.0 12.5   9.0 
car 25.6 11.0 12.5 10.0   8.0   2.0   5.0   4.0   6.0   3.0   1.0   9.0 12.5   7.0 
lett9 25.8   8.0 10.0   9.0   2.0   6.0   4.0   1.0   3.0   7.0   5.0 11.0 13.0 12.0 
fd 26.0 12.0   2.0   9.0   8.0   4.0   6.0 13.0   7.0   5.0   3.0 10.0   1.0 11.0 
lett25 26.2   9.0 11.0   8.0   2.0   5.0   4.0   1.0   3.0   7.0   6.0 10.0 13.0 12.0 
yeast4 28.1 12.0   3.0   9.0   6.0   2.0   7.0 12.0   8.0   5.0   1.0 10.0 12.0   4.0 
yeast5 32.7 12.0   5.0 10.0   1.0   4.0   6.0 12.0   7.0   3.0   2.0   9.0 12.0   8.0 
cacao 34.9 11.5   4.0   5.0 11.5   7.0   6.0 11.5   2.0   8.0   9.0   1.0 11.5   3.0 
train 39.2 11.0   4.0   5.0   3.0   1.0   2.0 12.5   9.0   8.0   7.0   6.0 12.5 10.0 
yeast6 41.4 11.5   5.0   9.0   1.0   4.0   6.0 11.5 11.5   2.0   3.0   8.0 11.5   7.0 
redw 56.1   9.0   9.0   3.0   9.0   4.0   9.0   9.0   9.0   9.0   9.0   1.0   9.0   2.0 
poker 85.9   8.5   8.5   8.5   8.5   2.0   8.5   8.5   1.0   8.5   8.5   8.5   8.5   3.0 
root 100.1   6.5 11.0 12.0   1.5   6.5   6.5 13.0   3.0   1.5   6.5 10.0   4.0   9.0 
aba1 129.4   9.0   9.0   9.0   9.0   1.0   9.0   9.0   9.0   9.0   2.0   4.0   9.0   3.0 
whw 243.9 11.5   1.0   3.0 11.5   8.0   4.5 11.5   6.0   4.5   7.0   2.0 11.5   9.0 
AVG    9.8   6.5   7.2   6.2   4.5   5.6   9.8   6.9   5.2   4.6   7.1 10.3   7.2 



 

 

The results in Table 5 and Table 6, and the corresponding 
information for accuracy and AUC, were used to generate the 
summary tables presented earlier in this section. Accuracy 
results at the data set level are not provided since they are not 
very meaningful when there is class imbalance. Data set level 
results for AUC are not included to save space and because 
they show similar patterns as the F1-measure results. 

Table 3, which provides performance results aggregated 
over all twenty-nine data sets, and Table 4, which provides 
results aggregated over the most and least imbalanced data 
sets, provide a good overview of the relative performance of 
each algorithm. But Table 5 shows one behavior that is not 
discernable from these other tables; the number of times that 
an algorithm totally fails to identify any minority class exam-
ples, yielding an F1-measure of 0.00 (presumably because the 
recall is 0). We expect this to happen only for the most imbal-
anced data sets. Table 7 lists how many times each algorithm 
generates an F1-measure of 0.00 over the twenty-nine data 
sets. The table is sorted in order of best performing to worst 
performing algorithms, with respect to the number of 0.00 
entries. 

TABLE 7: NUMBER OF F1-MEASURE VALUES OF 0.00 

Algorithm # 0.00 

DT, CNB 0 

GNB, QDA 2 

RF, MLP, GRB 3 

LDA 4 

ADB, KNN 5 

LR 8 

BNB, SV 18 

Table 7 shows that there is a tremendous difference in the 
number of F1-measure values of 0.00 generated by the differ-
ent algorithms. Both DT and CNB, which were previously 
identified as being within the group of six top performing al-
gorithms, never generate any F1-measure values of 0.00. Of 
the four others within this group, three of them (GNB, RF, and 
GRB) have between 2 and 3 of these “null” values, while 
ADB has 5 null values. The three algorithms previously iden-
tified as being the worst performing, LR, BNB, and SV, have 
the three largest numbers of null values—with BNB and SV 
having null values for 18 of the 29 datasets. BNB and SV even 
generate null F1-measure values for data sets that are not even 
that imbalanced (i.e., with an imbalance ratio of less than 4). 
Thus we see that the number of null F1-measure values is 
highly related to the overall performance of the algorithm. It 
would appear that algorithms that perform extremely poorly 
do not have the expressive power to separate out very rare 
groups of examples. This makes some sense in that logistic 
regression and support vector machines have limited expres-
sive power. 

IV. CONCLUSION 

This paper provides a comprehensive empirical study that 

evaluates the performance of thirteen different algorithms 

when applied to twenty-nine data sets with varying levels of 

class imbalance.  The results clearly demonstrate that different 

classification algorithms perform very differently. We summa-

rize our main empirical conclusions as follows: 

 The DT, ADB, and GRB algorithms perform consist-

ently well on both F1-measure and AUC. The CNB 

and RF algorithms perform well overall, but not quite 

as consistently. KNN performs more poorly than 

these other five algorithms, but still outperforms most 

others. Thus we view DT, ADB, GRB, CNB, RF, and 

KNN as the six best-performing algorithms.  

 If we focus on the set of data sets with higher class 

imbalance, DT and CNB perform most impressively. 

If we focus on the number of times an algorithm fails 

to produce an F1-measure above 0.00, then DT and 

CNB perform the best, with RF and GRB a bit fur-

ther behind. This gives a boost to DT and CNB, es-

pecially if there is the potential for extreme levels of 

class imbalance.  

  The LR, SV, and BNB algorithms consistently per-

form quite poorly. Furthermore, in many cases they 

cannot identify any minority examples and have an 

F1-measure of 0.00 (this happens in more than 60% 

of the cases for SV and BNB and even on data sets 

that are not extremely imbalanced). 

 Other algorithms perform between the best and worst 

and include: GNB, LDA, QDA and MLP.  

Thus we have identified three general performance groups 

based on the algorithms performance on imbalanced data sets. 

Our top group has six entries. If we had to pick a single algo-

rithm as the best, it would be DT since it performs consistent-

ly well over all twenty-nine data sets, performs among the top 

two on the fourteen data sets that are most imbalanced, and is 

one of only two algorithms that never produces an F1-measure 

of 0. If we had to select our second best algorithm it would be 

CNB because it performs very well on the fourteen most im-

balanced data sets and also never produces an F1-measure of 

0. However, since performance varies by data set, we would 

generally recommend that for imbalanced data sets the practi-

tioner try several of the algorithms listed in our top six, but 

make sure to always include DT and CNB. 

The good performance of certain types of algorithms on 

imbalanced data was predicted by some prior work. Drum-

mond and Holte [5] suggested that the decision tree splitting 

criteria would perform well on class imbalance and both tree-

based methods, DT and RF, were amongst the best-

performing algorithms.  Weiss [16] asserted that boosting al-

gorithms would perform well on imbalanced data and the two 

boosting algorithms, ADB and GRB, were also amongst the 

best performing algorithms. 

This study showed that some algorithms perform much 
better than others on imbalanced data. We presume that this 
means that they are specifically better suited to learning from 
imbalanced data—but it could be that they are just generally 
superior to the other algorithms in our study (i.e., even on bal-
anced data sets). In order to address this question, in future 



 

 

work we plan to artificially balance each of the twenty-nine 
data sets employed in this study and see if the observed supe-
riority of certain algorithms is eliminated or reduced. We will 
also consider extending this study to include algorithms that 
are specifically designed to handle class imbalance, including 
methods that rely on sampling.  
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