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Abstract  

Learning to predict rare events from sequences of events
with categorical features is an important, real-world,
problem that existing statistical and machine learning
methods are not well suited to solve.  This paper describes
timeweaver, a genetic algorithm based machine learning
system that predicts rare events by identifying predictive
temporal and sequential patterns.  Timeweaver is applied to
the task of predicting telecommunication equipment failures
from 110,000 alarm messages and is shown to outperform
existing learning methods.

Introduction

An event sequence is a sequence of timestamped
observations, each described by a fixed set of features.  In
this paper we focus on the problem of predicting rare
events from sequences of events which contain categorical
(non-numerical) features.  Predicting telecommunication
equipment failures from alarm messages is one important
problem which has these characteristics.  For AT&T, where
most traffic is handled by 4ESS switches, the specific task
is to predict the failure of 4ESS hardware components from
diagnostic alarm messages reported by the 4ESS itself.
Predicting fraudulent credit card transactions and the start
of transcription in DNA sequences are two additional
problems with similar characteristics.  For a variety of
reasons, these problems cannot be easily solved by existing
methods.  This paper describes timeweaver, a machine
learning system specifically designed to solve rare event
prediction problems with categorical features by identifying
predictive temporal and sequential patterns in the data.

Background

Event prediction problems are very similar to time-series
prediction problems. Classical time-series prediction, which
has been studied extensively within the field of statistics,
involves predicting the next n successive observations from
a history of past observations (Brockwell & Davis 1996).
These statistical techniques are not applicable to the event
prediction problems we are interested in because they
require numerical features and do not support predicting a
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specific “event” within a window of time. Relevant work in
machine learning has relied on reformulating the prediction
problem into a concept learning problem (Dietterich &
Michalski 1985).  The reformulation process involves
transforming the event sequence into an unordered set of
examples by encoding multiple events as individual
examples. The transformation procedure preserves only a
limited amount of sequence and temporal information, but
enables any concept learning program to be used.  This
approach has been used to predict catastrophic equipment
failures (Weiss, Eddy & Weiss 1998) and to identify
network faults (Sasisekharan, Seshadri & Weiss 1996).
Non-reformulation based approaches have also been tried.
Computational learning theory has focused on learning
regular expressions and pattern languages from data, but
has produced few practical systems (Jiang & Li 1991;
Brazma 1993). Data mining algorithms for identifying
common patterns in event sequences have been developed,
but these patterns are not necessarily useful for prediction.
Nonetheless, such algorithms have been used to predict
network faults (Manilla, Toivonen & Verkamo 1995).

The Event Prediction Problem

This section defines our formulation of the event prediction
problem.

Basic Problem Formulation

An event Et is a timestamped observation which occurs at
time t and is described by a set of feature-value pairs.  An
event sequence is a time-ordered sequence of events, S =
Et1, Et2, ..., Etn, which includes all n events in the time
interval   t1 ≤ t ≤ tn.  Events are associated with a domain
object D which is the source, or generator, of the events.
The target event is the event to be predicted and is specified
by a set of feature-value pairs.  Each target event, Xt,
occurring at time t, has a prediction period associated with
it, as shown below.  The warning time, W, is the “lead
time” necessary for a prediction to be useful and the
monitoring time, M, determines the maximum amount of
time prior to the target event for which a prediction is
considered correct.

Xtt - Wt - M

prediction period
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The warning and monitoring times should be set based on
the problem domain.  In general, the problem will be easier
the smaller the value of the warning time and the larger the
value of the monitoring time; however, too large a value for
the monitoring time will result in meaningless predictions.

The problem is to learn a prediction procedure P that
correctly predicts the target events.  Thus, P is a function
that maps an event sequence to a boolean prediction value.
A prediction is made upon observation of each event, so
P: Et1, Et2,..., Etx→{+,-}, for each event Etx  The semantics
of a prediction still need to be specified.  A target event is
predicted if at least one prediction is made within its
prediction period, regardless of any subsequent negative
predictions.  Negative predictions can therefore be ignored,
and henceforth “prediction” will mean “positive
prediction”.  A prediction is correct if it falls within the
prediction period of some target event.

This formulation can be applied to the telecommunication
problem.  Each 4ESS generated alarm is an event with
three features: device, which identifies the component
within the 4ESS reporting the problem, severity, which can
take on the value “minor” or “major”, and code, which
specifies the exact problem.  Each 4ESS switch is a domain
object that generates an event sequence and the target event
is any event with code set to “FAILURE”.

Evaluation Measures
The evaluation measures are summarized in Figure 1.
Recall is the percentage of target events correctly predicted.
Simple precision is the percentage of predictions that are
correct.  Simple precision is misleading since it counts
multiple predictions of the same target event multiple
times.  Normalized precision eliminates this problem by
replacing the number of correct predictions with the
number of target events correctly predicted.  This measure
still does not account for the fact that incorrect predictions
located closely together may not be as harmful as the same
number spread out over time.  Reduced precision remedies
this.  A prediction is “active” for a period equal to its
monitoring time, since the target event should occur
somewhere during that period.  Reduced precision replaces
the number of false predictions with the number of
discounted false predictions—the number of complete, non-
overlapping, monitoring periods associated with a false
prediction.  Thus, two false predictions occurring a half
monitoring period apart yields 1½ discounted false
predictions, due to a ½ monitoring period overlap in their
active periods.

Recall =
# Target Events Predicted

Total Target Events
Simple Precision =

TP
TP + FP,

Normalized Precision =

Reduced Precision =

# Target Events Predicted
# Target Events Predicted + FP

# Target Events Predicted
# Target Events Predicted + Discounted FP

TP = True Predictions             FP = False Predictions

Figure 1: Evaluation Measures for Event Prediction

The Basic Learning Method

Our learning method, which operates directly on the data
and does not require the problem to be reformulated, uses
the following two steps:

1. Identify prediction patterns. The space of prediction
patterns is searched to identify a set, C, of  candidate
prediction patterns.  Each pattern c∈C should do well
at predicting a subset of the target events.

2. Generate prediction rules.  An ordered list of
prediction patterns is generated from C.  Prediction
rules are then formed by creating a disjunction of the
top n prediction patterns, thereby creating solutions
with different precision/recall values.

This two step approach allows us to focus our effort on the
more difficult task of identifying prediction patterns.  Also,
by using a general search based method in the first step, we
are able to use our own evaluation metrics—something
which cannot be done with existing learning programs,
which typically use predictive accuracy.   For efficiency,
our learning method exploits the fact that target events are
expected to occur infrequently.  It does this by maintaining,
for each prediction pattern, a boolean prediction vector of
length n that indicates which of the n target events in the
training set are correctly predicted.  This information is
used in step 1 to ensure that a diverse set of patterns is
identified and in step 2 to intelligently construct prediction
rules from the patterns.

The learning method requires a well defined space of
prediction patterns.  The language for representing this
space is similar to the language for expressing the raw data.
A prediction pattern is a sequence of events connected by
ordering primitives that define sequential or temporal
constraints between consecutive events.  The ordering
primitives are defined in the list below, in which A, B, C,
and D represent individual events.

• the wildcard “*” primitive matches any number of
events so the prediction pattern A*D matches ABCD

• the next “.” primitive matches no events so the
prediction pattern A.B.C only matches ABC

• the unordered “|” primitive allows events to occur in
any order and is commutative so that the prediction
pattern A|B|C will match, amongst others, CBA.

The “|” primitive has highest precedence so the pattern
“A.B*C|D|E” matches an A, followed immediately by a B,
followed sometime later by a C, D and E, in any order.
Each feature in an event is permitted to take on the “?”
value that matches any feature value.  A prediction pattern
also has an integer-valued pattern duration.  A prediction
pattern matches a sequence of events within an event
sequence if 1) the events within the prediction pattern
match events within the event sequence, 2) the ordering
constraints expressed in the prediction pattern are obeyed,
and 3) the events involved in the match occur within the
pattern duration.  This language enables flexible and noise-
tolerant prediction rules to be constructed, such as the rule:
if 3 (or more) A events and 4 (or more) B events occur
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within an hour, then predict the target event.  This language
was designed to provide a small set of  features useful for
many real-world prediction tasks.  Extensions to this
language require making changes only to timeweaver’s
pattern-matching routines.

A Genetic Algorithm for Identifying
Prediction Patterns

We use a genetic algorithm (GA) to identify a diverse set of
prediction patterns.  Each individual in the GA’s population
represents part of a complete solution and should perform
well at classifying a subset of the target events.  Our
approach resembles that of classifier systems, which are
GAs that evolve a set of classification rules (Goldberg
1989).  The main differences are that in our approach rules
cannot chain together and that instead of forming a ruleset
from the entire population, we use a second step to prune
“bad” rules.  Our approach is also similar to the approach
taken by other GA’s which learn disjunctive concepts from
examples (Giordana, Saita & Zini 1994).

We use a steady-state GA, where only a few individuals
are modified each “iteration”, because such a GA is
believed to be more computationally efficient than a
generational GA when the time to evaluate an individual is
large (true in our case due to the assumption of large data
sets).  The basic steps in our GA are shown below.

1. Initialize population
2. while stopping criteria not met
3. select 2 individuals from the population
4. apply mutation operator to both individuals with PM;

else apply crossover operator
5. evaluate the 2 newly formed individuals
6. replace 2 existing individuals with the new ones
7. done

The population is initialized by creating prediction patterns
containing a single event, with the feature values set 50%
of the time to the wildcard value and the remaining time to
a randomly selected feature value.  The GA continues until
either a pre-specified number of iterations are executed or
the performance of the population peaks.  The mutation
operator randomly modifies a prediction pattern, changing
the feature values, ordering primitives, and/or the pattern
duration.  Crossover is accomplished via a variable length
crossover operator, as shown in Figure 2.  The lengths of
the offspring may differ from that of the parents and hence
over time prediction patterns of any size can be generated.
The pattern duration of each child is set by trying each
parent’s pattern duration and the average of the two, and
then selecting the value which yields the best results.

A  ||  B     C     D     E
X     Y  ||  Z
A     Z
X     Y     B     C     D     E

Figure 2: Variable Length Crossover

The Selection and Replacement Strategy
The GA’s selection and replacement strategies must balance
two opposing criteria: they must focus the search in the
most profitable areas of the search space but also maintain
a diverse population, to avoid premature convergence and
to ensure that the individuals in the population collectively
cover most of the target events.  The challenge is to
maintain diversity using a minimal amount of global
information that can be efficiently computed.

The fitness of a prediction pattern is based on both its
precision and recall and is computed using the F-measure,
defined in equation 1, where β controls the importance of
precision relative to recall.  Any fixed value of β yields a
fixed bias and, in practice, leads to poor performance of the
GA.  To avoid this problem, for each iteration of the GA
the value of β is randomly selected from the range of 0 to 1,
similar to what was done by Murata & Ishibuchi (1995).

           fitness = 
(β

β

2

2

 +  1) precision recall

precision +  recall

⋅
                      (1)

To encourage diversity, we use a niching strategy called
sharing that rewards individuals based on how different
they are from other individuals in the population (Goldberg
1989).  Individuals are selected proportional to their shared
fitness, which is defined as fitness divided by niche count.
The niche count, defined in equation 2, measures the degree
of similarity of individual i to the p individuals comprising
the population.

          niche counti =
j

n

=
∑

1

(1 - distance(i,j))
3
                    (2)

The similarity of two individuals is measured using a
phenotypic distance metric that measures the distance based
on the performance of the individuals.  In our case, this
distance is simply the fraction of bit positions in the two
prediction vectors that differ (i.e., the fraction of target
events for which they have different predictions).  The
more similar an individual to the rest of the individuals in
the population, the smaller the distances and the greater the
niche count value; if an individual is identical to every
other individual in the population, then the niche count will
be equal to the population size.

The replacement strategy also uses shared fitness.
Individuals are chosen for deletion inversely proportional to
their shared fitness, where the fitness component is
computed by averaging together the F-measure of equation
1 with β values of 0, ½, and 1, so the patterns that perform
poorly on precision and recall are most likely to be deleted.

Creating Prediction Rules

A greedy algorithm, shown below, is used to form a list of
prediction rules, S, from the set of candidate patterns, C,
returned by the GA.  The precision, recall, and prediction
vector information computed in the first step for each
prediction pattern are used, so that only step 11 requires
access to the training set; this step is therefore the most
time-intensive step in the algorithm.
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1. C = patterns returned from the GA; S = {};
2. while C ≠ ∅ do
3.     for c ∈C do
4.         if (increase_recall(S+c, S) ≤ THRESHOLD)
5.         then C = C - c;
6.         else c.eval = PF × (c.precision - S.precision) +
7.                              increase_recall(S+c, S);
8.     done
9.     best = {c ∈C, ∀x∈C| c.eval ≥ x.eval}
10.     S = S || best; C = C - best;
11.     recompute S.precision on training set;
12. done
This algorithm builds solutions with increasing recall by
heuristically selecting the best prediction pattern remaining
in C, using the evaluation function on line 6. The evaluation
function rewards those candidate patterns that have high
precision and predict many target events not predicted by S.
The Prediction Factor (PF) controls the importance of
precision vs. recall.  Prediction patterns that do not increase
the recall by at least THRESHOLD are discarded.  Both
THRESHOLD and PF affect the complexity of the learned
concept and can prevent overfitting of the data.  The
algorithm returns an ordered list of patterns, where the first
solution contains the first prediction pattern in the list, the
second solution the first two prediction patterns, etc.  Thus,
a precision/recall curve can be constructed from S and the
user can select a solution based on the relative importance
of precision and recall for the problem at hand.

The algorithm is quite efficient: if p is the population size
of the GA (i.e., p patterns are returned), then the algorithm
requires O(p2) computations of the evaluation function and
O(p) evaluations on the training data (step 11).  Since the
information required to compute the evaluation function is
available, this leads to an O(ps) algorithm, given the
assumption of large data sets and a small number of target
events (where s is the training set size).  In practice, fewer
than p iterations of the for loop will be necessary, since
most prediction patterns will not pass the test on line 4.

Experiments

Timeweaver was applied to the task of predicting 4ESS
equipment failures, using a training set of 110,000 alarms
reported from 55 4ESS switches.  The test set contained
40,000 alarms from 20 different 4ESS switches.  This data
included 1200 alarms which indicate equipment failure.
For all experiments, THRESHOLD is set to 1% and PF to
10, and, unless otherwise noted, all results are based on
2000 iterations of the GA.  Precision is measured using
reduced precision, except in Figure 6 where simple
precision is used in order to permit comparison with other
approaches.  Unless stated otherwise, all experiments use a
20 second warning time and an 8 hour monitoring time.

Figure 3 shows the performance of the learned prediction
rules, generated at different points during the execution of
the GA.  The “Best 2000” curve shows the performance of
the prediction rules formed by combining the “best”
prediction patterns from the first 2000 iterations.

Improvements were not found after iteration 2000.
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Figure 3: The Performance of the Prediction Rules

These results are notable—a baseline strategy that predicts
a failure every warning time (20 seconds) only yields a
precision of 3% and a recall of 63%.  A recall greater than
63% can never be achieved since 37% of the failures have
no events within their prediction period.  The pattern
351:<TMSP,?,MJ>*<?,?,MJ>*<?,?,MN> corresponds to the first
data point in the “Best 2000” curve in Figure 3. This pattern
indicates that within a 351 second time period, a major
severity alarm on a TMSP device is followed by a major
alarm and then a minor alarm.

The results of varying the warning time, shown in Figure
4, demonstrate that for this domain it is much easier to
predict failures when only a short warning time is required.
These results make sense since we expect the alarms most
indicative of a failure to occur shortly before the failure.
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Figure 4: Effect of Warning Time on Learning

Figure 5 shows that increasing the monitoring time from 1
to 8 hours significantly improves timeweaver’s ability to
predict failures; we believe no such improvement is seen
when the monitoring time increases to 1 day because the
larger prediction period leads timeweaver to focus its
attention on “spurious correlations” in the data.
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Comparison with Other Methods

Timeweaver’s performance was compared to C4.5rules
(Quinlan 1993) and RIPPER (Cohen 1995), two rule
induction systems, and FOIL, a system that learns logical
definitions from relations (Quinlan 1990).  In order to use
the “example-based” rule induction systems, the event
sequences were transformed into examples by using a
sliding window.  With a window size of 2, examples are
generated with the features: device1, severity1, code1,
device2, severity2, and code2.  Each example’s classification
is based on whether the last event included in the example
falls within the prediction period of a target event.  Because
equipment failures are rare, the class distribution of the
generated examples is skewed; this prevented C4.5rules and
RIPPER from predicting any failures.  To compensate,
various values of misclassification cost (i.e., the relative
cost of false negatives to false positives) were tried and the
best results are shown in Figure 6.  In the figure, the
number after the w indicates the window size and the
number after the m the misclassification cost.  FOIL is a
more natural choice for solving event prediction problems
since the problem is easily translated into a relational
learning problem.  With FOIL, the sequence information is
encoded via the extensionally defined successor relation.
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Figure 6: Comparison with Other ML Methods
Figure 6 shows that timeweaver outperforms the other
methods; it produces higher precision solutions that span a
much wider range of recall values.  RIPPER’s best
performance resulted from a window size of 3; due to
computational limits, a window size greater than 3 could
not be used with C4.5rules.  FOIL produced results inferior
to the other methods, but its performance might improve if
relations encoding temporal information were added.

Timeweaver can also be compared against ANSWER,
the expert system which handles 4ESS alarms (Weiss, Ros
& Singhal 1998).  ANSWER uses a simple thresholding
strategy to generate an alert when more than a specified
number of interrupt alarms occur within a specified time
period.  These alerts can be interpreted as a prediction that
the device generating the alarm is going to fail.  Various
thresholding strategies were tried and those yielding the
best results are shown in Figure 7.  By comparing these
results with those in Figure 3, we see that timeweaver
yields results with precision 3-5 times higher for a given
recall value.  Much of this improvement is undoubtedly due
to the fact that timeweaver’s concept space is much more
expressive than that of a simple thresholding strategy.
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Figure 7: Using Interrupt Thresholding to Predict Failures

Conclusion

This paper investigated the problem of predicting rare
events from sequences of events with categorical features
and showed that timeweaver, a GA-based machine learning
system, is able to outperform existing methods at this
prediction task.  Additional information is available from
http://paul.rutgers.edu/~gweiss/thesis/timeweaver.html.
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