
Quantification and Semi-Supervised Classification
Methods for Handling Changes in Class Distribution

Jack Chongjie Xue
Department of Computer and Information Science

Fordham University
441 East Fordham Road, Bronx, NY 10458

718-817-3190

xue@cis.fordham.edu

Gary M. Weiss
Department of Computer and Information Science

Fordham University
441 East Fordham Road, Bronx, NY 10458

718-817-0785

gweiss@cis.fordham.edu

ABSTRACT
In realistic settings the prevalence of a class may change after a

classifier is induced and this will degrade the performance of the

classifier. Further complicating this scenario is the fact that la-

beled data is often scarce and expensive. In this paper we address

the problem where the class distribution changes and only unla-

beled examples are available from the new distribution. We de-

sign and evaluate a number of methods for coping with this prob-

lem and compare the performance of these methods. Our quantifi-

cation-based methods estimate the class distribution of the unla-

beled data from the changed distribution and adjust the original

classifier accordingly, while our semi-supervised methods build a

new classifier using the examples from the new (unlabeled) distri-

bution which are supplemented with predicted class values. We

also introduce a hybrid method that utilizes both quantification

and semi-supervised learning. All methods are evaluated using

accuracy and F-measure on a set of benchmark data sets. Our

results demonstrate that our methods yield substantial improve-

ments in accuracy and F-measure.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning-induction

General Terms
Algorithms, Measurement, Design

Keywords
Semi-supervised learning, quantification, classification, concept

drift, class distribution

1. INTRODUCTION
In real-world data mining settings it is often the case the classifi-

cation ―concept‖ we are trying to learn may change over time and,

in particular, may change after a classifier is induced. This prob-

lem is known as concept drift [14] and in this paper we focus on a

specific type of concept drift where the class distribution changes

over time, yielding a distribution mismatch [7] problem. This

problem occurs frequently. For example, epidemiologists often

find that although the cause of a disease is stable, the prevalence

of the disease changes over time. The same phenomenon has been

found in help-desk support applications, where the occurrence of

certain support issues varies over time (e.g., there are more reports

of cracked computer screens on July 4, the U.S. Independence day

[7]). This problem of a changing class distribution is further

complicated by the fact that labeled examples are often scarce or

costly to obtain—and it may not even be possible to label newly

acquired examples in a timely manner.

This paper focuses on two research questions associated with the

data mining scenario just described: 1) How can we maximize

classification performance when the class distribution changes but

is unknown, and 2) How can we utilize unlabeled data from the

changed class distribution to accomplish this goal?

More formally, the class of problems we study has some original

distribution, Dorig, from which we are provided a set of labeled

examples, ORIGlabel, with class distribution ORIGCD. At some

point the distribution of data changes to Dnew with a new but

unknown class distribution, NEWCD, and from this distribution we

are provided with a set of unlabeled examples, NEWunlabel. For

evaluation purposes we are also provided with labeled examples,

NEWeval, drawn from Dnew. Given this terminology we can state

our learning problem more precisely.

Problem statement:

Given: ORIGlabel drawn from Dorig (with ORIGCD)

 NEWunlabel drawn from Dnew (with unknown NEWCD)

 NEWeval drawn from Dnew

 Do: Construct the classifier C, using ORIGlabel and/or

NEWunlabel, which yields the best possible classification

performance on NEWeval.

We introduce Figure 1 to illustrate the distribution mismatch

problem and to establish some performance goals for our work.

Figure 1 shows how two baseline methods, Naïve and Oracle,

perform for a two-class data set when the original class distribu-

tion is balanced (i.e., ORIGCD = 1:1 with a positive class rate of

50%) but then is altered so that the class distribution for the new

distribution (NEWCD) varies between 1% and 99% positive ex-

amples, in 1% increments (details of the experiment are provided

in Section 3).

The Naïve approach ignores the unlabeled data and the fact that

the class distribution may change and utilizes the classifier in-

duced from ORIGlabel to classify the examples in NEWeval. The

Oracle method provides a potential upper bound for achievable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

KDD ’09, June 28– July 1, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-495-9/09/06...$5.00.

performance by building a classifier using NEWunlabel with the

true class labels ―uncovered.‖ Evaluation is based on NEWeval.

Figure 1. Classifier Performance on Adult Data Set

The results for Naïve clearly demonstrate the distribution mis-

match problem since the accuracy of Naïve degrades with respect

to the ―desired‖ performance of Oracle for most cases where

ORIGCD ≠ NEWCD (the shape of these curves is discussed in

Section 4). We can state our performance goals in terms of these

two baseline methods: we will develop methods that perform

strictly better than Naïve and approach the performance of Oracle.

In this paper we utilize two basic techniques for improving clas-

sifier performance beyond that of the Naïve approach: class dis-

tribution estimation (CDE) and semi-supervised learning (SSL).

The CDE technique exploits the fact that if we can estimate the

class distribution from which future examples will be drawn, then

we can adjust the original classifier to account for the differences

in class distribution. In this paper we describe and analyze two

CDE-based methods: an iterative method of our own design and a

quantification-based method based on a quantification technique

[7]. The CDE-based methods use NEWunlabel in the learning

process, but only to estimate NEWCD. Our semi-supervised learn-

ing methods, on the other hand, use examples from NEWunlabel in

the classifier induction process, where these new examples are

assigned predicted class labels. We introduce two main SSL-

based methods: a simple method that only uses the examples from

NEWunlabel to build the classifier and a self-training [20] variant

that iteratively merges the examples from ORIGlabel with NEWun-

label. Finally, we introduce a hybrid method that integrates features

from the CDE-based and SSL-based methods. We evaluate all

methods using accuracy and F-Measure.

The remainder of this paper is structured as follows. Section 2

describes our methods in detail. Section 3 presents our experiment

methodology and our results are then presented and analyzed in

Section 4. Related work is described in Section 5 and Section 6

summarizes our conclusions and discusses areas for future re-

search.

2. METHODS
In this section we describe the methods used to handle changes in

class distribution, with the exception of the Naïve and Oracle

methods, which were introduced earlier. Recall that these methods

serve as lower and upper performance bounds, respectively, for

our methods. Our class distribution estimation methods require

some background before they can be properly understood and this

background is provided in Section 2.1. The CDE-based methods

are then described in Section 2.2, the SSL-based methods in

Section 2.3, and the hybrid CDE/SSL method in Section 2.4.

2.1 Understanding Class Distribution Changes
In this section we discuss the impact that a changing class distri-

bution has on classification and how we can compensate for this

change in class distribution. We begin by introducing some basic

terminology. Table 1 shows a standard confusion matrix for a

two-class domain, where all predictions can be categorized as true

positives (TP), false negatives (FN), false positives (FP), and true

negatives (TN).

Table 1. Confusion Matrix for Binary Classification

 Predicted Class

positive negative

A
ct

u
al

C
la

ss
 positive TP FN

negative FP TN

The following terms are defined based on the values in the confu-

sion matrix: positive rate (pr), negative rate (nr), distribution

mismatch ratio (dmr), true positive rate (tpr), and false positive

rate (fpr). We use the prime symbol () to denote the values asso-

ciated with the new distribution.

pr = (TP+FN)/(TP+FN+FP+TN)

nr = (FP+TN)/(TP+FN+FP+TN)

dmr = (pr/nr) : (pr/nr)

tpr = TP/(TP+FN)

fpr = FP/(FP+TN)

Now that we have introduced the basic terms we can discuss what

happens if the class distribution changes and how we can com-

pensate for these changes. This topic is described in detail from a

theoretical perspective by Elkan [6] and an applied perspective by

Weiss and Provost [16]. In the interest of clarity we discuss the

issue from the applied perspective and use an example to motivate

the key concepts and explain the relevant equations.

In our example the data set drawn from the original distribution

has 900 positive examples and 100 negative examples (pr = 9/10,

nr=1/10) and the data drawn from the new distribution has 200

positive and 800 negative examples (pr=2/10, nr=8/10). The

distribution mismatch ratio dmr indicates the factor by which the

ratio of positive to negative examples changes between the origi-

nal and new distribution. For this example dmr = 9:¼ or, equiva-

lently, 36:1. Thus, based on the ratio of the positive rate to nega-

tive rate, the positives are 36 times more prevalent in the original

distribution than in the new distribution. Note that if we used the

fraction of positive examples rather than the positive to negative

ratio, then dmr would only be 4.5 (i.e., .9/.2), but if fractions are

used then equation 1 becomes much more complex and difficult

to understand [16].

We can adjust for changes in class distribution during the classifi-

er induction process by any of these three methods [6]: 1) sam-

pling (or reweighting) the training examples so as to alter the class

distribution to match the new distribution, 2) altering the probabil-

ity thresholds used to determine the class label, or 3) altering the

ratio of misclassification costs between false positive and false

negative predictions. We employ the third method because the

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100
Postive Class Rate (%)

Naïve

A
cc

u
ra

cy
 (

%
) Oracle

learning package that we use, WEKA, supports cost-sensitive

learning and thus no changes were required to the learning algo-

rithm. We use equation 1 to determine the cost ratio (the ratio of a

false positive to false negative prediction) that should be used

when building the classifier:

COSTFP : COSTFN = (pr/nr) : (pr/nr) (1)

Returning to our example, the cost ratio COSTFP : COSTFN would

equal 36:1. This adjustment can informally be shown to be correct

as follows. Without loss of generality, imagine that we build a

decision tree classifier and at an arbitrary leaf node there are P

positive and N negative examples. Without cost-sensitive learn-

ing, the leaf will be labeled with the majority class. A cost-

sensitive learner will classify the leaf to minimize the total cost

and in this case the costs will be perfectly balanced if P=36N,

since a positive label yields a cost of 36 COSTFN and a negative

prediction yields a cost of 1 COSTFP. If the positive rate is

above this it will be labeled positive and if below this it will be

labeled negative. This is the desired behavior since the new distri-

bution will cause the ratio of positive to negative examples, as

noted earlier, to decrease by a factor of 36 (i.e., a leaf with a

positive to negative class ratio of 36:1 using ORIGlabel corres-

ponds to a class ratio of 1:1 when using NEWeval and the 1:1 ratio

is the normal threshold for labeling a classification ―rule‖).

2.2 Class Distribution Estimation Methods
We introduce three class distribution estimation (CDE) methods

in this section. Since quantification is the task of estimating the

class distribution of new data, these CDE methods can also be

considered quantification-based methods. The key difference

between the quantification task and our task is that for quantifica-

tion the ultimate goal is to estimate the prevalence of each class,

whereas in our case this is only an intermediate step—the ultimate

goal is to improve classification performance on data drawn from

a new distribution. For all CDE-based methods the final classifier

is induced from ORIGlabel with the cost ratio computed with equa-

tion 1, utilizing the estimate of NEWCD produced by the specific

CDE method (note NEWCD determines the pr/nr ratio).

Our CDE-Iterate method iteratively generates estimates of

NEWCD. It first builds a classifier C1 using ORIGlabel and then

uses C1 to classify NEWunlabel. The initial estimate of NEWCD is

then calculated from these predictions. However, assuming

ORIGCD ≠ NEWCD, the original predictions will be biased and

will tend to underestimate the change in class distribution (this

bias is why we need the ―adjustment‖ in the first place). To com-

pensate for this, the process is repeated but in the second iteration

the classifier C2 is built using the cost ratio calculated using equa-

tion 1 with the estimate of NEWCD from the first iteration. The

expectation is that additional iterations will reduce the undesired

bias and the subsequent classifiers will be better able to classify

NEWunlabel, yielding more accurate estimates of NEWCD. The

iterations terminate once a pre-specified maximum number of

iterations is exceeded (in this paper we only report results for the

first 3 iterations). CDE-Iterate-n refers to the classifier produced

by the nth iteration of this method.

To make the algorithm more concrete, we specify the CDE-

Iterate algorithm in Figure 2 using pseudo-code. The algorithm

begins by initializing the values for the cost ratio to the default

values (line 1), builds an initial classifier C1 from ORIGlabel (line

2) and then calculates the pr/pn ratio for ORIGlabel (line3), where

the Pos() and Neg() functions return the number of positive and

negative examples for the specified data sets (ORIGlabel). The

algorithm then iterates in lines 4-10 until the maximum number of

iterations (maxIterations) is reached. In this loop this algorithm

first uses the previous classifier Ci to classify NEWunlabel (line 6).

Then in lines 7-8 the distribution mismatch ratio (dmr) is com-

puted and the cost ratio information is updated. In line 9 a new

classifier Ci+1 is generated using ORIGlabel with the updated cost

ratio. Finally, once the loop terminates the last classifier is re-

turned (line 11).

CDE-Iterate (ORIGlabel, NEWunlabel)
1. COSTFP = COSTFN = 1;

2. C1 = build_classifier(ORIGlabel, COSTFP, COSTFN);

3. Pos2Neg = Pos(ORIGlabel) / Neg(ORIGlabel);
4. for (i=1; i<maxIterations; i++)

5. {

6. NEWlabel = Classify(NEWunlabel, Ci);

7. dmr = Pos2Neg : (Pos(NEWlabel) / Neg(NEWlabel));

8. COSTFP = COSTFN ∙ dmr;

9. Ci+1 = build_classifier(ORIGlabel, COSTFP, COSTFN);

10. }
11. return Ci+1;

Figure 2. Pseudo-code for the CDE-Iterate Algorithm

The CDE-AC method relies on the Adjusted Count (AC) quanti-

fication technique [7] to estimate NEWCD. The method uses equa-

tion 2 to produce its adjusted estimate of the positive rate of the

new distribution, pr*. Note that it still requires pr, the unadjusted

estimate of NEWCD, which is calculated in the same manner as it

was calculated in the first iteration of CDE-Iterate—a classifier is

built from ORIGlabel, used to classify NEWunlabel, and pr is calcu-

lated from the predicted class labels. Furthermore, tpr and fpr,

which are associated with the original distribution, are estimated

by using 10-fold cross validation on ORIGlabel. Equation 2 essen-

tially compensates for the fact that prwill underestimate changes

in class distribution due to the undesired bias discussed earlier

(see Forman [7] for further details and a derivation of equation 2).

The estimate of NEWCD can easily be calculated from the adjusted

positive rate, pr*.

 pr* = (pr – fpr) / (tpr – fpr) (2)

Finally, in order to evaluate the effectiveness of our two CDE-

based methods, we introduce the CDE-Oracle method, which

obtains the correct value of NEWCD (via an oracle) and then uses

equation 1 to determine the appropriate cost ratio. The classifier is

then induced from ORIGlabel using this cost ratio. One would

expect this method to be an upper bound on the performance of all

CDE-based methods.

2.3 Semi-Supervised Learning Methods
In this section we discuss semi-supervised learning (SSL) me-

thods [4], which induce a classifier using examples from

NEWunlabel. Unlike the methods in the previous section, no explicit

adjustment is made for differences in class distribution. Our first

SSL-based method, SSL-Naïve, is quite straightforward. It builds

a classifier C from ORIGlabel, uses C to label NEWunlabel, and then

uses the labeled version of NEWunlabel to build a new classifier, C.

Note that this method does not directly use any of the labeled data

from the original distribution when building the final classifier.

Our next SSL-based method is more sophisticated in that it induc-

es a classifier using examples from both the original and new

distributions. This method, SSL-Self-Train, uses a semi-

supervised technique known as self-training [20]. As the case with

the SSL-Naïve method, this method starts by building a model

based on ORIGlabel and uses it to classify NEWunlabel. However,

this method then moves the examples from NEWunlabel that have

the most confident predictions (i.e., above the median confidence

level) into ORIGlabel. In this case confidence is based on how

close the class membership probability estimate is to 1.0. The

above set of steps is repeated until either all of the examples in

NEWunlabel have been merged with those in ORIGlabel or a maxi-

mum number of iterations have been executed. In our implemen-

tation a maximum of 4 iterations are executed.

2.4 Hybrid Method
We combine the class distribution estimation and semi-supervised

self-training methods into a Hybrid method, where the goal is to

exploit the power of the CDE technique but also include data from

the new distribution when training the classifier. The hybrid

method starts like the CDE-Iterate method: it builds a classifier C

from ORIGlabel, applies C to NEWunlabel to estimate NEWCD, uses

equation 2 to determine the appropriate cost ratio, and then rege-

nerates the classifier from ORIGlabel using this cost information. It

then applies the self-training technique—it uses the adjusted

classifier to relabel NEWunlabel and then effectively ―moves‖ the

examples where the confidence of the predicted label is above the

median value to ORIGlabel. This method then determines the ap-

propriate cost ratio (equation 2) to account for differences in the

class distribution of ORIGlabel and NEWCD. This calculation takes

into account the fact that the class distribution of ORIGlabel

changes as new examples are moved into it. This process is then

repeated until all examples have been removed from NEWunlabel or

a maximum of 4 iterations have been executed. Due to space

limitations we do not report the results for each iteration, as was

done for CDE-Iterate. In summary, this method is essentially the

semi-supervised self-training method, but where we compensate

for the difference between the class distribution of the training

data and NEWCD.

3. EXPERIMENT METHODOLOGY
This section describes our experimental setup. It describes the

data sets that we use, the specific experiments that we run, the

classifier induction algorithm we employ, and the metrics that we

use to evaluate classifier performance. The methods that we eva-

luate were described in Section 2 and are not described here.

Table 2. Description of 5 UCI Data Sets

Dataset Size % Pos Partition

Adult 48,842 23.9% 4,700

Covertype 581,012 48.8% 8,000

Letter-Vowel 20,000 19.4% 1,500

Magic Gamma 19,020 64.8% 2,600

Spambase 4,601 39.4% 700

Table 2 describes the five UCI data sets [3] that we use in this

study. Any data sets that had more than two classes were con-

verted into two-class data sets. The Covertype data set was con-

verted to two classes by designating ―2‖ as the positive class and

all other values as the negative class, while the Letter-Vowel data

set was converted by designating the vowels as the positive class

and all other letters as the negative class. The positive class is the

minority class for all data sets except for the Magic Gamma data

set, because the documentation for that data set specifically states

that the majority class is the class of interest. Table 2 shows the

original data set size, the percentage of the examples that belong

to the positive class, and the number of examples in each partition

(explained shortly).

As described earlier, the problem we investigate requires three

data sets: ORIGlabel, NEWunlabel and NEWeval. We generate each of

these by splitting the original data set into three equal-sized parti-

tions. For our experiments the positive rate of ORIGlabel is fixed at

50% while the positive rate of NEWunlabel and NEWeval but will be

varied between 1% and 99% in 1% increments. In order to gener-

ate the desired class distributions without duplicating any exam-

ples, the size of the partitions must be limited. We use the maxi-

mum possible partition size for each data set and these partition

sizes are specified in the last column of Table 2 (the value dis-

played for Covertype is not the maximum possible value but was

reduced due to the size of the data set and time constraints).

Table 3 shows the results of this partitioning process for the Adult

data set. Each of the three partitions contains 4,700 examples,

even as the positive rate (Pr) varies. The maximum number of

positive or negative examples required is 11,656 (2,350 + 2 •

4,653), which for the positives examples occurs when Pr= 99%

and for the negative examples when Pr=1%. Since the original

data set contains 11,673 (23.9% of 48,482) positive and 37,168

negative examples, these partitions can be generated without

duplicating examples. In this case 17 positive examples are not

used because fractional examples cannot be used to generate the

appropriate positive rates.

Table 3. Partitions for Adult Data Set

Splits Pr # Pos # Neg Tot

ORIGlabel 50% 2,350 2,350 4,700

NEWunlabel, NEWeval 1% 47 4,653 4,700

 2% 94 4,606 4,700

 … … … …

 98% 4,606 94 4,700

 99% 4,653 47 4,700

In our methodology the partition ORIGlabel is created first and

does not vary as the 99 partitions for NEWunlabled and NEWeval are

generated. In order to produce more reliable results, the experi-

ments, and thus the partitioning process, were repeated 10 times

and the results presented in this paper are averages over those 10

runs (Covertype experiments were repeated only 4 times due to

time constraints).

All experiments in this paper utilize the J48 [17] implementation

of C4.5 [12] from WEKA release 3.5.8. Our CDE-based methods

compensate for changes in class distribution using WEKA’s cost-

sensitive learning capabilities, which in WEKA are implemented

using example reweighting. All of our methods described in

Section 2 are implemented as wrapper-based learners and could

easily be applied to other base learning methods. The classifica-

tion performance of our methods is evaluated using both accuracy

and F-measure. The F-measure is defined as the harmonic mean

between precision and recall and is defined in equation 3.

 F-measure = 2 • precision • recall / (precision + recall) (3)

We track the performance of F-measure because we are interested

in what happens when a class distribution becomes highly skewed

and accuracy is known to be an inappropriate evaluation measure

in these cases [11]. One might expect AUC to be a more natural

choice than F-measure given its current popularity in the data

mining community—and in fact we did track AUC for all experi-

ments. However, we do not report these results because ROC

curves are, by design, not sensitive to changes in class distribution

and hence are an inappropriate evaluation measure for this prob-

lem (the results were also uninteresting in that most methods

performed similarly).

4. EXPERIMENT RESULTS
In this section we present and analyze our experimental results.

We begin by analyzing the detailed results for one representative

data set, Adult, and then analyze more highly summarized results

for all five data sets. The detailed accuracy results for the Adult

data set are shown in Figure 3 and the same data is shown at a

slightly less granular level (i.e., only data from 13 of the 99 posi-

tive rates are shown) in Table 4.

Figure 3 shows that three of the methods, Naïve, SSL-Naïve, and

SSL-Self-Train, perform much worse than the remaining methods

that are displayed, including all CDE-based methods and the

Hybrid method. Of the three methods that perform poorly,

Naïve’s performance is in the middle, with SSL-Naïve performing

the worst for low positive rates and best at high positive rates.

With the exception of CDE-Iterate-1, the remaining methods all

perform about the same for high positive rates but vary at low

positive rates. Here again CDE-Iterate-1 does the worst, while

CDE-AC does the best and Hybrid is in the middle. Because of

difficulties visually differentiating between the curves, the CDE-

Iterate-2 and CDE-Iterate-3 methods are not shown, although their

performance is better than CDE-Iterate-1 but worse than CDE-AC

(their more highly summarized performance is provided in Table

5). The CDE-Oracle and Oracle methods are not shown because

in the figure they were indistinguishable from the CDE-AC me-

thod.

Figure 3. Accuracy Peformance for Adult Data Set

It is worth commenting on the shapes of the curves in Figure 3.

Three of the curves are nearly linear and this includes the Naïve

method, which is the easiest to analyze. Since the Naïve method

ignores the new distribution in the learning phase, we might

expect its performance to be linear and parallel to the x-axis (i.e.,

invariant with respect to positive class rate). However, the ob-

served performance is not inconsistent with this, which simply

means that the accuracy of the induced classifier is not the same

for both classes even though the classes are equally represented in

the training data. The performance curves for the other methods,

including the Oracle method (not shown) exhibit a ―U‖ shape with

a minimum near a positive class rate of 50%. This is simply due

to the fact that it is easiest to achieve high accuracy when a data

set is highly skewed—and the strategies that exhibit the ―U‖

shape can adapt to the skewed distribution.

The overall performance characteristics of the methods are shown

more effectively in Table 4, which includes the results for all 10

methods. Of particular value are the averages for the methods

over the different positive rates, shown in the last row (these

averages are computed over all 99 positive class rates, not just the

13 that are displayed). The Oracle and Naïve methods determine

the range of expected behavior, while the CDE-Oracle provides

what should be an upper bound on the performance of the CDE-

based methods. First, note that the CDE-Oracle provides perfor-

mance very close to that of the overall Oracle method. Based on

the averages we see that the CDE-Iterate methods get progressive-

ly better with additional iterations and that the CDE-AC method is

the best overall performing CDE-based method. As we saw in

Figure 3 the SSL-based methods perform poorly and in fact, based

on average performance, perform worse than the Naïve method.

The Hybrid method performs in the middle range of the CDE-

Based methods and thus shows promise if it can be improved. The

overall results suggest that CDE-AC is a very good method and

looking at each individual row, we see that not only does it have

the best average performance, but it performs best or nearly best

for each positive rate. Table 5 will present a more summarized

view of the data in Table 4, but for all five data sets.

Table 4. Detailed Accuracy Results for Adult

The F-measure results for the Adult data set are displayed in

Figure 4. Because the curves are even harder to distinguish than

for accuracy, the figure was simplified slightly—the x-values are

shown at 5% increments, curves that were essentially indistin-

guishable were labeled together using one of the curves, some of

the 10 methods were omitted, and the positive rate is clipped at

70% because the relative performance of the methods does not

vary after that point.

The results for F-measure are interesting in that they vary greatly

from those for accuracy—and the Oracle does not perform best.

As Table 6 will show us, this behavior is relatively consistent over

all data sets, so it is worth further analysis. First, Figure 4 shows

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

Postive Class Rate (%)

A
cc

u
ra

cy
 (

%
)

CDE-AC

CDE-Iterate-1

Hybrid

CDE-Iterate-2

SSL-Self-Train

SSL-Naïve

Naïve

Pr Oracle Naive Oracle Iter-1 Iter-2 Iter-3 AC Naive Self-Tr.

1 99.07 78.78 99.08 93.56 99.10 99.10 99.08 77.73 78.74 99.04

5 95.93 78.81 95.87 90.42 95.34 95.93 95.88 78.04 79.11 95.41

10 92.20 78.64 92.13 88.28 91.77 92.22 92.16 77.82 79.55 90.93

20 86.95 79.42 86.63 84.15 85.88 86.68 86.69 78.69 79.41 85.14

30 83.31 80.21 83.09 81.78 82.47 82.73 82.94 79.49 80.12 82.14

40 81.42 80.88 81.47 80.70 80.77 80.80 81.01 80.00 80.44 81.09

50 81.27 81.24 81.24 81.01 80.86 80.79 80.96 80.65 81.10 81.40

60 82.12 81.52 82.05 82.43 82.39 82.38 82.33 81.29 81.21 82.20

70 84.60 82.41 84.63 84.40 84.29 84.20 84.29 82.12 81.80 84.29

80 87.99 82.68 87.86 87.11 87.81 87.82 87.81 83.12 82.37 87.66

90 92.65 83.36 92.71 91.29 92.45 91.89 92.30 83.92 83.16 92.42

95 95.83 83.51 95.77 93.85 95.64 95.56 95.54 84.17 83.74 95.84

99 98.98 83.93 99.00 95.97 98.96 99.00 98.87 84.97 83.95 98.96

Ave 86.83 81.13 86.84 85.38 86.58 86.62 86.75 80.86 81.09 86.42

CDE SSLBaseline
Hybrid

that the same three methods that did poorly for accuracy for both

high and low positive class rates (Naïve, SSL-Self-Train, and

SSL-Naïve) exhibit the same behavior for F-measure. All other

methods perform similar to one another for high positive class

rates. But at low positive class rates CDE-Iterate-2 consistently

does the best. The Oracle and CDE-AC methods perform nearly

identically to one another, and the Hybrid method sometimes does

better and sometimes worse than Oracle and CDE-AC. We defer

the discussion of this interesting behavior until after we introduce

the F-measure results for the five data sets in Table 6.

Figure 4. F-Measure Performance for Adult Data Set

We now present the more summarized results for all five data

sets. Table 5 provides these results for accuracy, which is similar

to Table 4 but averages the results over all 99 positive rates. The

methods are sorted in order of decreasing average accuracy, so the

best methods are toward the top. When determining which me-

thod is the best practical method, the Oracle and CDE-Oracle

methods are excluded, since in practice oracles are not available.

The best performing practical method for each individual data set

is underlined and from this we see that CDE-AC is not just the

best when averaged over all five data sets, it performs best on

each individual data set. The overall performance of the other

methods is roughly consistent with what we saw for Adult. Again,

we see that the CDE-Iterate method benefits from additional

iterations and the Hybrid method shows some promise. We again

see that the SSL-based methods perform poorly—and worse than

the Naïve method which essentially ignores the changing distribu-

tion completely.

Table 5. Summary Accuracy Results

Table 6 shows the summary performance of the ten methods over

the five data sets for F-measure. The methods are again ordered

by decreasing average performance, and since the values in the

Adult column are decreasing, as they were in Table 5, the relative

efficacy of each method for the Adult data set matches the pattern

over all data sets. The key conclusions here are that the SSL-

based methods do poorly and that the Oracle and CDE-AC me-

thods are in the middle of the performance range and the CDE-

Iterate methods outperform these two methods.

Table 6. Summary F-Measure Results

While not all of our results could necessarily be predicted a priori,

most of our results are not surprising and can be explained. For

example, for accuracy it makes some sense that the CDE-Iterate

method performs better after one iteration because of the undesir-

able bias mentioned in Section 2. CDE-based methods outperform

SSL-based methods because, as we shall discuss in Section 5,

class distribution estimation (i.e., quantification) is fundamentally

an easier task than classification and thus the CDE-based methods

introduce less uncertainty than the SSL-based methods, which

require us to classify examples from the new distribution before a

classifier can be retrained.

The F-measure results that have the CDE-Iterate methods outper-

forming the CDE-Oracle and Oracle methods are harder to justify,

but we feel we have a plausible explanation. Our explanation

begins with the Oracle method, which uses the correct (hidden)

labels from the new distribution to train a classifier. While this

seems like the perfect strategy, most classification methods are

optimized for accuracy maximization and often sacrifice perfor-

mance of the minority class for improved performance of the

majority class—which will likely degrade the F-measure perfor-

mance, due to the need to achieve high recall values. Thus we can

see that the Oracle method may produce poor F-measure values

when trained on data with low positive class rates. Because the

CDE-Iterate method will train a classifier using data with a posi-

tive rate of 50%, it has the opportunity to achieve better F-

measure results. The cost ratio used to adjust the classifier can

undermine this by placing less emphasis on the positive class

when the new distribution has a lower estimated positive rate, but,

as discussed in Section 2, the CDE-Iterate method will tend to

underestimate any changes in class distribution, especially in the

initial iteration. This explains why CDE-Iterate-1 performs well.

This above explanation may explain the observed results, but is

there any useful lesson here? There is a lesson, but it not a new

one. If one wants to perform better on one class than another, it is

appropriate to bias the learner toward that class and if one wants

to do well on a measure that balances the performance of both

classes, then one should not bias the learner toward one class

(e.g., by training on data mainly from one class). Thus, we should

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

0 10 20 30 40 50 60 70
Postive Class Rate (%)

F
-M

ea
su

re

{Oracle, CDE-AC}

Hybrid

{Naïve, SSL-Self-Train, SSL-Naïve}

CDE-Iterate-2

Cover Letter Magic Spam

Method Adult Type Vowel Gamma Base Ave

Oracle 86.83 85.30 89.12 85.75 91.79 88.10

CDE-Oracle 86.84 85.02 88.98 85.94 91.69 88.06

CDE-AC 86.75 85.06 88.68 85.65 91.82 87.94

CDE-iterate-3 86.62 84.91 88.68 85.32 91.74 87.80

Hybrid 86.42 84.68 88.24 85.35 91.58 87.61

CDE-iterate-2 86.58 84.32 88.40 84.80 91.72 87.55

CDE-iterate-1 85.38 82.82 87.61 83.47 91.47 86.60

Naive 81.13 78.83 85.22 80.29 88.76 83.40

SSL-Self-Train 81.09 79.05 85.24 79.99 88.55 83.29

SSL-Naive 80.86 77.67 82.93 79.54 87.96 82.57

Cover Letter Magic Spam

Method Adult Type Vowel Gamma Base Ave

CDE-iterate-2 .777 .748 .819 .761 .861 .799

CDE-iterate-1 .773 .742 .811 .755 .859 .794

CDE-iterate-3 .752 .738 .810 .749 .858 .787

Hybrid .769 .725 .803 .747 .843 .785

Oracle .760 .730 .812 .737 .850 .784

CDE-Oracle .760 .723 .812 .736 .854 .784

CDE-AC .755 .716 .807 .742 .845 .781

Naive .742 .718 .784 .736 .825 .767

SSL-Self-Train .741 .720 .785 .731 .824 .766

SSL-Naive .738 .704 .749 .728 .814 .755

take this into account when ―adjusting‖ a classifier to compensate

for changes in class distribution. This suggests an extension to our

work—how to adjust for a changing class distribution when either

the classes are not equally important or are equally important.

Interestingly enough, there has been work on cost quantification

[7] and these methods would be appropriate to counteract changes

to the class distribution when we have knowledge about the rela-

tive importance of the different classes.

5. RELATED WORK
In this section we describe some related work, although much of

the most relevant work was already mentioned in Section 2. The

problem of improving classifier performance in response to un-

known changes in class distribution has been studied previously

[1, 9, 13] and the most relevant and successful approach thus far

has involved expectation maximization (EM) [9, 13] and this

approach has also been adapted to the related problem of classify-

ing non-stationary data sequences [18]. Our CDE-Iterate method

is a variant of the basic EM method, but there are some minor

differences. Namely, the CDE-Iterate method thresholds the

generated probability estimates to assign a class label and from

this generates the class distribution estimate, while EM uses the

probability estimates directly, without applying any threshold. In

addition, CDE-Iterative ―adjusts‖ the original model using cost-

sensitive learning while the prior work using EM adjusted the

original model’s posterior probability outputs. Based on our

results and the published results in prior work, we believe that

both the EM and CDE-Iterate methods are similar and perform

similarly (however, as we discuss in Section 6, we view CDE-AC

as superior to both methods).

In some situations one may have no information (e.g., unlabeled

examples) about future changes in class distribution but still wants

to maximize classifier performance on future data [19]. The ap-

proach in this case is not to adapt to changing conditions, but

rather to build a ―robust‖ classifier that performs well under a

wide variety of situations [2]. In fact, this desire for classifiers that

exhibit robust behavior over wide ranges of class distributions and

misclassification costs is the primary reason that ROC analysis

[10] has gained such prominence in the data mining community.

While this approach of generating robust classifiers has its advan-

tages and is applicable to our problem, it clearly is not the best

strategy when the class distribution of the new data is known or

can be reliably estimated—and as we have seen in this paper, we

can reliably estimate the new class distribution when unlabeled

data from the new distribution is available.

While our work focused on improving classifier performance in

response to changes in the class distribution of the data, a related,

but different, task is the quantification task. Quantification in-

volves estimating the prevalence (i.e., class distribution) of the

classes over time [7]. Quantification is a simpler task than classi-

fication because one can often come up with good estimates of a

class distribution without producing accurate predictions for

individual examples. As an example, auto insurance agencies can

accurately predict what fraction of their policy holders will have

an accident without being able to accurately predict which specif-

ic policy holders will have an accident. As we have seen this

paper, quantification methods can also help solve our more com-

plex task (i.e., our CDE methods perform quantification then

model adjustment). Quantification techniques are discussed in

detail by Forman [7, 8] and while we applied some of those me-

thods to our problem (i.e., Adjusted Count) there are other rele-

vant methods that could be analyzed in the future (e.g., Median

Sweep, Mixture Model).

Our CDE-based methods compensate for changes in the class

distribution via cost-sensitive learning and the EM accomplishes

the same thing by changing the probability thresholds. A third

way of compensating for differing class distributions is to sample

from the original distribution so that its class distribution matches

the estimated class distribution of the new data. Many appropriate

sampling methods exist [15], such as oversampling and under-

sampling, as well as more advanced methods which make better

use of the data [5].

Since our learning task involves labeled and unlabeled data, semi-

supervised learning methods [4, 20] are relevant. The results thus

far for the SSL-based methods have not been very promising,

probably due to the fact that, as just discussed, it is easier to accu-

rately estimate the class distribution of the unlabeled examples

than to classify them. We believe, however, that the CDE-based

methods can ultimately benefit from semi-supervised learning and

thus we feel that semi-supervised learning warrants further study.

6. CONCLUSION AND FUTURE WORK
In this paper we evaluated several methods for dealing with the

situation where the class distribution can change after an initial

classifier is built and only unlabeled data from the new distribu-

tion is available. Our results clearly indicate that the naïve ap-

proach of not doing anything leads to very poor results but that

there are very effective methods for dealing with this problem.

The class distribution estimation based methods generally per-

formed the best and when accuracy must be maximized the CDE-

AC method is the best choice based on its performance, computa-

tional requirements (i.e., only a single iteration) and the fact that

there are no parameters, such as the number of iterations, to set.

The CDE-based methods performed relatively close to the

ORACLE method, especially in comparison to the Naïve method,

which performed poorly. In general we found that the

CDE-Iterate-2 method outperforms the CDE-Iterate-1 method,

indicating that our iterative process does lead to improved class

distribution estimates. Relative to the CDE-based methods, the

semi-supervised learning methods did poorly. The hybrid method

did much better than the SSL-based methods, but consistently

underperformed the CDE-based methods. The results for F-

measure were quite different and the reasons for this were dis-

cussed in Section 4. However, the results were still quite clear,

with the CDE-Iterate-2 method performing best, and all of the

CDE-based methods were effective, significantly outperforming

the naïve strategy.

The relatively poor performance of the SSL-based methods, for

both accuracy and F-measure, is quite notable. This failure was

explained earlier by the fact that class distribution estimation is

fundamentally an easier task than classification and hence our

class distribution estimates are thus going to be more accurate

than the estimates of the class values for the new, unlabeled, data.

A second insight, however, is related to the task itself. Semi-

supervised learning is typically employed when labeled training

data is very scarce but unlabeled data abounds. That is not the

case in our problem setting or in our experimental setup and was

not the motivation for the use of semi-supervised learning. In our

setting we assume that there is sufficient labeled data to build a

reasonable classifier. The problem is that the class distribution

changes and that is the motivation for the use of semi-supervised

learning (i.e., we want to learn from the more representative, but

unlabeled, examples). Given this understanding and the fact that

CDE is easier than classification, the disparity in the results is

explained. Nonetheless, in theory the use of the new data for

training could improve overall classifier performance and we do

believe that SSL methods can be of use in this context. We dis-

cuss improvements to the SSL methods in our discussion of future

work toward the end of this section.

This paper provides a number of contributions. First, we evaluate

methods that have not previously been used to address the chang-

ing class distribution problem—and these new methods—

especially CDE-AC—are shown to work well. Furthermore, the

CDE-AC method that we recommend is simpler and easier to

implement than iterative methods. The failure of the SSL-based

methods is also notable and should help guide future research. We

also provide a more comprehensive empirical study of the prob-

lem than past work: we analyze a total of ten methods, including

several baseline methods for comparison, evaluate our results with

respect to F-measure in addition to accuracy, combine multiple

approaches (i.e., Hybrid), and evaluate our methods under a large

number (99) and range (1% - 99%) of class distributions. Finally,

the problem we address does occur in many realistic settings and

given the current state-of-the-art of data mining tools, it is feasible

for practitioners to implement our solution (i.e., most tools pro-

vide one of the three methods that we discuss for adjusting a

classifier). Finally, we also hope that our work will bring deserved

attention to the problem of changing class distributions and the

fact that good solutions do exist.

Although our results for the CDE-based methods are quite en-

couraging, there is certainly some room for improvement, since

even a 1% difference in accuracy between our method and the

ORACLE method is significant. One improvement would be to

adapt the CDE-Iterative method to automatically terminate once

the class distribution estimate converges. This might improve

overall performance over any specific CDE-Iterate-n method and

would eliminate the problem of identifying the appropriate num-

ber of iterations. It is possible that such a CDE-converge method

would outperform CDE-AC. We have performed some prelimi-

nary research in this area and have found that in many cases

convergence does occur, although we need to refine our notion of

convergence (e.g., to handle small cyclical fluctuations in the

estimates). As discussed, semi-supervised learning should enable

us to improve our CDE results further by making additional data

available for classifier induction, although the clear superiority of

the CDE-based methods over the SSL-based methods indicate that

it may not be easy to develop an effective hybrid approach. One

possibility we are investigating is to use a classifier that accepts

class membership probabilities in the training phase, so that the

uncertain predictions generated by semi-supervised learning can

be factored into the learning process.

We also would like to apply our current methods, and some new

variants of these methods, to more complex problem settings. One

such problem setting differs only slightly, where NEWunlabel and

NEWeval are replaced by a single data set that serves both purpos-

es. In this new scenario the goal is to exploit new data to build a

new classifier and then classify that same new data, rather than

our current setting where additional data drawn from the new

distribution is classified. This new setting would be an example of

transductive learning. A more ambitious setting that we intend to

study is where the concept drift is of a much less restrictive form,

such that the actual concept can change over time, rather than just

its class distribution. The CDE-based methods may still prove

useful in this more challenging setting—since the class distribu-

tion will most likely change if the concept changes—but the

CDE-based methods clearly will not be sufficient by themselves.

In this more complex setting semi-supervised learning will have

more to offer and hybrid methods may then perform best.

7. REFERENCES
[1] Alaiz-Rodriguez, R., Guerrero-Curieses, A. and Cid-Sueiro,

J. Minimax Regret Classifier for Imprecise Class Distribu-

tions. Journal of Machine Learning Research, 8 (2007),
103-130.

[2] Alaiz-Rodriguez, R. and Japkowicz, N. Assessing the Im-

pact of Changing Environments on Classifier Performance.

In the Proceedings of the 21st Canadian Conference in Ar-

tificial Intelligence (2008), 13-24.

[3] Asuncion, A. and Newman, D. J. UCI Machine Learning

Repository. http://www.ics.uci.edu/~mlearn/ MLReposito-
ry.html (2007).

[4] Chapelle, O., Scholkopf, B. and Zien, A. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[5] Chawla, N. V., Bowyer, K. W. and Kegelmeyer, W. P.

SMOTE: Synthetic Minority Over-sampling Technique.

Journal of Artificial Intelligence Research, 16 (2002), 321-
357.

[6] Elkan, C. The foundations of cost-sensitive learning. In the

Proceedings of the 17th International Joint Conference on
Artificial Intelligence (2001), 973-978.

[7] Forman, G. Quantifying counts and costs via classification.
Data Mining Knowledge Discovery, 17, 2 (2008), 164-206.

[8] Forman, G. Counting Positives Accurately Despite Inaccu-
rate Classification. In ECML (2005), 564-575.

[9] Latinne, P., Saerens, M. and Decaestecker, C. Adjusting the

Outputs of a Classifier to New a Priori Probabilities May

Significantly Improve Classification Accuracy: Evidence

from a multi-class problem in remote sensing. In the Pro-

ceedings of the 18th International Conference on Machine

Learning (2001), 298-305.

[10] Provost, F. and Fawcett, T. Robust Classification for Impre-

cise Environments. Machine Learning, 42, 3 (2001), 203-
231.

[11] Provost, F., Fawcett, T. and Kohavi, R. The Case against

Accuracy Estimation for Comparing Induction Algorithms.

In the Proceedings of the 15th International Conference on

Machine Learning (1998), 445-453.

[12] Quinlan, R. J. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[13] Saerens, M., Latinne, P. and Decaestecker, C. Adjusting the

outputs of a classifier to new a priori probabilities: A simple
procedure. Neural Computing, 14 (2002), 14-21.

[14] Tsymbal, A. The problem of concept drift: Definitions and

related work. Computer Science Department, Trinity Col-

lege Dublin, 2004.

[15] Weiss, G. M. Mining with rarity: a unifying framework.

SIGKDD Explorations Newsletter, 6, 1 (2004), 7-19.

[16] Weiss, G. M. and Provost, F. Learning when training data

are costly: The effect of class distribution on tree induction.

Journal of Artificial Intelligence Research, 19 (2003), 315-
354.

[17] Witten, I. H. and Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques, 2nd ed. Morgan Kaufmann,

June 2005.

[18] Yang, C. and Zhou, J. Non-stationary data sequence classifi-

cation using online class priors estimation. Pattern Recogni-

tion, 41, 8 (2008), 2656-2664.

[19] Zadrozny, B. and Elkan, C. Learning and making decisions

when costs and probabilities are both unknown. In the Pro-

ceedings of the 7th International Conference on Knowledge

Discovery and Data Mining (2001), 204-213.

[20] Zhu, X. Semi-Supervised Learning Literature Survey. Com-

puter Science Department, University of Wisconsin-

Madison, 2005.

