
A Combinatorial Fusion Method for Feature Mining
Ye Tian Gary Weiss D. Frank Hsu Qiang Ma

Department of Computer and Information Science
Fordham University

441 East Fordham Road
Bronx, NY 10458

{ytian, gweiss, hsu, ma}@cis.fordham.edu

ABSTRACT
This paper demonstrates how methods borrowed from information
fusion can improve the performance of a classifier by constructing
(“fusing”) new features that are combinations of existing numeric
features. This work is an example of local pattern analysis and
fusion because it identifies potentially useful patterns (i.e., feature
combinations) from a single data source. In our work, we fuse
features by mapping the numeric values for each feature to a rank
and then averaging these ranks. The quality of the fused features
is measured with respect to how well they classify minority-class
examples, which makes this method especially effective for deal-
ing with data sets that exhibit class imbalance. This paper evalu-
ates our combinatorial feature fusion method on ten data sets,
using three learning methods. The results indicate that our method
can be quite effective in improving classifier performance, al-
though it seems to improve the performance of some learning
methods more than others.

General Terms
Algorithms, Performance, Experimentation

Keywords
Feature construction, classification, class imbalance, information
fusion, combinatorial fusion analysis

1. INTRODUCTION
The performance of a classification algorithm is highly dependent
on the descriptions associated with each example. For this reason,
practitioners typically spend a great deal to time making sure that
these descriptions are accurate and capture the key aspects of the
data. A good practitioner will choose the features used to describe
the data very carefully. However, deciding which information to
encode and how to encode it in a feature is quite difficult and the
best way to do so depends not only on the domain, but on the
learning method. For this reason, there have been a variety of
attempts over the years to automate part of this process. This work
has had a variety of names over the years (although sometimes the
emphasis is different) and has been called constructive induction
[13], feature engineering [18], feature construction [6] and feature

mining [11]. In this paper we discuss how existing numerical fea-
tures can be combined, without human effort, in order to improve
classification performance. This work can also be considered an
example of local pattern analysis and fusion because we identify
potentially useful patterns in the data (i.e., feature combinations)
from a single data source.
The work described in this paper is notable for several reasons.
First, unlike the majority of work in this area, we are specifically
concerned with improving the performance of data with substan-
tial class imbalance. Such problems, although quite challenging,
are quite common and are typical in domains such as medical
diagnosis [7], fraud detection [4], and in predicting equipment
failures [20]. Furthermore, there are reasons to believe that this
important class of problems has the most to benefit from feature
construction, since some learners may not be able to detect subtle
patterns that only become apparent when several features are ex-
amined together [19]. Our work also differs from other work in
that our feature combination operator does not directly use the
values of the component features but rather their ranks. This al-
lows us to combine numerical features in a meaningful way, with-
out worrying about issues such as scaling. This approach is par-
ticularly appropriate given the increased interest in the use of
ranking in the data mining [10] and machine learning communities
[5]. Our approach also can be viewed as an extension of work
from the information fusion community, since techniques similar
to the ones we use in this paper have been used to “fuse” informa-
tion from disparate sources [9]. The work in this paper can be
viewed as a specific type of information fusion, which we refer to
as feature fusion (yet another term for feature construction).

We describe our combinatorial feature-fusion method in detail in
Section 2 and then describe our experimental methodology in
Section 3. Our experiments will evaluate our combinatorial fea-
ture-fusion strategy on ten data sets, using three learning methods
(naïve Bayes, decision trees, and nearest-neighbor). The results
from these experiments are described and analyzed in Section 4.
We then discuss related work in Section 5. We finish by discuss-
ing our main conclusions and areas for future work in Section 6.

2. COMBINATORIAL FEATURE FUSION
This section describes the basic combinatorial feature-fusion
method. We begin by providing some basic background informa-
tion in Section 2.1. In Section 2.2 we describe our combinatorial
feature-fusion algorithm.

2.1 Background
Our combinatorial feature-fusion method constructs new features
by combining old features. In Section 2.1.1 we introduce some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
MMIS ‘07, August 12, 2007, San Jose, CA, USA.
Copyright 2007 ACM 978-1-59593-840-4….$5.00.

basic terminology and describe how features are combined, or
fused. Then in Section 2.1.2 we discuss a variety of strategies for
selecting the features to be fused. The algorithm described in Sec-
tion 2.2 will then describe how the fusion strategy and fusion
mechanism can be used to construct a set of features that will
often improve classifier performance.

2.1.1 Terminology and Basic Steps
In this section we will use a simple example to help explain the
relevant terminology and preliminary steps related to feature fu-
sion. This example will also be used in Section 2.2 to help explain
the feature-fusion algorithm. Please note that because our feature-
fusion method only works with numeric features, for simplicity
we assume all features are numeric. Non-numeric features are not
a problem in practice—they simply will be passed to the classifier,
unchanged.

A data set is made up of examples, or records, each of which has a
fixed number of features. Consistent with previous work on in-
formation fusion [9,10], we view the value of a feature as a score.
Typical examples of scores are a person’s salary, a student’s exam
score, and a baseball pitcher’s earned run average. Note that in the
first two cases a higher score is desirable and in the last case a
lower one is to be preferred.
Table 1 introduces our sample data set. This data set contains
eight examples, labeled A-H, with five numeric features, F1-F5,
and a binary class variable with values 0 or 1. In this example
class 1 is the minority class and comprises 3/8 or 37.5% of the
examples.

Table 1: A sample dataset

 F1 F2 F3 F4 F5 Class
A 1 4 3 2 8 1
B 3 3 5 5 4 0
C 5 5 2 6 7 1
D 7 6 15 3 2 0
E 11 13 16 7 14 0
F 15 16 4 13 11 0
G 9 7 14 1 18 1
H 17 15 9 8 3 0

Early in our combinatorial feature-fusion method we replace each
score (i.e., feature value) with a rank, where a lower rank is better.
We convert each score into a rank using a rank function. In this
paper the rank function adheres to the standard notion of a rank.
We sort the score values for each feature in either increasing or
decreasing order and then assign the rank based on this ordering.
Table 2 shows the values of the features for the sample data set
after the scores have been replaced by ranks. In this case the ranks
were assigned after sorting the feature values in increasing order.
As a specific example, because the three lowest values for F3 in
Table 1 are 2, 3, 4 and these values appear in rows C, A, and F,
respectively, the ranks in Table 2 for F2 for records C, A, and F
are 1, 2, and 3, respectively.

We determine whether the ranks should be assigned based on
increasing or decreasing order of the score values by determining
the performance of the feature using both ordering schemes and

then we use the ordering that yields the best performance (we
describe how to compute a feature’s performance shortly). In our
method, once the scores are replaced with a rank they are never
used again. The rank values are used when combining features and
when invoking the learning algorithm (i.e., the rank values are
used as the feature values).

Table 2: Sample data set with scores replaced by ranks

 F1 F2 F3 F4 F5
A 1 2 2 2 5
B 2 1 4 4 3
C 3 3 1 5 4
D 4 4 7 3 1
E 6 6 8 6 7
F 7 8 3 8 6
G 5 5 6 1 8
H 8 7 5 7 2

Next we show how to compute the “performance” of a feature.
This performance metric essentially measures how well the rank
of the feature correlates with the minority-class examples. That is,
for a feature, do the examples with a good rank tend to belong to
the minority class? We explain how to compute this performance
metric using feature F2 from our sample data set. First, we sort
the records in the data set by the rank value of F2. The results are
shown in Table 3. The performance of F2 is then computed as the
fraction of the records at the “top” of the table that belong to the
minority class. How many records do we look at? The number of
records is based on the percentage of minority-class examples in
the training data. In this case 3 of 8 of the training examples
(37.5%) belong to the minority class so we look at the top 3 re-
cords. In this example that means that the performance of F2 is
2/3, the number of class “1” values in the top 3 records (recall that
“1” is the minority-class value). Given this scheme, the best per-
formance value that is achievable is 1.0.

Table 3: Ranked list for F2

 F2 Rank Class
B 1 0
A 2 1
C 3 1
D 4 0
G 5 1
E 6 0
H 7 0
F 8 0

We may similarly compute the performances for all of the indi-
vidual features. For this simple example, F1–F4 all have perform-
ances of 2/3 and F5 has a performance of 0. Table 4 shows the
performances of each of the original “unfused” features. In this
overly simplified example, four of the features all have the same
performance.

Table 4: Performance values for original features

Feature
Perform-

ance
F1 0.67
F2 0.67
F3 0.67
F4 0.67
F5 0.00

This method is also used to compute the performance of the com-
bined (i.e., fused) features. However, to do this we need to deter-
mine the rank of a fused feature, so we can sort the examples by
this rank. We compute this using a rank combination function.
Our rank combination function averages the ranks of the features
to be combined. This is done for each record. As an example,
suppose we want to fuse features F1–F5 and create a new feature,
F1F2F3F4F5, which we will call F6. Table 5 shows the rank val-
ues for F6 for all eight records. The value for F6 for record A is
computed as: (Rank(F1) + Rank(F2) + Rank(F3) + Rank(F4) +
Rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. We see that for this new
feature, record “A” has the best (lowest) rank. Given these values,
one can now compute the performance of the feature F6. Note that
even though the values in Table 5 are not integers, we can still
consider them ranks. In order to compute the performance of F6,
we only need to be able to sort by these values.

Table 5: Rank values for F6 (F1F2F3F4F5)

 F6 F6

A 2.4 E 6.6

B 2.8 F 6.4

C 3.2 G 5.0

D 3.8 H 5.8

2.1.2 Combinatorial Fusion Strategies
The previous section introduced the terminology and basic steps
required by our combinatorial fusion algorithm, but did not dis-
cuss how we decide which features to fuse. We discuss that topic
in this section. There are many possible strategies for choosing
features to “fuse.” In this paper we consider combinatorial strate-
gies that look at all possible combinations. However, because this
is generally not feasible, due to the number of features that would
be introduced, we consider some more restrictive strategies. Let n
equal the number of numeric features available for combination.
To look at all possible combinations would require that we try
each single feature, all pairs of features, all triples, etc. The total
number of combinations would therefore equal C(n,1) + C(n,2)
+ … C(n, n), which equals 2n – 1. We refer to such a combinato-
rial fusion strategy as a fully-exhaustive fusion strategy.
We consider more restrictive variants of the fully-exhaustive fu-
sion strategy because, depending on the value of n, this strategy
may not be practical. The k-exhaustive fusion strategy will create
all possible combinations using k of the n numeric features (k < n).
For example, a 6-exhaustive strategy for a data set with 20 nu-
meric features will select 6 numeric features and then fuse them in
all possible ways. Doing so will reduce the number of feature

combinations by a factor of 214. In our algorithm we choose the
subset of k features based on the performance values for the fea-
tures, such as the ones in Table 4. Because it will not be expensive
to include all of the original features, we also include the n – k
original features not used in the fusion process. The 6-exhaustive
fusion strategy is one of the three strategies analyzed in this paper.
The k-exhaustive fusion strategy trades off a reduced number of
features for the ability to fully combine these features. In some
cases it may be better to involve more features in the fusion proc-
ess, even if they cannot be fused in all possible ways. The k-fusion
strategy will use all n numeric features, but the length of the fused
features is limited to length k. Thus if we have a data set with 20
numeric features and employ 2-fusion, all possible combinations
of single features and pairs of features will be generated. This
would yield C(20,1) + C(20,2) = 20 + 190 = 210 features. Simi-
larly, 3-fusion would consider C(20,1) + C(20, 2) + C(20, 3), or
1140 feature combinations.
Table 6 shows the number of features generated by the different
fusion strategies. In all cases, as stated before, all original features
are included (there are C(n,1) of these). Note that some cells are
empty since k ≤ n. If k = n then the value computed is displayed in
bold and corresponds to the fully-exhaustive strategy. Table 6
demonstrates that, given a limit on the number of features we can
evaluate, we have a choice of fusion strategies. For example,
given ten numeric features, one can use all ten features and gener-
ate combinations of length four, which would generate 385 fea-
tures, or instead select the seven best ones and then fuse those in
all possible ways (i.e., up to length 7), which would generate
about 127 features (actually 130 since we would include the three
original features which were excluded).

Table 6: Combinatorial fusion table

k-fusion for values of k shown below Number
Features 1 2 3 4 5 6 7 8 9 10

1 1
2 2 3
3 3 6 7
4 4 10 14 15
5 5 15 25 30 31
6 6 21 41 56 62 63
7 7 28 63 98 119 126 127
8 8 36 92 162 218 246 254 255
9 9 45 129 255 381 465 501 510 511

10 10 55 175 385 637 847 967 1012 1022 1023

2.2 The Combinatorial Fusion Algorithm
We now describe the algorithm for performing the combinatorial
fusion. This algorithm is summarized in Table 7. We explain this
algorithm by working through a complete example, based on the
data set introduced in Table 1 of Section 2.1.
For this example, we will use the 5-exhaustive strategy, so that we
select the five best performing features and then fuse them in all
possible ways. On line 1 of the algorithm in Table 7 we pass into
the Comb-Fusion function the data, the features, a k value of 5 and

a value of True for the Exhaustive flag. As mentioned previously,
the data and features are from Table 1. The next few steps were
already described in Section 2.1.1. First we convert the scores to
ranks (line 3). We then calculate the performance of each of the
original (unfused) features, in the loop from lines 4-6. Then in
lines 7-11 we determine which features are available for fusion.
Since the Exhaustive flag is set, we restrict ourselves to the k best
features (otherwise all features are available although they then
may not be fused in all possible ways).

Table 7: The feature-fusion algorithm

1. Function Comb-Fusion (Data, Features, k, Exhaustive)
2. {
3. ConvertScoresToRanks(Data, Features);
4. for (f=1, f ≤ length(Features) , f++){
5. Perf[f]=CalculatePerformance(f);
6. }

7. if (Exhaustive == TRUE) {
8. FeaturesForFusion = best k features from Perf[];
9. } else {
10. FeaturesForFusion = Features;
11. }

12. New = FuseFeatures(FeaturesForFusion, k, Exhaustive);

13. for (f=1, f ≤ length(New) , f++){
14. CalculateRank(f);
15. Perf2[f]=CalculatePerformance(f);
16. }
17. Sort(Perf2);
18. Candidates = Perf2.features;

19. // We now build up the final feature set
20. Keep = Features; // always use original features
21. partition(Data, *TrainValid, Test);
22. for (f in Candidates)
23. {
24. for (run=1; run ≤ 10, run++)
25. {
26. partition(TrainValid, *Training, *Validation);

27. classifier = build-classifier(Training, Keep);
28. PerfWithout[run] = evaluate(classifier, Validation);
29. cand = pop(Candidates);

30. classifier=build-classifier(Training, Keep ∪ cand);
31. PerfWith[run] = evaluate(classifier, Validation);
32. }

33. if (average(PerfWith[]) > average(PerfWithout[]))
34. {
35. pval = t-test(PerfWith[], PerfWithout[]);
36. if (pval ≤ .10) {
37. Keep = Keep ∪ cand;
38. }
39. }
40. } // end for (f in Candidates)

41. final-classifier = build-classifier(Training, Keep);
42. final-performance = evaluate(Test, Keep);

43. } // end Function Comb-Fusion

The actual generation of the fused features occurs on line 12. In
this case, the five best features in FeaturesForFusion will be com-
bined in all possible ways (in this example there are only five
features to begin with). Given our decision to always include the
original features to the classifier, the original features need not be
returned by FuseFeatures (they are handled later on line 20).
Next, on lines 13-16 we calculate the rank for each fused feature
and then calculate its performance. This is essentially the same
steps that were done earlier for the original, unfused, features. We
then sort the features by decreasing performance value (line 17)
and then extract the features from this sorted list and save them
(line 18) in Candidates, the ordered list of candidate fused fea-
tures. The results for our simple example are shown in Table 8.
We show only the 14 best performing fused features. In this case
Candidates would equal {F3F4, F1F2, F1F3, …}.

Table 8: Performance values for 5-exhaustive strategy

Priority Feature Perf. Priority Feature Perf.
1 F3F4 1 8 F1F2F4 0.67
2 F1F2 0.67 9 F1F3F4 0.67
3 F1F3 0.67 10 F1F3F5 0.67
4 F2F3 0.67 11 F2F3F4 0.67
5 F2F4 0.67 12 F3F4F5 0.67
6 F3F5 0.67 13 F1F2F3F4 0.67
7 F1F2F3 0.67 14 F1F2F3F5 0.67

We have now completed the first half of the algorithm. In the
second half, starting at line 19, we decide which of the Candidate
features to include in the final feature set. We begin by initializing
Keep to the set of original features. We then partition the data
(line 21) into one set to be used for training and validation and
another for testing. Beginning on line 22 we iterate over all of the
fused features in the Candidate set.
A key question is how we determine when to add a feature. Even
though a feature has a good performance score, it may not be use-
ful. For example, the information encoded in the feature may be
redundant with the features already included in the feature set. We
adopt a pragmatic approach and only add a feature if it improves
classifier performance on the validation set and the improvement
is statistically significant. To determine this, within this main loop
in the second half of the algorithm (lines 22 – 40) we execute ten
runs (lines 24 – 32), repeatedly partitioning the training data into a
training set and a validation set (line 26). If, averaged over the 10
runs (line 33) the classifier generated with the candidate feature
(line 30) outperforms the classifier generated without it (line 28),
and the p-value returned by the t-test (line 35) is ≤ .10 (line 36),
then we add the feature to Keep (line 37). A p-value ≤ .10 means
that we are 90% confident that the observed improvement reflects
a true improvement in performance. In steps 41 and 42 we build
the final classifier and evaluate it on the test set.
We should point out a few things. First, the actual implementation
is more efficient (although slightly more difficult to describe). In
the actual implementation we only need to build one classifier in
the main loop, since the classifier from the previous iteration, and
its performance, is still available. Similarly, we do not need to
rebuild the classifier as indicated on line 41. The performance of
the classifier can be measured using either AUC or accuracy, and
we use both measures in our experiments.

Table 9 shows the behavior of our simple example as each feature
is considered. We only show the performance for the first 3 fea-
tures. The last column indicates the feature being considered and a
“+” indicates that it is added while the lack of this symbol indi-
cates that it is not added because the conditions on lines 33 and 36
are not both satisfied. Each row corresponds to an iteration of the
main loop starting at line 22 in the algorithm. The first row is
based on the classifier built from the original feature set, contain-
ing features F1-F5. Note that the first and third features that are
considered are added, because they show an improvement in AUC
and the p-value is ≤ .10. As we add features we also measure the
performance of each classifier on the test set, although this is not
used in any of the decision making. The AUC for the test set at the
end is reported, however. If we stopped the algorithm after the
three iterations, we can conclude that the performance improved
from an AUC of .682 to .774. It is of course critical not to use the
test set results to determine whether to add a feature.

Table 9: The execution of the algorithm on a simple example

AUC Feature
valid test

p-value
(+ means added)

0.670 0.682 -- {F1,F2,F3,F4,F5}
0.766 0.757 0.001 +F3F4

0.731 F1F2

0.771 0.774 0.063 +F1F3

3 DESCRIPTION OF EXPERIMENTS
In this section we provide the background necessary to understand
our experiments. In Section 3.1 we describe the datasets employed
in our empirical study and in Section 3.2 we describe the three
learning methods that we utilize. Section 3.3 then describes our
experimental methodology.

3.1 Datasets
The ten data sets used in our study are described in Table 10. The
first field provides the data set name, the second the percentage of
examples belonging to the minority class, the third specifies the
final number of features and the last column lists the data set size.
The data sets are ordered in terms of decreasing class imbalance.

Table 10: The Data Sets

Dataset
Name

% Minority
Class

Number
Features

Dataset
Size

 protein+ 0.59 14 20,000
 letter-a* 3.9 15 20,000
 income*+ 5.9 12 10,000
 stock*+ 9.9 27 7,112
 hepatitis* 19.8 12 500
 physics+ 24.9 8 20,000
 german* 30.0 19 1,000
 crx*+ 44.1 5 450
 bands*+ 42.2 13 538
 boa1+ 49.8 25 5,000

The data sets come from a few sources. The hepatitis, bands, in-
come and letter-a data sets were obtained from the UCI machine
learning repository [14] and the crx data set was provided in the
Data directory that came with the C4.5 code. The boa1 data set
was obtained from researchers at AT&T and has been used in
previous published work. The physics and bio data sets are from
the 2004 KDD CUP challenge. The stock data set was provided
by New York University’s Stern School of Business.

In order to simplify the presentation and the analysis of our re-
sults, data sets with more than two classes were mapped to two-
class problems. This was accomplished by designating one of the
original classes, typically the least frequently occurring class, as
the minority class and then mapping the remaining classes into the
majority class. The data sets that originally contained more than
two classes are identified with an asterisk (*). The letter-a data set
was generated from the letter-recognition data set by making the
letter “a” the minority class. Because we are only employing fea-
ture fusion for the numeric features, we deleted any non-numeric
features from the data sets. While this is not necessary, since our
method could just ignore the non-numeric fields, we did this so
that we could better determine the impact of the feature fusion
method. The data sets that had any non-numeric features are iden-
tified with a “+”.

3.2. Learning Methods
All of the learning methods that we use in this paper come from
the WEKA data mining software [12]. The three learning methods
that we use are Naïve Bayes, decision trees and 1-nearest
neighbor. The decision tree algorithm is called J48 in WEKA and
is an implementation of the C4.5 algorithm. The 1-nearest
neighbor algorithm is referred to as IB1 in WEKA.

3.3. Experimental Methodology
The experiments in our study apply a combinatorial feature-fusion
strategy to each of the ten data sets listed in Table 10 and then
record the performance with and without the fusion strategy. This
performance is measured in terms of the area under the ROC
curve (AUC), because ROC analysis [3] is a more appropriate
performance metric than accuracy when there is class imbalance.
Nonetheless, we repeat some of our experiments with accuracy as
the performance metric, since doing so it quite straightforward and
accuracy is still a very commonly used performance metric. The
three combinatorial fusion strategies that are evaluated are the 2-
fusion, 3-fusion and 6-exhaustive fusion strategies described in
Section 2. In this study we utilize the three learning algorithms
listed in Section 3.2 in order to see how the feature-fusion method
benefits each algorithm. In the algorithm in Table 7 the data is
partitioned such that 50% is used for training, 20% for validation,
and 30% for testing.

4. RESULTS
In this section we describe our main results. Because we are inter-
ested in improving classifier performance on data sets with class
imbalance, and because of the known deficiencies with accuracy
as a performance metric [16], we use AUC as our main perform-
ance measure. These AUC results are summarized in Table 11.
The results are presented for ten data sets using the Naïve Bayes,
decision tree, and 1-NN learning methods. Three combinatorial
fusion strategies are evaluated: 2-Fusion (2-F), 3-fusion (3-F) and
6-Exhaustive (6-EX). The AUC results are presented first without

(w/o) and then with (w) the combinatorial fusion strategy. The
“diff” column shows the absolute improvement in AUC resulting
from the combinatorial fusion strategy, with negative values indi-
cating that combinatorial fusion degraded the performance.

Table 11: AUC Improvement with Combinatorial Fusion

w/o w Diff w/o w Diff w/o w Diff
2-F .923 -.020 .752 .256 .663 .164
3-F .954 .010 .742 .247 .651 .152
6-EX .926 -.017 .759 .264 .663 .164
2-F .963 .000 .943 .021 .961 .024
3-F .960 -.003 .919 -.003 .937 .000
6-EX .962 -.001 .937 .014 .961 .024
2-F .901 .000 .736 .241 .612 .020
3-F .897 -.004 .734 .239 .621 .028
6-EX .900 -.001 .739 .245 .612 .020
2-F .762 .037 .755 .260 .575 .051
3-F .767 .043 .751 .255 .578 .054
6-EX .769 .044 .747 .252 .564 .040
2-F .869 .005 .755 .000 .803 -.016
3-F .868 .004 .759 .004 .826 .007
6-EX .864 .000 .760 .005 .821 .002
2-F .498 .000 .499 .000 .504 .000
3-F .506 .008 .499 .000 .495 -.008
6-EX .506 .008 .499 .000 .504 .000
2-F .751 .011 .609 .118 .607 -.001
3-F .723 -.017 .606 .115 .593 -.015
6-EX .736 -.004 .654 .162 .609 .000
2-F .762 .000 .646 .000 .653 .014
3-F .779 .017 .670 .024 .673 .034
6-EX .755 -.007 .722 .076 .667 .028
2-F .779 .029 .611 .108 .559 -.096
3-F .747 -.003 .603 .099 .644 -.012
6-EX .744 -.006 .580 .076 .655 .000
2-F .596 .024 .538 .041 .509 -.005
3-F .602 .031 .548 .050 .509 -.006
6-EX .589 .018 .553 .056 .509 -.005

physics .498 .499 .504

bio .943 .496 .499

income .901 .494 .593

boa1 .571 .497 .515

letter-a .963 .922 .937

bands .750 .504 .655

crx .762 .646 .639

.725 .496 .524

hepatitis .864 .755 .819

1-NN

german .740 .492 .609

Dataset Strat.
Bayes Decision Trees

stock

The results in Table 11 indicate that the combinatorial feature
fusion method is effective. The results appear to be most positive
for the decision tree learning method. The overall impact of the
methods is shown in Table 12, which summarizes the results of
the ten data sets. Table 12 shows the summarized results for each
combinatorial fusion strategy and learning method. It displays the
average absolute improvement in AUC as well as the win-lose-
draw (W-L-D) record over the 10 data sets.

Table 12: Summarized AUC Results for Ten Data Set

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0.009 5-1-4 0.105 7-0-3 0.016 5-4-1
3-fusion 0.009 6-4-0 0.103 8-1-1 0.023 5-4-1

6-exhaustive 0.003 3-6-1 0.115 9-0-1 0.027 6-1-3

Bayes DT 1-NN

The results form both tables indicate that decision trees benefit
most from combinatorial fusion, with the one-nearest neighbor
learning method showing the second-best improvement. Because

the maximum AUC value is 1.0, even an average improvement of
.023 (for 1-NN using the 3-fusion strategy) is quite substantial.
We believe that the decision tree algorithm improves the most
because it is incapable of learning combinations of numeric fea-
tures, because it can only examine a single feature at a time
(oblique decision trees are not subject to this limitation). That is,
decision trees operate by making axis-parallel cuts in the “concept
space” and because of this limitation, it cannot correctly learn a
simple concept such as x + y = 1 (although it can approximate it).
However, with our combinatorial feature fusion method, we
would expect a traditional decision tree to easily learn such a con-
cept.

The results do not demonstrate that any of the three combinatorial
feature-fusion strategies is a clear winner over the other two. The
6-exhaustive strategy does perform the best for decision trees and
one-nearest neighbor, but performs the worst for naïve Bayes.
Since the 3-fusion strategy subsumes the 2-fusion strategy (i.e., it
generates a superset of the features generated by the 2-fusion strat-
egy) it is worthwhile to compare these two strategies. Because the
results are quite similar, the best we can say is that the results are
comparable. Our individual results do show that with the 3-fusion
method some 3-fused features are generated and used in the final
feature set, so we can conclude that the strategies do differ in what
features are used (the same is true of the 6-exhaustive strategy).
The fact that the 2-fusion strategy performs competitively with the
others may indicate that in practice most of the potential benefits
that one can achieve with our combination operator can be
achieved by combining only two features.

We can analyze the results in Table 11 to determine if the combi-
natorial feature fusion method is most effective for data sets with
the highest levels of class imbalance. The first four data sets listed
in the table all have less than 10% of the data set belonging to the
minority class (i.e., have a class ratio greater than 9:1). Table 13
shows the average AUC performance over just these four data
sets.

Table 13: Summarized AUC Results for 4 Skewed Datasets

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0.004 1-1-2 0.195 4-0-0 0.065 4-0-0
3-fusion 0.012 2-2-0 0.185 3-1-0 0.059 3-0-1

6-exhaustive 0.006 1-3-0 0.194 4-0-0 0.062 4-0-0

Bayes DT 1-NN

The results in Table 13, when compared to Table 12, show that the
combinatorial fusion method is substantially more beneficial,
when using the decision trees and one-nearest neighbor method,
for the most skewed data sets (i.e., the ones with the most class
imbalance). Between these two methods, the improvement aver-
ages about twice the improvement over the ten data sets. The
Bayes method shows an improvement in AUC also, but given the
win-loss-tie record this is less convincing. Because of the limited
number of datasets analyzed, these results cannot be considered
conclusive, but nonetheless are quite suggestive. There are two
explanations for the more substantial improvement for the most
highly skewed data sets. First, because the performance measure
described in Section 2 is based on the correlation between the
fused feature and the minority-class examples, the features that are

more likely to improve minority-class performance are considered
first. This makes them more likely to be added, since adding other
features first might obscure these improvements. Secondly, it is
often quite difficult to identify “rare cases” and algorithms that
look at multiple features in parallel are more likely to find the
subtle classification rules that might otherwise get overlooked [19].

Although our primary interest is in improving classifier perform-
ance with respect to the area under the ROC curve, our method
can be used to improve accuracy as well. We repeated a subset of
our experiments, using accuracy instead of AUC to determine
whether adding a fused feature improves the performance of the
classifier with the required level of statistical confidence. Table 14
provides the results when using the 2-fusion strategy. We did not
repeat these experiments for the other two strategies because AUC
is our primary measure of interest and because the three strategies
appear to perform similarly.

Table 14: Accuracy Results using 2-Fusion Strategy

w/o w Diff w/o w Diff w/o w Diff
 bio 98.8 98.8 0.0 99.4 99.4 0.0 99.2 99.2 0.0
 letter-a 98.4 98.4 0.0 98.6 98.6 0.0 98.9 98.9 0.0
 income 92.0 92.0 0.0 94.5 94.5 0.0 92.4 92.4 0.0
 stock 80.4 80.4 0.0 90.3 90.3 0.0 86.3 86.3 0.0
 hepatitis 84.0 84.0 0.0 86.2 80.7 -5.6 89.3 89.3 0.0
 physics 68.9 75.3 6.5 75.1 75.2 0.1 62.6 75.0 12.4
 german 73.2 73.2 0.0 69.5 73.0 3.5 68.1 71.6 3.5
 crx 70.1 70.1 0.0 60.3 75.1 14.9 60.4 73.6 13.2
 bands 67.0 67.0 0.0 61.4 61.4 0.0 65.3 65.3 0.0
 boa1 55.0 57.0 2.0 51.0 56.9 6.0 52.6 57.5 5.0

1-NNDecision TreesBayes
Dataset

The results in Table 14 indicate that our combinatorial fusion
method is also effective for accuracy. While most of the data sets
show no improvement, only in one case did the combinatorial
fusion strategy lead to a decrease in accuracy. In contrast, in ten
cases there was an increase in accuracy. In virtually every case
where the accuracy remains the same, the combinatorial fusion
strategy did not add any fused features. Similar to what we saw
for AUC, the naïve Bayes method shows the least improvement.

5. RELATED WORK
There has been a significant amount of work on feature min-
ing/feature construction and so in this section we only mention
some representative work. One way to organize work in this area
is by the operator used to combine the features. In our work, for
example, numeric features are combined by mapping their feature
values (i.e., scores) to ranks and then averaging the values of these
ranks.

One approach is to assume that the features represent Boolean
values and then use the standard logical operators (e.g., ∧,∨) to
combine the features[2]. Other methods, such as the X-of-N
method [21] differ in some ways but can nonetheless be used to
implement most of the logical operators. These logic-based meth-
ods require that categorical features and numerical features first be
mapped into Boolean values. This is not necessarily difficult,

since data reduction algorithms already exist for this (e.g., C4.5
[17] can generate binary splits for numerical features), but this
step loses information and, especially for numerical features, may
not be a natural choice. This mapping can also lead to other prob-
lems. For example, with decision trees, repeatedly partitioning a
numeric feature into binary values can lead to data fragmentation,
whereas our method actually reduces this problem by allowing
one to combine multiple numeric features directly.

Other methods are much more ambitious in the operators they
implement. For example, some systems implement multiple
mathematical operators, such as “+”, “-“, “×”, and “÷”, and rela-
tional operators such as “≤” and “≥” [1, 15]. Because these sys-
tems provide a richer set of operators than we do, it is not feasible
to try all possible combinations, such as our exhaustive fusion
strategies. These methods rely on more complex, search-based,
heuristic methods. Thus our method has the advantage of simplic-
ity. Again, a key difference is that our method combines ranks,
whereas this other work combines the scores.

It is informative to describe our work using a general framework
for feature construction that has been proposed [13]. This frame-
work involves the following four steps: 1) detection of when fea-
ture construction is required, 2) selection of constructors, 3) gen-
eralization of the selected constructors, and 4) evaluation of the
new features. The first step involves detecting when there is a
need for feature construction. We use a “no detection” policy
since we always perform feature construction. Other options
would be to only construct features when the classifier that is
initially produced fails to meet a pre-specified requirement (e.g.,
accuracy is too low). The next step involves selecting the con-
structors to use, which in our case is simple since we only have a
single constructor (i.e., combination operator). We do not general-
ize during the feature construction process, so our work is not an
example of constructive induction. Finally, we evaluate our new
features by tentatively adding them to the classifier one at a time,
based on their ranked performance, but only keep the feature if we
are statistically confident that it will improve classifier perform-
ance.

Feature selection [8], which involves determining which features
are useful and should be selected, is often mentioned in the same
context as feature construction. Although we did not discuss fea-
ture selection in this paper, we have used the techniques in this
paper to implement feature selection and plan to investigate this
topic in the future. In particular, the measure of feature perform-
ance that is introduced in this paper can be used to select the most
useful features and to prune feature with low performance.

6. CONCLUSION
This paper examined how a method from information fusion could
be applied to feature construction. This method was described in
detail and then three combinatorial fusion strategies were evalu-
ated on ten data sets and three learning methods. This combinato-
rial feature-fusion method was applied to numeric features and our
results were quite positive, especially for the data sets with the
greatest class imbalance. When measuring AUC, the methods
were of greatest benefit to the decision tree learning method, al-
though it also substantially improved the performance of the 1-
nearest neighbor method. Our results also indicate that this
method is effective at improving accuracy.

The work described in this can be extended in many ways. While
the ten data sets we analyzed is a reasonable number of data sets,
it clearly would be a benefit to evaluate our methods on additional
data sets, including several additional, highly imbalanced, data
sets. It would also be interesting to evaluate additional combinato-
rial feature-fusion strategies, other than the three we evaluated in
this paper. However, we suspect more complex fusion strategies
will not yield substantial further improvements, so we do not view
this as a critical limitation of our current work.

We also think that our basic algorithm can be extended in a few
ways. First, although we rank our features and feature combina-
tions and then evaluate their performance based on their correla-
tion with minority-class examples, these are only used to deter-
mine the order in which the fused features are considered for in-
clusion. We plan on evaluating heuristic methods, which would
prune feature combinations that perform poorly. This would en-
able us to evaluate more complex fusion schemes with similar
effort or to improve the computational performance of the algo-
rithm. In this same vein, we also wish to consider simplifying the
method for deciding whether to add a feature. Currently we use a
validation set and only add a feature if the improvement in per-
formance passes a statistical significance test. While there are
benefits to this strategy, it also increases the computational re-
quirements of the algorithm.

Finally, we would like to apply our combinatorial method to nu-
meric features using operators that do more than average the ranks
of the features. While this would greatly expand the space of pos-
sible combinations, it could lead to further improvements.

7. REFERENCES
[1] Bloedorn, E. and Michalski, R.S. Data-driven constructive

induction in AQ17-PRE: a method and experiments. Pro-
ceedings of the Third International Conference on Tools,
1991.

[2] Blum, A. and Langley, P. Selection of relevant features and
examples in machine learning. Artificial Intelligence, De-
cember 1997, 97(1-2):245-271.

[3] Bradley, A. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recogni-
tion, 30, 7(July 1997), 1145-1159.

[4] Chan, P.K., and Stolfo, S.J. Toward scalable learning with
non-uniform class and cost distributions: a case study in
credit card fraud detection. In Proceedings of the Fourth In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD ’98), (New York, NY, Aug. 27-31, 1998),
AAAI Press, 1998, 2001, 164-168.

[5] Cohen, W., Schapire, R., and Singer, Y. Learning to order
things. Journal of Artificial Intelligence Research, 10 (1999),
243-270.

[6] Flach, P. and Lavrac, N. The role of feature construction in
inductive rule learning. In: Proceedings of the ICML2000
workshop on Attribute-Value and Relational Learning: cross-
ing the boundaries, 2000.

[7] Gryzmala-Busse, J. W., Zheng, Z., Goodwin, L. K., and
Gryzmala-Busse, W. J. An approach to imbalanced data sets

based on changing rule strength. In Learning from Imbal-
anced Data Sets: Papers from the AAAI Workshop (Austin,
TX, July 31, 2000), AAAI Press, 2000.

[8] Guyon, I., and Elisseef, A. An introduction to variable and
feature selection, Journal of Machine Learning Research, 3
(2003), 1157-1182.

[9] Hsu, D.F., Chung, Y. and Kristal, B. Combinatorial fusion
analysis: methods and practices of combining multiple scor-
ing systems. Advanced Data Mining Technologies in Bioin-
formatics. Hershey, PA: Idea Group Publishing; 2006, 32–62.

[10] Hsu, D. F., and Taksa, I. Comparing rank and score combina-
tion methods for data fusion in information retrieval, Infor-
mation Retrieval, 8, 3 (2005), 449-480.

[11] Ma, C., Zhou, D. and Zhou, Y. Feature mining and integra-
tion for improving the prediction accuracy of translation ini-
tiation sites in eukaryotic mRNAs. In Fifth International
Conference on Grid and Cooperative Computing Workshops,
2006, 349-356.

[12] Markov, Z., Russell, I.. An introduction to the WEKA data
mining system. In Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Sci-
ence Education. 2006, 367–368.

[13] Matheus, C.J. and Rendell, L.A. Constructive induction on
decision trees. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989, 645-650.

[14] Newman, D. J., Hettich, S., Blake, C.L., and Merz, C. J. UCI
repository of machine learning databases
[http://www.ics.usi.edu/~mlearn/MLRepository.html]. Irvine,
CA: University of California, Department of Information and
Computer Science. 1998.

[15] Otero, F., Silva, M., Freitas, A. and Nievola, J. Genetic pro-
gramming for attribute construction in data mining. In Pro-
ceedings of 6th European Conference, April 14-16, 2003.

[16] Provost, F., Fawcett, T., and Kohavi, R. The case against
accuracy estimation for comparing classifiers. In Proceedings
of the Fifteenth International Conference on Machine Learn-
ing (ICML ‘98) (Madison, Wisconsin, July 24-27, 1998),
Morgan Kaufmann, 1998, 445-453.

[17] Quinlan, J. R. C4.5: Programs for machine learning. Mor-
gann Kaufmann, San Mateo, CA, 1993.

[18] Scott, S. and Matwin, S., Feature engineering for text classi-
fication. In Proceedings of the Sixteenth International Con-
ference on Machine Learning, 1999, 379-388.

[19] Weiss, G. M. Mining with rarity: a unifying framework.
SIGKDD Explorations, 6, 1 (Dec. 2004), 7-19.

[20] Weiss, G. M., and Hirsh, H. Learning to predict rare events
in event sequences. In Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD ’98), (New York, NY, Aug. 27-31, 1998), AAAI Press,
1998, 359-363.

[21] Zheng, Z.J. Constructing X-of-N attributes for decision tree
learning. Machine Learning, 40, 1 (2000), 35-75.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

