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Abstract

Many systems that learn from examples express
the learned concept as a disjunction. Those
disjuncts that cover only a few examples are
referred to as small disjuncts. The problem with
small disjuncts is that they have a much higher
error rate than large disjuncts but are necessary to
achieve a high level of predictive accuracy. This
paper investigates the effect of noise on small
disjuncts. In particular, we show that when noise
is added to two real-world domains, a significant,
and disproportionate number of the total errors
are contributed by the small disjuncts; thus, in
the presence of noise, it is the small disjuncts that
are primarily responsible for the poor predictive
accuracy of the learned concept.

1 INTRODUCTION

Systems that learn from examples often express the
learned concept as a disjunction. The coverage, or size,
of each disjunct is defined as the number of training
examples that it correctly classifies (Holte, Acker &
Porter, 1989). Small disjuncts are those disjuncts that
cover only a few training examples. Although small
disjuncts may individually cover only a small fraction of
the training examples, collectively they can cover a
significant percentage of the training examples. The
problem with small disjuncts is that they have a higher
error rate than large disjuncts but cannot be eliminated
without greatly reducing the predictive accuracy of the
learned concept.

Early work on small disjuncts investigated a variety of
issues, including ways of improving predictive accuracy
by eliminating some small disjuncts (Holte, et al., 1989;
Quinlan, 1991). Danyluk and Provost (1993) highlighted
the role of small disjuncts in learning from noisy data
when they speculated that in the telecommunication
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domain they were studying, learning from noisy data was
hard due to a difficulty distinguishing between systematic
noise and "true" exceptional cases in the training data.
True exceptions and small disjuncts, although similar
entities which are sometimes used interchangeably, differ
in one important way—true exceptions are defined
relative to the "true" (i.e., correct) concept whereas small
disjuncts are defined relative to a learned concept. Weiss
(1995) investigated the interaction of noise on true
exceptions by using artificial datasets and demonstrated
that this interaction results in error prone small disjuncts
in the learned concept. In this paper we focus on small
disjuncts rather than "true exceptions" because for the
real world domains we use, the "correct" concept
definition is not known, and hence it is not possible to
measure the true exceptions.

This paper extends previous work by examining the
effect of noise on small disjuncts using real-world
datasets and assessing the impact of this effect on the
overall learning process. In particular, we show that
when noise is added to these datasets, then the concept
learned from this data exhibits the problem with noise
and small disjuncts; that is, the small disjuncts contribute
a disproportionate, and significant, number of the total
errors (relative to the number of examples they cover) but
still cannot be eliminated without adversely affecting the
accuracy of the learned concept. Thus, we show that the
small disjuncts are primarily responsible for learning
being difficult in the presence of noise.

2 DESCRIPTION OF EXPERIMENTS

This section describes the learning program, problem
domains and experimental methodology we used to
conduct our experiments.

2.1 THE LEARNER

All of the experiments described in this paper use C4.5, a
program for inducing decision trees from preclassified
training examples (Quinlan, 1993). C4.5 was chosen
because it is a popular tool for learning disjunctive



concepts and because we were able to modify it, without
too much difficulty, to collect statistics relating to
disjunct size. For the majority of experiments, C4.5 was
run in one of the following two configurations:

— with its default parameters and pruning strategy, and

— with its default parameters but without any pruning
and with the –m1 option to disable the default
stopping criterion.

The –m option stops a node from being split during the
tree-building process if the resulting node covers fewer
than the specified number of examples (1 in this case).
Thus, in the second configuration, C4.5 will build a
decision tree that correctly classifies all training examples
if the examples are consistent.

2.2 THE PROBLEM DOMAINS

This paper uses the KPa7KR chess endgame (Shapiro,
1987) and Wisconsin breast cancer (Wolberg, 1990)
datasets, which were obtained from the UCI repository of
machine learning databases (Murz & Murphy, 1998).
These datasets were selected because C4.5 was able to
attain high levels of predictive accuracy on them; we
wanted to come as close to learning the correct target
concept as possible prior to the introduction of artificial
noise. The KPa7KR dataset contains 3196 examples with
36 attributes, where each example represents a board
position and has the class value "won" or "nowin". The
Wisconsin breast cancer dataset contains 699 examples
with nine attributes, with each example having the value
"benign" or "malignant". The class distribution is
approximately equal for the chess endgame domain and is
2:1 in favor of the benign class for the breast cancer
domain. The results for the breast cancer domain closely
parallel those for the chess domain and therefore in most
cases we only display the results for the chess domain (all
results are for the chess domain unless noted otherwise).

2.3 EXPERIMENTAL METHODOLOGY

For each experiment seven independent runs were
performed and the results averaged together. For each
run, 200 examples were randomly selected and placed
into the training set while the remaining examples were
placed into the test set. Unless stated otherwise, all
measurements are based on the performance of the test
set. Varying levels of randomly generated class noise are
used in the experiments. The examples are considered
initially noise-free. A noise level of n% means that with
probability n/100 the class value is randomly selected
from the remaining alternatives. This means that when
50% class noise is applied to a domain with two classes,
there is no information provided by the class variable.

For the experiments performed in this paper, coverage is
defined in terms of the number of test examples correctly
classified, since we felt that this would yield a more fair
measure of the true coverage of each disjunct (just as
measuring accuracy on the test set yields a more fair

measure). However, we do not believe this decision to be
critical. For each graph presented in this paper, coverage
is displayed on a logarithmic scale, so the behavior of the
small disjuncts can be easily identified.

3 THE PROBLEM WITH SMALL
DISJUNCTS

Although the focus of this paper is on the problem with
noise and small disjuncts, this section will first show that
the chess endgame and breast cancer domains exhibit the
problem with small disjuncts. Figures 1 and 2 show the
results of running C4.5 on the chess endgame and
Wisconsin breast cancer domains, respectively, without
any artificial noise applied to the datasets. For these
figures, and for all figures in this paper with coverage on
the x-axis, the value of each curve at coverage n is based
on the collective performance of all the disjuncts with
coverage less than or equal to n. Thus, the curves labeled
"Examples" and "Errors" in Figures 1 and 2 show the
percentage of total examples and errors, respectively,
covered by these disjuncts (i.e., with size ≤ n) when the
learned concept is applied to the test set. The error rate
curve shows the error rate of the disjuncts with size ≤ n.
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Figure 1: The Effect of Disjunct Size (Chess Domain)
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Figure 2: The Effect of Disjunct Size (Cancer Domain)

An example will help clarify the meanings of these
curves and demonstrate that small disjuncts are "error
prone". In Figure 1, the curves for errors and error rate
intersect at coverage 40. The curves tell us that the
disjuncts with size ≤ 40 collectively have an error rate of
50% and collectively cover 50% of the total errors, but
only cover 5% of the total examples. This clearly
demonstrates that small disjuncts are error prone (i.e.,
they cover a disproportionate number of errors). The
error rate for the learner as a whole can be found by
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looking at the error rate when 100% of the errors and
examples have been covered; we see from this that the
overall error rate for the chess endgame domain is 5%
and the overall error rate for the breast cancer domain is
6%. The error rate curve also shows that small disjuncts
have a higher error rate than large disjuncts, since the
error rate decreases (for both domains) as larger disjuncts
are included in the error rate calculations.

Figures 1 and 2 show that most examples are covered by
the larger disjuncts, but the smaller disjuncts nonetheless
cover a large percentage of the examples. This is more
evident for the breast cancer domain, but even for the
chess endgame domain disjuncts of size ≤ 100 are much
more error prone than the larger disjuncts and cover about
20% of the total examples. These results are consistent
with those described by Holte and colleagues (1989). In
addition, since the small disjuncts cover too many
examples to be simply dropped from the learned concept
without significantly impacting the accuracy of the
concept, these results also demonstrate that these domains
exhibit the problem with small disjuncts.

4 THE PROBLEM WITH NOISE AND
SMALL DISJUNCTS

This section will show that for the chess and breast
cancer domains, noise results in small disjuncts being
mainly responsible for the errors in the learned concept.
For these experiments, no pruning is done unless
specified and class noise is applied to both the training
and test sets.

Figure 3 shows what happens to the error rate as the noise
rate is varied (recall that for coverage of n, the
"collective" error rate is based on all disjuncts with size
≤n). The figure shows that the addition of 5% class noise
causes the error rate for small disjuncts to increase, but
from that point on it decreases as more noise is added.
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Figure 3: Effect of Noise on Error Rate

To make it easier to see the degree to which errors are
concentrated toward the small disjuncts, we will use a
statistic called the error factor, first introduced by Weiss
(1995). The error factor is defined as:

Error Factor(cov ) ≡
% cumulative examples(cov)

% cumulative errors(cov)_ ________________________

The error factor is a function of coverage and is
essentially the "Errors" curve divided by the "Examples"
curve. For example, the error factor at coverage 40 in
Figure 1 is 10 (50%/5%), which indicates that disjuncts
with size ≤ 40 contribute 10 times more errors than
expected if coverage had no effect on error rate.

Figure 4, which plots the error factor versus coverage,
shows the effect of noise on small disjuncts even more
clearly than Figure 3, since error factor is a relative
measure which takes into account the different overall
error rates resulting from learning with the different
levels of class noise. Figure 4 shows that as the amount
of noise increases the error factor for small disjuncts
decreases. This indicates that as the noise level increases
either the percentage of errors contributed by the small
disjuncts decreases and/or the percentage of examples
covered by the small disjuncts increases.

Coverage

E
rr

or
 F

ac
to

r

1 10 100 1000
0

2

4

6

8

10

12

14

16

No Noise

5% Noise

10% Noise

20% Noise

30% Noise

50% Noise

Figure 4: Effect of Noise on Error Factor

Noise added to the training data will undoubtably affect
the concept that is learned and will therefore affect the
small disjuncts in the learned concept. Figure 5 addresses
this by showing how various noise levels affect the
number of examples covered by the small disjuncts.
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Figure 5: Effect of Noise on Distribution of Cases

Figure 5 shows that as more noise is added to the data,
the number of examples covered by small disjuncts
increases dramatically. For example, disjuncts of
size ≤ 100 cover 3 times as many examples when the
noise level increases from no noise to 10% noise. Figure
5 confirms what we and others had suspected—that noisy
data will cause a learner to form "erroneous" small
disjuncts.
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Figure 6 shows how the distribution of errors changes as
noise is applied to the domain. It shows that when the
noise level is less than 20%, small disjuncts with size ≤
30 account for an even greater percentage of the total
errors than when there was no noise. Thus, we now have
an explanation of why the error factor in Figure 4
decreased as additional noise was introduced—it was
because the number of examples covered by the small
disjuncts increased at a faster rate than the number of
errors contributed by these disjuncts. Note that once the
noise level reaches 30%, then disjuncts with coverage ≤
30 no longer cover a disproportionate number of the
errors—they cover half of the errors but also cover almost
half of the total examples. The breast cancer domain
exhibits similar trends.
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Figure 6: Effect of Noise on Distribution of Errors

We can summarize the results from Figures 3–6 as
follows: in the presence of noise, small disjuncts have a
higher error rate than large disjuncts and cover a
significant number of the total cases and total errors. As
a consequence, small disjuncts contribute a
disproportionate and very significant number of the
errors. All of this holds true until very high levels of
noise are applied, at which point the impact of noise on
the large disjuncts becomes important relative to the
impact of noise on small disjuncts—at which point small
disjuncts can no longer be blamed for the poor
performance of the learned concept.

Since overfitting avoidance strategies such as pruning are
more likely to eliminate small disjuncts than large
disjuncts, it is interesting to see how these strategies will
affect the error rate and how this can be related to the role
of small disjuncts. Figure 7 shows how pruning affects
the overall error rate. Since it is not possible to predict
random class noise, the optimal error rate will equal the
noise rate. This figure shows that the default pruning
strategy improves the error rate in the presence of class
noise and improves it the most when the noise rate is
between 10% and 20%. This is explained by the fact that
in this range the small disjuncts have very high error rates
(Figure 3) and contribute a very large percentage of the
total errors (Figure 6). The strategy which uses C4.5’s
-m20 option to prevent nodes from being formed when
fewer than 20 examples are covered also improves the
error rate, except when there is no noise. This strategy
also outperforms the default pruning strategy when there
are very high levels of noise (e.g., 30%), indicating that

in such cases a very aggressive overfitting avoidance
strategy is needed to adequately learn the correct concept.
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Figure 7: Effect of Pruning on Overall Error Rate

5 UNDERSTANDING THE EFFECT OF
NOISE ON SMALL DISJUNCTS

In the experiments described in the previous section, the
training and tests sets were generated from the same
distribution. While this is the most realistic scenario,
when one is trying to understand the effect of noise on
learning, noise is frequently only applied to either the
training or test set.

5.1 THE EFFECT ON TRAINING

Noise applied only to the training set tests the ability to
learn the "correct" concept in the presence of noise
(Quinlan, 1986). That is, by limiting the noise to the
training set, we can evaluate the sensitivity of the learner
to noise. We can accomplish this evaluation, even
without knowing the "correct" concept, by using the
noise-free test data to approximate the correct concept.

As shown earlier, noise in the training set introduces
additional "erroneous" small disjuncts into the learned
concept. Experiments identical to those described earlier
were repeated with the artificial noise restricted to the
training set. Graphs corresponding to those shown in
Figures 3–6 were generated. The results indicated that
under these circumstances small disjuncts have an even
more significant impact on learning and, in particular,
contribute a greater percentage of the errors than when
noise was applied to both the training and test sets.

5.2 THE EFFECT ON TESTING

It is also meaningful to study the effect of noise on the
test set. This situation corresponds to the scenario in
which the training data is "cleaned up", perhaps by using
more costly measurement equipment, in the hope of
achieving improved predictive accuracy.1 Experiments in
which the noise was limited to the test set were run and
the results showed that, relative to the case where noise

———————
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was applied to both the training and test sets, the small
disjuncts had much less of a negative impact on learning.

5.3 DISCUSSION

The results described in the previous two subsections can
be explained by examining how noise affects small
disjuncts. First of all, noise in the training set will
influence the concept that is learned but noise in the test
set cannot. Since small disjuncts are based on the learned
concept, we can conclude that noise in the test set cannot
cause small disjuncts to be formed. Futhermore, noise in
the test set will tend to affect all disjuncts equally (Weiss,
1995). This explains why the effect of noise on small
disjuncts is less dramatic when noise is applied to both
the training and test sets than when it is limited to the
training set—in the former case noise in the test set
reduces the relative difference in error rates between the
small and large disjuncts. When noise is applied to only
the test set, the effect is greatly diminished, and would
disappear completely if the learner were able to learn the
correct concept prior to the introduction of artificial noise.
For a more in depth description about how noise affects
small disjuncts, refer to Weiss (1995).

6 CONCLUSION

This paper investigated the effect of noise on small
disjuncts and how this effect impacts the overall learning
process. For both the KPa7KR chess end-game domain
and the Wisconsin breast cancer domain, the
experimental results in this paper show that small
disjuncts are responsible for learning being difficult.
Only at very high levels of class noise do the large
disjuncts contribute a relatively large percentage of the
total errors. This paper also showed some trends and
effects that we feel are likely to hold for learning in
general and not just for the two domains used in this
paper. In particular, we feel that 1) noise tends to
decrease the number of large disjuncts and increase the
number of small disjuncts in the learned concept, 2)
relatively low levels of noise will increase the percentage
of errors contributed by small disjuncts, but this effect
will diminish as higher levels of noise are applied, and 3)
noise in the test set has an equalizing effect which
decreases the impact of the small disjuncts on learning.

We believe these results are important because they
provide some insight into how noise affects learning and
how the effect of noise manifests itself in the learned
concept. Given the prevalence of noise in real-world
problem domains, such an understanding is critical. This
work also provides additional justification for overfitting
avoidance strategies and hopefully provides some
additional insights into why these strategies work, how
they can be improved and the limitations of such
strategies.
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