
Appears in the Journal of Object-Oriented Programming, 11(7): 25-35, SIGS Publication Inc., Nov/Dec 1998.

Gary M. Weiss and Johannes P. Ros

AT&T Labs, Middletown, NJ
{gmweiss, hros}@att.com

Implementing Design Patterns
 with Object-Oriented Rules

ABSTRACT

ANSWER-4ESS, an operation support system for maintaining
and monitoring the 4ESS switches distributed in the AT&T
network, recently became the first product to use the R++
languagean extension to C++ that adds support for object-
oriented (OO) rules. This article shows how these rules not
only implement the intelligent behavior of an expert system,
but also facilitate inter-object communication and enable
frequently occurring design patterns to be implemented in a
way that leads to more understandable, maintainable, and
reusable code.

Most of AT&T’s long-distance traffic is controlled by the
140 4ESS switches distributed throughout the AT&T
network. Automatic Network Surveillance with Expert
Rules (ANSWER) is the operation support system
responsible for monitoring and maintaining these switching
systems. ANSWER’s main purpose is to perform alarm
filtering: It takes as input alarms from the 4ESS switches and
outputs an alert once it has identified a problem that requires
human intervention. ANSWER’s intelligent decision making
and diagnostic reasoning is controlled by its expert system—
the first production software written in R++, an extension to
the C++ language that adds object-oriented rules. Previous
work has focused on how R++ was used to implement
model-based reasoning in ANSWER, by allowing each 4ESS
to be represented as a hierarchical collection of devices.1-3

THE R++ LANAGUAGE
R++ is an extension to the C++ language that adds object-
oriented rules.4-5 It was developed by AT&T Labs research
with the ANSWER project in mind—so that it and other
systems could use rules and still take advantage of object-
oriented technology and existing C++ code. R++ rules are
considered another type of C++ member function and share
the object-oriented properties of C++ member functions:
inheritance, polymorphism, and dynamic binding. Listing 1
shows the declaration of class Person and two member rules
for that class, called spouse_check and older_child. Note that
children is a set of pointers to class Person. The optional
monitored keyword in the class declaration identifies data
members that may trigger rule evaluation.

Listing 1: Declaration of class Person
class Person {
 private:
 String name;
 monitored int age;
 monitored Person *spouse;
 monitored Set_of_p<Person> children;

 rule spouse_check;
 rule older_child;
};

Rules have a special if-then syntax, where the if (antecedent)
and then (consequent) parts are separated by an arrow (⇒).
The rule in Listing 2a can be translated as: if a person’s
spouse’s spouse is not equal to the person then print an
error. R++ also provides the ability to write rules on
container classes, like sets and lists. Using an R++ feature
called “branch binding”, a rule can be applied to each
element of the container (the at-sign is the branch-binding
operator). The rule in Listing 2b can be translated as: if a
person’s child (for each child in the set children) is older
than the person, then print an error. Thus, in the example, if
a person has 5 children and 2 of them are older than the
parent, then two errors will be printed. R++’s ability to
support rules on container classes facilitates inter-object
communication and maximizes code generation (no code was
needed to actually iterate through the set of children in 2b).

Listing 2: Two sample R++ rules
2a. 2b.
// Is my spouse married to me? // Is my child older than I am?
rule Person::spouse_check rule Person::older_child
{ {
 Person *sp = spouse † && Person *child @ children &&
 sp→spouse != this child→age > this→age
⇒ ⇒
 cout << “Error” <<sp→name cout <<”Error”<<child→name
 << “married to” << “ older than parent”
 << sp→spouse→name; << this→name << endl;
}; };
† For a change in value of a monitored data member to trigger rule evaluation, R++ syntax

requires it to be first bound to a local variable (e.g., spouse is bound to sp).

 - 2 -

The key difference between rules and ordinary C++ member
functions is that changes to data members in the antecedent
automatically cause the antecedent to be evaluated and, if it
evaluates to TRUE, the consequent to be executed. Thus,
rules are data-driven. In the example in Listing 2a,
whenever a person’s spouse changes, the spouse_check rule
will automatically be evaluated. The key difference between
R++ rules and rules in other rule-based languages is that R++
rules are path-based. This means that R++ rules can only
reference data members which the class the rule belongs to
has access to—typically through a pointer reference. This
means that R++ rules respect the object model. The rules in
Listing 2 are path-based because spouse and children are
accessible via class Person. For those interested in a more
in-depth understanding of R++, see the R++ home page.6

DESIGN PATTERNS
Building software systems is very difficult. Object oriented
technology provides a way of modeling the world that often
facilitates the analysis, design and implementation of such
systems. Designing reusable object-oriented software is an
even more difficult task—but a task that must be
accomplished if dramatic increases in software productivity
are to be achieved. Design patterns are reusable parts of
software design or, more specifically, descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context.7 In
this article, we are concerned with behavioral design patterns
that characterize the ways in which classes or objects interact
and distribute responsibility. In this section we will describe
three behavioral design patterns used repeatedly throughout
ANSWER. We will give the motivation and purpose for
each pattern, example(s) of its use within ANSWER, how it
was implemented in ANSWER using rules, how it would be
implemented in C++, and the advantages of the rule-based
implementation over the standard object-oriented
implementation. This method of looking at rules in terms of
design patterns allows us to describe and analyze our use of
rules in a principled way, while still focusing on how rules
were used in a real-world application.

Observer Pattern
An observer pattern defines a one-to-many dependency
between objects so that when one subject object changes
state, all its dependent observer objects are notified and
updated automatically. The motivation for this pattern is that
a side-effect of partitioning a system into a collection of
cooperating classes is the need to maintain consistency
between related objects—but you do not want to achieve
consistency by making the classes tightly coupled, because
that reduces their reusability.7 In the ANSWER project, the
observer pattern is used for many things, including:

• Memory management: Each object A maintains a
variable named trash and sets it to TRUE in its
destructor; other objects which have dynamically

allocated memory associated with A may have a trash
rule which “observes” A’s trash data member and fires
when trash is set to TRUE. This use of the trash rule
can help eliminate memory leaks and dangling
references.

• Monitoring of communication links: All objects that use
a communication link “observe” the state of this link so
that they can take appropriate action when the state
changes (e.g., from the connected to the disconnected
state).

Observer patterns are trivial to implement using R++ rules;
all that is necessary is to have the observer objects contain a
rule that “monitors” the value of the subject’s data member
of interest. In a language like C++, the observer pattern can
be implemented using a publish-subscribe interaction. The
subject publishes an interface for attaching and detaching
observer objects. The observers then use this interface to
subscribe and later, if desired, to unsubscribe. The observer
object also needs to provide a callback function to the
subject, to be invoked whenever a change occurs in the
“monitored” data member. Once communication has been
thus initialized, the subject can notify all observers whenever
any change occurs to the monitored data members. Using
this implementation of publish-subscribe, the subject need
not know any specific details about each observer, but it is
aware of them and how many observers there are. The rule-
based implementation has the following advantages over the
implementation with publish-subscribe:

• The subject object does not need to provide an interface
method for attaching and detaching an observer object—
R++ provides this implicitly.

• The subject object need not be aware of the observer
objects at all. This contrasts with the publish-subscribe
interaction, where the subject object needs to maintain a
list of backpointers to the observer objects. This
maintenance is error prone and not under full control of
the subject object. If an observer gets deleted without
explicitly unsubscribing first, then the subject is left with
a dangling reference to the observer, which will likely
lead to a core dump the next time the subjects observed
data member changes. A similar problem can occur
when the subject is deleted. Note that the rule-based
implementation still requires backpointers to be
maintained, but in this case all of the code is generated
automatically by the R++ preprocessor—not by the
programmer.

Notifier Pattern
A notifier pattern defines a many-to-one dependency
between objects so that when a change in any of many
objects occurs, the one object is notified. The motivation for
this pattern is that it allows communication and logic to be
centralized, which leads to more understandable and
maintainable code. One example of this pattern in

 - 3 -

ANSWER involves a “constraint violation” type rule.
ANSWER tries to “auto-restore” failed 4ESS hardware
components, a process that requires many steps and
asynchronous communication with systems outside of
ANSWER (including the 4ESS itself). While these steps are
being executed, there are many conditions that must abort the
autorestoral process, if they occur. A rule to implement this
behavior is shown in Listing 3 (in the interest of space, six
additional conditions have been omitted). Since the rule is
data driven, the autorestoral process will be aborted
automatically anytime any of the conditions become true.

Listing 3: Example of a notifier pattern

// aborts autorestoral of device, when appropriate
rule Device::auto_restore_abort {
 timer→expired || // step timed-out?
 state→not_equal(OUT_SVC) || // back in service?
 autorestore→disabled == TRUE || // disabled from GUI?
⇒
 // abort and take appropriate action
};

To implement a many-to-one dependency like the one in
Listing 3 without using rules is awkward. An accessor
function is required for each data member in the antecedent
of the rule and all changes to the data member must be
through these accessors. Furthermore, each accessor must
examine the change of the data member and either directly
abort the autorestoral process, or call another method which
evaluates all of the conditions together (this would be
required if the antecedent were not a simple disjunction).
The programmer is forced to manually implement a data-
driven rule by distributing the triggers of the rule throughout
the source code—R++, on the other hand, generates
essentially the same code, but it does it automatically. Thus,
the rule-based implementation requires much less
programming effort and is more understandable and
maintainable because all of the logic is centralized. Note
that the advantages of the rule-based implementation still
exist even if all the monitored conditions are located in the
same object.

Client-Server Pattern
A client-server pattern defines a more complex
communication pattern than either of the previous two
patterns: There will generally be many clients and one or
more servers and each client may need to be notified when a
complex set of conditions is satisfied amongst one or more
servers. There are many examples of the client-server
pattern in ANSWER. One example involves the previously
mentioned autorestoral process—the client is a device and
the server implements the autorestoral process for that
device. The advantages of a rule-based implementation are
best shown via a hypothetical scenario, shown in Figure 1.
The figure shows two servers (S1 and S2) and 4 clients (C1-
C4). Each server has three publicly accessible data

members, which represent information which may be of
interest to the clients (e.g., variable a may indicate whether a
communication link is up).

Figure 1: Client Server Pattern

The clients are interested in being informed when some
situation has occurred, based on the values of the server’s
data members. In C++, the communication between the
clients and servers would be established using publish-
subscribe, as described earlier. Using this mechanism, if
only C1 and C2 need to be considered, the best way to
implement a solution is to send a notification to all clients
when a becomes equal to true. In this case, the server has
hardcoded into it the conditions of interest to the clients. If
client C3 now needs to be supported, the programmer needs
to either update the server to handle the new condition or
employ a more flexible strategy which notifies each client
when any variable changes and sends all of the current
values (so the clients don’t need to remember them). The
later solution is superior since it does not require the server
be constantly updated; however, it is inefficient and not very
extensible (for client C4, both servers will need to broadcast
all values on each change). An additional problem is that the
programmer would need to implement the notion of relevant
change—because client C1, for example, only wants to take
action when a becomes true (e.g., a link initially comes up or
goes down). The fundamental problem is that the best
solution involves implementing the logic in the client, where
it belongs, but C++ doesn’t provide a simple way of doing
this.

The solution to this problem using R++ is trivial; the
client simply writes rules that monitors the variables in the
server. R++ takes care of many of the details, including
backpointer maintenance and the notion of relevant change.
With R++, from the programmer’s point of view, the client
and server objects are now loosely coupled, with the
conditional logic encapsulated within each client object.
This leads to more understandable, maintainable, and
reusable code.

CONCLUSION
The use of R++’s object-oriented rules significantly aided
the design and implementation of ANSWER. Many of the
advantages of using R++ were described in detail in this

a == true
 ⇒

C2

a == true

 ⇒

a == true &
 b < 10
 ⇒

a == true &
 b < 10 &
 x < z

 ⇒

C1

C3
C4

S1 a
b
c

S2 x
y
z

 - 4 -

article; rules facilitated communication between objects by
implementing many low-level details via code generation
and thus allowed us to program at a higher conceptual level,
couple objects more loosely, and encapsulate
responsibilities. Thus, R++ allowed us to produce more
understandable, maintainable, and reusable code with fewer
errors and less effort—3000 lines of R++ source code were
translated by R++ into 17,000 lines of C++ code. In
addition, we wrote 8,000 lines of C++ code ourselves,
because some things are most naturally implemented using
procedural code. This highlights another advantage of R++:
It allows the programmer to implement a task using either
rules or procedural code, whichever is the most appropriate
for the given task. We believe that any project can benefit
from these advantages and thus can benefit from R++.

In this article we focused on rules as a communication
mechanism rather than as a way of declaratively encoding
knowledge, even though we used rules in both ways (we did
develop an expert system). We focused on rules as a
communication mechanism to show that R++ can be helpful
for general programming projects—not just for expert
system applications. However, we should point out that
object-oriented rules are extremely useful for implementing
expert systems and we feel they are superior to traditional
pattern-matching rules when a clear object model exists.
R++ also has some advantages related to its relationship to
C++—it is easy for C++ programmers to learn and it can
(trivially) integrate with existing C++ code.

R++ is currently being used in several additional
applications within AT&T and has being enhanced to
support the ANSI based standard libraries. For more
information, consult the R++ homepage.6

Acknowledgments
The authors would like to thank Jennifer Thien for
supporting the use of R++ in ANSWER, Anoop Singhal for
his contributions to the ANSWER expert system, and Anil
Mishra for many discussions on the use of R++ within
ANSWER.

References
1. Crawford. J. Dvorak, D., Litman, D. Mishra, A, and Patel-

Schneider, P., “Device Representation and Reasoning with
Affective Relationships”, Proceedings of the 14th

International Joint Conference on Artificial Intelligence
(IJCAI-95), 1995.

2. Mishra, A., Ros, J., Singhal, A., Weiss, G., Litman, D., Patel-
Schneider, P. Dvorak, D., Crawford, J., “R++: Using Rules in
Object-Oriented Designs”, Addendum to Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), October 1996.

3. Singhal, A. Weiss, G., and Ros, J., “A Model-Based
Reasoning Approach to Network Monitoring”, ACM
Workshop on Databases for Active and Real Time Systems
(DART-96), 1996.

4. Crawford, J., Dvorak, D., Litman, D., Mishra, A., and Patel-
Schneider, P., “Path Based Rules in Object-Oriented

Programming”, Proceedings of the 13th National Conference
on Artificial Intelligence (AAAI-96), August, 1996.

5. Litman, D., P. Patel-Schneider, and A. Mishra, “Modeling
Dynamic Collections of Interdependent Objects Using Path-
based Rules”, Proceedings of the 12th Annual Conference on
Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA 97), 1997.

6. R++ home page: http://www.research.att.com/sw/tools/r++.

7. Gamma, E. Helm, R., Johnson, R. Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

