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ABSTRACT 
This paper demonstrates how methods borrowed from information 
fusion can improve the performance of a classifier by constructing 
(“fusing”) new features that are combinations of existing numeric 
features. This work is an example of local pattern analysis and 
fusion because it identifies potentially useful patterns (i.e., feature 
combinations) from a single data source. In our work, we fuse 
features by mapping the numeric values for each feature to a rank 
and then averaging these ranks.  The quality of the fused features 
is measured with respect to how well they classify minority-class 
examples, which makes this method especially effective for deal-
ing with data sets that exhibit class imbalance. This paper evalu-
ates our combinatorial feature fusion method on ten data sets, 
using three learning methods. The results indicate that our method 
can be quite effective in improving classifier performance, al-
though it seems to improve the performance of some learning 
methods more than others. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Feature construction, classification, class imbalance, information 
fusion, combinatorial fusion analysis 

1. INTRODUCTION 
The performance of a classification algorithm is highly dependent 
on the descriptions associated with each example. For this reason, 
practitioners typically spend a great deal to time making sure that 
these descriptions are accurate and capture the key aspects of the 
data. A good practitioner will choose the features used to describe 
the data very carefully. However, deciding which information to 
encode and how to encode it in a feature is quite difficult and the 
best way to do so depends not only on the domain, but on the 
learning method. For this reason, there have been a variety of 
attempts over the years to automate part of this process. This work 
has had a variety of names over the years (although sometimes the 
emphasis is different) and has been called constructive induction 
[13], feature engineering [18], feature construction [6] and feature 

mining [11]. In this paper we discuss how existing numerical fea-
tures can be combined, without human effort, in order to improve 
classification performance. This work can also be considered an 
example of local pattern analysis and fusion because we identify 
potentially useful patterns in the data (i.e., feature combinations) 
from a single data source. 
The work described in this paper is notable for several reasons. 
First, unlike the majority of work in this area, we are specifically 
concerned with improving the performance of data with substan-
tial class imbalance. Such problems, although quite challenging, 
are quite common and are typical in domains such as medical 
diagnosis [7], fraud detection [4], and in predicting equipment 
failures [20]. Furthermore, there are reasons to believe that this 
important class of problems has the most to benefit from feature 
construction, since some learners may not be able to detect subtle 
patterns that only become apparent when several features are ex-
amined together [19]. Our work also differs from other work in 
that our feature combination operator does not directly use the 
values of the component features but rather their ranks. This al-
lows us to combine numerical features in a meaningful way, with-
out worrying about issues such as scaling. This approach is par-
ticularly appropriate given the increased interest in the use of 
ranking in the data mining [10] and machine learning communities 
[5].  Our approach also can be viewed as an extension of work 
from the information fusion community, since techniques similar 
to the ones we use in this paper have been used to “fuse” informa-
tion from disparate sources [9]. The work in this paper can be 
viewed as a specific type of information fusion, which we refer to 
as feature fusion (yet another term for feature construction). 

We describe our combinatorial feature-fusion method in detail in 
Section 2 and then describe our experimental methodology in 
Section 3. Our experiments will evaluate our combinatorial fea-
ture-fusion strategy on ten data sets, using three learning methods 
(naïve Bayes, decision trees, and nearest-neighbor). The results 
from these experiments are described and analyzed in Section 4. 
We then discuss related work in Section 5. We finish by discuss-
ing our main conclusions and areas for future work in Section 6. 

2. COMBINATORIAL FEATURE FUSION 
This section describes the basic combinatorial feature-fusion 
method. We begin by providing some basic background informa-
tion in Section 2.1. In Section 2.2 we describe our combinatorial 
feature-fusion algorithm. 

2.1 Background 
Our combinatorial feature-fusion method constructs new features 
by combining old features. In Section 2.1.1 we introduce some 
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basic terminology and describe how features are combined, or 
fused. Then in Section 2.1.2 we discuss a variety of strategies for 
selecting the features to be fused. The algorithm described in Sec-
tion 2.2 will then describe how the fusion strategy and fusion 
mechanism can be used to construct a set of features that will 
often improve classifier performance. 

2.1.1 Terminology and Basic Steps 
In this section we will use a simple example to help explain the 
relevant terminology and preliminary steps related to feature fu-
sion. This example will also be used in Section 2.2 to help explain 
the feature-fusion algorithm. Please note that because our feature-
fusion method only works with numeric features, for simplicity 
we assume all features are numeric. Non-numeric features are not 
a problem in practice—they simply will be passed to the classifier, 
unchanged. 

A data set is made up of examples, or records, each of which has a 
fixed number of features. Consistent with previous work on in-
formation fusion [9,10], we view the value of a feature as a score. 
Typical examples of scores are a person’s salary, a student’s exam 
score, and a baseball pitcher’s earned run average. Note that in the 
first two cases a higher score is desirable and in the last case a 
lower one is to be preferred. 
Table 1 introduces our sample data set. This data set contains 
eight examples, labeled A-H, with five numeric features, F1-F5, 
and a binary class variable with values 0 or 1. In this example 
class 1 is the minority class and comprises 3/8 or 37.5% of the 
examples. 

Table 1: A sample dataset 

 F1 F2 F3 F4 F5 Class 
A 1 4 3 2 8 1 
B 3 3 5 5 4 0 
C 5 5 2 6 7 1 
D 7 6 15 3 2 0 
E 11 13 16 7 14 0 
F 15 16 4 13 11 0 
G 9 7 14 1 18 1 
H 17 15 9 8 3 0 

 
Early in our combinatorial feature-fusion method we replace each 
score (i.e., feature value) with a rank, where a lower rank is better. 
We convert each score into a rank using a rank function. In this 
paper the rank function adheres to the standard notion of a rank. 
We sort the score values for each feature in either increasing or 
decreasing order and then assign the rank based on this ordering. 
Table 2 shows the values of the features for the sample data set 
after the scores have been replaced by ranks. In this case the ranks 
were assigned after sorting the feature values in increasing order. 
As a specific example, because the three lowest values for F3 in 
Table 1 are 2, 3, 4 and these values appear in rows C, A, and F, 
respectively, the ranks in Table 2 for F2 for records C, A, and F 
are 1, 2, and 3, respectively. 

We determine whether the ranks should be assigned based on 
increasing or decreasing order of the score values by determining 
the performance of the feature using both ordering schemes and 

then we use the ordering that yields the best performance (we 
describe how to compute a feature’s performance shortly). In our 
method, once the scores are replaced with a rank they are never 
used again. The rank values are used when combining features and 
when invoking the learning algorithm (i.e., the rank values are 
used as the feature values). 

Table 2:  Sample data set with scores replaced by ranks 

  F1 F2 F3 F4 F5 
A 1 2 2 2 5 
B 2 1 4 4 3 
C 3 3 1 5 4 
D 4 4 7 3 1 
E 6 6 8 6 7 
F 7 8 3 8 6 
G 5 5 6 1 8 
H 8 7 5 7 2 

Next we show how to compute the “performance” of a feature. 
This performance metric essentially measures how well the rank 
of the feature correlates with the minority-class examples. That is, 
for a feature, do the examples with a good rank tend to belong to 
the minority class? We explain how to compute this performance 
metric using feature F2 from our sample data set.  First, we sort 
the records in the data set by the rank value of F2. The results are 
shown in Table 3. The performance of F2 is then computed as the 
fraction of the records at the “top” of the table that belong to the 
minority class. How many records do we look at? The number of 
records is based on the percentage of minority-class examples in 
the training data. In this case 3 of 8 of the training examples 
(37.5%) belong to the minority class so we look at the top 3 re-
cords. In this example that means that the performance of F2 is 
2/3, the number of class “1” values in the top 3 records (recall that 
“1” is the minority-class value). Given this scheme, the best per-
formance value that is achievable is 1.0. 

Table 3: Ranked list for F2 

 F2 Rank Class 
B 1 0 
A 2 1 
C 3 1 
D 4 0 
G 5 1 
E 6 0 
H 7 0 
F 8 0 

We may similarly compute the performances for all of the indi-
vidual features. For this simple example, F1–F4 all have perform-
ances of 2/3 and F5 has a performance of 0. Table 4 shows the 
performances of each of the original “unfused” features. In this 
overly simplified example, four of the features all have the same 
performance. 



Table 4: Performance values for original features 

Feature 
Perform-

ance 
F1 0.67 
F2 0.67 
F3 0.67 
F4 0.67 
F5 0.00 

This method is also used to compute the performance of the com-
bined (i.e., fused) features. However, to do this we need to deter-
mine the rank of a fused feature, so we can sort the examples by 
this rank. We compute this using a rank combination function. 
Our rank combination function averages the ranks of the features 
to be combined. This is done for each record. As an example, 
suppose we want to fuse features F1–F5 and create a new feature, 
F1F2F3F4F5, which we will call F6. Table 5 shows the rank val-
ues for F6 for all eight records. The value for F6 for record A is 
computed as: (Rank(F1) + Rank(F2) + Rank(F3) + Rank(F4) + 
Rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. We see that for this new 
feature, record “A” has the best (lowest) rank. Given these values, 
one can now compute the performance of the feature F6. Note that 
even though the values in Table 5 are not integers, we can still 
consider them ranks. In order to compute the performance of F6, 
we only need to be able to sort by these values. 

Table 5: Rank values for F6 (F1F2F3F4F5) 

  F6  F6 

A 2.4 E 6.6 

B 2.8 F 6.4 

C 3.2 G 5.0 

D 3.8 H 5.8 

2.1.2 Combinatorial Fusion Strategies 
The previous section introduced the terminology and basic steps 
required by our combinatorial fusion algorithm, but did not dis-
cuss how we decide which features to fuse. We discuss that topic 
in this section. There are many possible strategies for choosing 
features to “fuse.” In this paper we consider combinatorial strate-
gies that look at all possible combinations. However, because this 
is generally not feasible, due to the number of features that would 
be introduced, we consider some more restrictive strategies. Let n 
equal the number of numeric features available for combination. 
To look at all possible combinations would require that we try 
each single feature, all pairs of features, all triples, etc. The total 
number of combinations would therefore equal C(n,1) + C(n,2) 
+ … C(n, n), which equals 2n – 1. We refer to such a combinato-
rial fusion strategy as a fully-exhaustive fusion strategy. 
We consider more restrictive variants of the fully-exhaustive fu-
sion strategy because, depending on the value of n, this strategy 
may not be practical. The k-exhaustive fusion strategy will create 
all possible combinations using k of the n numeric features (k < n). 
For example, a 6-exhaustive strategy for a data set with 20 nu-
meric features will select 6 numeric features and then fuse them in 
all possible ways. Doing so will reduce the number of feature 

combinations by a factor of 214. In our algorithm we choose the 
subset of k features based on the performance values for the fea-
tures, such as the ones in Table 4. Because it will not be expensive 
to include all of the original features, we also include the n – k 
original features not used in the fusion process. The 6-exhaustive 
fusion strategy is one of the three strategies analyzed in this paper. 
The k-exhaustive fusion strategy trades off a reduced number of 
features for the ability to fully combine these features. In some 
cases it may be better to involve more features in the fusion proc-
ess, even if they cannot be fused in all possible ways. The k-fusion 
strategy will use all n numeric features, but the length of the fused 
features is limited to length k.  Thus if we have a data set with 20 
numeric features and employ 2-fusion, all possible combinations 
of single features and pairs of features will be generated. This 
would yield C(20,1) + C(20,2) = 20 + 190 = 210 features. Simi-
larly, 3-fusion would consider C(20,1) + C(20, 2) + C(20, 3), or 
1140 feature combinations. 
Table 6 shows the number of features generated by the different 
fusion strategies. In all cases, as stated before, all original features 
are included (there are C(n,1) of these). Note that some cells are 
empty since k ≤ n. If k = n then the value computed is displayed in 
bold and corresponds to the fully-exhaustive strategy. Table 6 
demonstrates that, given a limit on the number of features we can 
evaluate, we have a choice of fusion strategies. For example, 
given ten numeric features, one can use all ten features and gener-
ate combinations of length four, which would generate 385 fea-
tures, or instead select the seven best ones and then fuse those in 
all possible ways (i.e., up to length 7), which would generate 
about 127 features (actually 130 since we would include the three 
original features which were excluded). 

Table 6: Combinatorial fusion table 

k-fusion for values of k shown below Number 
Features 1 2 3 4 5 6 7 8 9 10 

1 1          
2 2 3         
3 3 6 7        
4 4 10 14 15       
5 5 15 25 30 31      
6 6 21 41 56 62 63     
7 7 28 63 98 119 126 127    
8 8 36 92 162 218 246 254 255   
9 9 45 129 255 381 465 501 510 511  

10 10 55 175 385 637 847 967 1012 1022 1023

2.2 The Combinatorial Fusion Algorithm 
We now describe the algorithm for performing the combinatorial 
fusion. This algorithm is summarized in Table 7. We explain this 
algorithm by working through a complete example, based on the 
data set introduced in Table 1 of Section 2.1. 
For this example, we will use the 5-exhaustive strategy, so that we 
select the five best performing features and then fuse them in all 
possible ways. On line 1 of the algorithm in Table 7 we pass into 
the Comb-Fusion function the data, the features, a k value of 5 and 



a value of True for the Exhaustive flag. As mentioned previously, 
the data and features are from Table 1. The next few steps were 
already described in Section 2.1.1. First we convert the scores to 
ranks (line 3). We then calculate the performance of each of the 
original (unfused) features, in the loop from lines 4-6. Then in 
lines 7-11 we determine which features are available for fusion. 
Since the Exhaustive flag is set, we restrict ourselves to the k best 
features (otherwise all features are available although they then 
may not be fused in all possible ways). 

Table 7: The feature-fusion algorithm 

1. Function Comb-Fusion (Data, Features, k, Exhaustive) 
2. {   
3.    ConvertScoresToRanks(Data, Features); 
4.    for (f=1, f ≤ length(Features) , f++){ 
5.           Perf[f]=CalculatePerformance(f); 
6.   } 

7.   if (Exhaustive == TRUE) { 
8.         FeaturesForFusion = best k features from Perf[]; 
9.   } else { 
10.        FeaturesForFusion = Features; 
11.   } 

12.   New = FuseFeatures(FeaturesForFusion, k, Exhaustive); 

13.   for (f=1, f ≤ length(New) , f++){ 
14.         CalculateRank(f); 
15.         Perf2[f]=CalculatePerformance(f); 
16.   } 
17.    Sort(Perf2); 
18.    Candidates = Perf2.features; 

19.   // We now build up the final feature set 
20.   Keep = Features; // always use original features 
21.   partition(Data, *TrainValid, Test); 
22.    for (f in Candidates) 
23.   { 
24.         for (run=1; run ≤ 10, run++) 
25.        { 
26.             partition(TrainValid, *Training, *Validation); 

27.             classifier = build-classifier(Training, Keep); 
28.             PerfWithout[run] = evaluate(classifier, Validation); 
29.             cand = pop(Candidates); 

30.             classifier=build-classifier(Training, Keep ∪ cand); 
31.              PerfWith[run] = evaluate(classifier, Validation); 
32.        } 

33.        if ( average(PerfWith[ ]) > average(PerfWithout[ ]) ) 
34.        { 
35.               pval = t-test(PerfWith[], PerfWithout[]); 
36.               if (pval ≤ .10) { 
37.                   Keep = Keep ∪ cand; 
38.               } 
39.        } 
40.   }  // end for (f in Candidates) 

41.   final-classifier = build-classifier(Training, Keep); 
42.   final-performance = evaluate(Test, Keep); 

43. } // end Function Comb-Fusion 

The actual generation of the fused features occurs on line 12. In 
this case, the five best features in FeaturesForFusion will be com-
bined in all possible ways (in this example there are only five 
features to begin with). Given our decision to always include the 
original features to the classifier, the original features need not be 
returned by FuseFeatures (they are handled later on line 20). 
Next, on lines 13-16 we calculate the rank for each fused feature 
and then calculate its performance. This is essentially the same 
steps that were done earlier for the original, unfused, features. We 
then sort the features by decreasing performance value (line 17) 
and then extract the features from this sorted list and save them 
(line 18) in Candidates, the ordered list of candidate fused fea-
tures. The results for our simple example are shown in Table 8. 
We show only the 14 best performing fused features. In this case 
Candidates would equal {F3F4, F1F2, F1F3, …}. 

Table 8: Performance values for 5-exhaustive strategy 

Priority Feature Perf. Priority Feature Perf. 
1 F3F4 1 8 F1F2F4 0.67 
2 F1F2 0.67 9 F1F3F4 0.67 
3 F1F3 0.67 10 F1F3F5 0.67 
4 F2F3 0.67 11 F2F3F4 0.67 
5 F2F4 0.67 12 F3F4F5 0.67 
6 F3F5 0.67 13 F1F2F3F4 0.67 
7 F1F2F3 0.67 14 F1F2F3F5 0.67 

We have now completed the first half of the algorithm. In the 
second half, starting at line 19, we decide which of the Candidate 
features to include in the final feature set. We begin by initializing 
Keep to the set of original features. We then partition the data 
(line 21) into one set to be used for training and validation and 
another for testing. Beginning on line 22 we iterate over all of the 
fused features in the Candidate set.  
A key question is how we determine when to add a feature. Even 
though a feature has a good performance score, it may not be use-
ful. For example, the information encoded in the feature may be 
redundant with the features already included in the feature set. We 
adopt a pragmatic approach and only add a feature if it improves 
classifier performance on the validation set and the improvement 
is statistically significant. To determine this, within this main loop 
in the second half of the algorithm (lines 22 – 40) we execute ten 
runs (lines 24 – 32), repeatedly partitioning the training data into a 
training set and a validation set (line 26). If, averaged over the 10 
runs (line 33) the classifier generated with the candidate feature 
(line 30) outperforms the classifier generated without it (line 28), 
and the p-value returned by the t-test (line 35) is ≤ .10 (line 36), 
then we add the feature to Keep (line 37). A p-value ≤ .10 means 
that we are 90% confident that the observed improvement reflects 
a true improvement in performance. In steps 41 and 42 we build 
the final classifier and evaluate it on the test set. 
We should point out a few things. First, the actual implementation 
is more efficient (although slightly more difficult to describe). In 
the actual implementation we only need to build one classifier in 
the main loop, since the classifier from the previous iteration, and 
its performance, is still available. Similarly, we do not need to 
rebuild the classifier as indicated on line 41. The performance of 
the classifier can be measured using either AUC or accuracy, and 
we use both measures in our experiments. 



Table 9 shows the behavior of our simple example as each feature 
is considered. We only show the performance for the first 3 fea-
tures. The last column indicates the feature being considered and a 
“+” indicates that it is added while the lack of this symbol indi-
cates that it is not added because the conditions on lines 33 and 36 
are not both satisfied. Each row corresponds to an iteration of the 
main loop starting at line 22 in the algorithm. The first row is 
based on the classifier built from the original feature set, contain-
ing features F1-F5. Note that the first and third features that are 
considered are added, because they show an improvement in AUC 
and the p-value is ≤ .10. As we add features we also measure the 
performance of each classifier on the test set, although this is not 
used in any of the decision making. The AUC for the test set at the 
end is reported, however. If we stopped the algorithm after the 
three iterations, we can conclude that the performance improved 
from an AUC of .682 to .774. It is of course critical not to use the 
test set results to determine whether to add a feature. 

Table 9: The execution of the algorithm on a simple example 

AUC Feature 
valid test 

p-value 
(+ means added)

0.670 0.682 -- {F1,F2,F3,F4,F5}
0.766 0.757 0.001 +F3F4 

0.731   F1F2 

0.771 0.774 0.063 +F1F3 

3 DESCRIPTION OF EXPERIMENTS 
In this section we provide the background necessary to understand 
our experiments. In Section 3.1 we describe the datasets employed 
in our empirical study and in Section 3.2 we describe the three 
learning methods that we utilize. Section 3.3 then describes our 
experimental methodology. 

3.1 Datasets 
The ten data sets used in our study are described in Table 10. The 
first field provides the data set name, the second the percentage of 
examples belonging to the minority class, the third specifies the 
final number of features and the last column lists the data set size. 
The data sets are ordered in terms of decreasing class imbalance. 

Table 10: The Data Sets                                         

Dataset 
Name 

% Minority 
Class 

Number 
Features 

Dataset
Size 

 protein+ 0.59 14 20,000 
 letter-a* 3.9 15 20,000 
 income*+ 5.9 12 10,000 
 stock*+ 9.9 27 7,112 
 hepatitis* 19.8 12 500 
 physics+ 24.9 8 20,000 
 german* 30.0 19 1,000 
 crx*+ 44.1 5 450 
 bands*+ 42.2 13 538 
 boa1+ 49.8 25 5,000 

The data sets come from a few sources. The hepatitis, bands, in-
come and letter-a data sets were obtained from the UCI machine 
learning repository [14] and the crx data set was provided in the 
Data directory that came with the C4.5 code. The boa1 data set 
was obtained from researchers at AT&T and has been used in 
previous published work. The physics and bio data sets are from 
the 2004 KDD CUP challenge.  The stock data set was provided 
by New York University’s Stern School of Business. 

In order to simplify the presentation and the analysis of our re-
sults, data sets with more than two classes were mapped to two-
class problems. This was accomplished by designating one of the 
original classes, typically the least frequently occurring class, as 
the minority class and then mapping the remaining classes into the 
majority class. The data sets that originally contained more than 
two classes are identified with an asterisk (*). The letter-a data set 
was generated from the letter-recognition data set by making the 
letter “a” the minority class. Because we are only employing fea-
ture fusion for the numeric features, we deleted any non-numeric 
features from the data sets. While this is not necessary, since our 
method could just ignore the non-numeric fields, we did this so 
that we could better determine the impact of the feature fusion 
method. The data sets that had any non-numeric features are iden-
tified with a “+”. 

3.2. Learning Methods 
All of the learning methods that we use in this paper come from 
the WEKA data mining software [12]. The three learning methods 
that we use are Naïve Bayes, decision trees and 1-nearest 
neighbor. The decision tree algorithm is called J48 in WEKA and 
is an implementation of the C4.5 algorithm.  The 1-nearest 
neighbor algorithm is referred to as IB1 in WEKA. 

3.3. Experimental Methodology 
The experiments in our study apply a combinatorial feature-fusion 
strategy to each of the ten data sets listed in Table 10 and then 
record the performance with and without the fusion strategy. This 
performance is measured in terms of the area under the ROC 
curve (AUC), because ROC analysis [3] is a more appropriate 
performance metric than accuracy when there is class imbalance.  
Nonetheless, we repeat some of our experiments with accuracy as 
the performance metric, since doing so it quite straightforward and 
accuracy is still a very commonly used performance metric. The 
three combinatorial fusion strategies that are evaluated are the 2-
fusion, 3-fusion and 6-exhaustive fusion strategies described in 
Section 2. In this study we utilize the three learning algorithms 
listed in Section 3.2 in order to see how the feature-fusion method 
benefits each algorithm. In the algorithm in Table 7 the data is 
partitioned such that 50% is used for training, 20% for validation, 
and 30% for testing. 

4. RESULTS 
In this section we describe our main results. Because we are inter-
ested in improving classifier performance on data sets with class 
imbalance, and because of the known deficiencies with accuracy 
as a performance metric [16], we use AUC as our main perform-
ance measure. These AUC results are summarized in Table 11. 
The results are presented for ten data sets using the Naïve Bayes, 
decision tree, and 1-NN learning methods. Three combinatorial 
fusion strategies are evaluated: 2-Fusion (2-F), 3-fusion (3-F) and 
6-Exhaustive (6-EX). The AUC results are presented first without 



(w/o) and then with (w) the combinatorial fusion strategy. The 
“diff” column shows the absolute improvement in AUC resulting 
from the combinatorial fusion strategy, with negative values indi-
cating that combinatorial fusion degraded the performance. 

Table 11: AUC Improvement with Combinatorial Fusion 

w/o w Diff w/o w Diff w/o w Diff
2-F .923 -.020 .752 .256 .663 .164
3-F .954 .010 .742 .247 .651 .152
6-EX .926 -.017 .759 .264 .663 .164
2-F .963 .000 .943 .021 .961 .024
3-F .960 -.003 .919 -.003 .937 .000
6-EX .962 -.001 .937 .014 .961 .024
2-F .901 .000 .736 .241 .612 .020
3-F .897 -.004 .734 .239 .621 .028
6-EX .900 -.001 .739 .245 .612 .020
2-F .762 .037 .755 .260 .575 .051
3-F .767 .043 .751 .255 .578 .054
6-EX .769 .044 .747 .252 .564 .040
2-F .869 .005 .755 .000 .803 -.016
3-F .868 .004 .759 .004 .826 .007
6-EX .864 .000 .760 .005 .821 .002
2-F .498 .000 .499 .000 .504 .000
3-F .506 .008 .499 .000 .495 -.008
6-EX .506 .008 .499 .000 .504 .000
2-F .751 .011 .609 .118 .607 -.001
3-F .723 -.017 .606 .115 .593 -.015
6-EX .736 -.004 .654 .162 .609 .000
2-F .762 .000 .646 .000 .653 .014
3-F .779 .017 .670 .024 .673 .034
6-EX .755 -.007 .722 .076 .667 .028
2-F .779 .029 .611 .108 .559 -.096
3-F .747 -.003 .603 .099 .644 -.012
6-EX .744 -.006 .580 .076 .655 .000
2-F .596 .024 .538 .041 .509 -.005
3-F .602 .031 .548 .050 .509 -.006
6-EX .589 .018 .553 .056 .509 -.005

physics .498 .499 .504

bio .943 .496 .499

income .901 .494 .593

boa1 .571 .497 .515

letter-a .963 .922 .937

bands .750 .504 .655

crx .762 .646 .639

.725 .496 .524

hepatitis .864 .755 .819

1-NN

german .740 .492 .609

Dataset Strat.
Bayes Decision Trees

stock

 

The results in Table 11 indicate that the combinatorial feature 
fusion method is effective. The results appear to be most positive 
for the decision tree learning method. The overall impact of the 
methods is shown in Table 12, which summarizes the results of 
the ten data sets. Table 12 shows the summarized results for each 
combinatorial fusion strategy and learning method. It displays the 
average absolute improvement in AUC as well as the win-lose-
draw (W-L-D) record over the 10 data sets. 

Table 12: Summarized AUC Results for Ten Data Set 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0.009 5-1-4 0.105 7-0-3 0.016 5-4-1
3-fusion 0.009 6-4-0 0.103 8-1-1 0.023 5-4-1

6-exhaustive 0.003 3-6-1 0.115 9-0-1 0.027 6-1-3

Bayes DT 1-NN

 

The results form both tables indicate that decision trees benefit 
most from combinatorial fusion, with the one-nearest neighbor 
learning method showing the second-best improvement. Because 

the maximum AUC value is 1.0, even an average improvement of 
.023 (for 1-NN using the 3-fusion strategy) is quite substantial. 
We believe that the decision tree algorithm improves the most 
because it is incapable of learning combinations of numeric fea-
tures, because it can only examine a single feature at a time 
(oblique decision trees are not subject to this limitation). That is, 
decision trees operate by making axis-parallel cuts in the “concept 
space” and because of this limitation, it cannot correctly learn a 
simple concept such as x + y = 1 (although it can approximate it). 
However, with our combinatorial feature fusion method, we 
would expect a traditional decision tree to easily learn such a con-
cept. 

The results do not demonstrate that any of the three combinatorial 
feature-fusion strategies is a clear winner over the other two. The 
6-exhaustive strategy does perform the best for decision trees and 
one-nearest neighbor, but performs the worst for naïve Bayes. 
Since the 3-fusion strategy subsumes the 2-fusion strategy (i.e., it 
generates a superset of the features generated by the 2-fusion strat-
egy) it is worthwhile to compare these two strategies. Because the 
results are quite similar, the best we can say is that the results are 
comparable. Our individual results do show that with the 3-fusion 
method some 3-fused features are generated and used in the final 
feature set, so we can conclude that the strategies do differ in what 
features are used (the same is true of the 6-exhaustive strategy). 
The fact that the 2-fusion strategy performs competitively with the 
others may indicate that in practice most of the potential benefits 
that one can achieve with our combination operator can be 
achieved by combining only two features. 

We can analyze the results in Table 11 to determine if the combi-
natorial feature fusion method is most effective for data sets with 
the highest levels of class imbalance. The first four data sets listed 
in the table all have less than 10% of the data set belonging to the 
minority class (i.e., have a class ratio greater than 9:1). Table 13 
shows the average AUC performance over just these four data 
sets. 

Table 13: Summarized AUC Results for 4 Skewed Datasets 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D
2-fusion 0.004 1-1-2 0.195 4-0-0 0.065 4-0-0
3-fusion 0.012 2-2-0 0.185 3-1-0 0.059 3-0-1

6-exhaustive 0.006 1-3-0 0.194 4-0-0 0.062 4-0-0

Bayes DT 1-NN

 

The results in Table 13, when compared to Table 12, show that the 
combinatorial fusion method is substantially more beneficial, 
when using the decision trees and one-nearest neighbor method, 
for the most skewed data sets (i.e., the ones with the most class 
imbalance). Between these two methods, the improvement aver-
ages about twice the improvement over the ten data sets. The 
Bayes method shows an improvement in AUC also, but given the 
win-loss-tie record this is less convincing. Because of the limited 
number of datasets analyzed, these results cannot be considered 
conclusive, but nonetheless are quite suggestive. There are two 
explanations for the more substantial improvement for the most 
highly skewed data sets. First, because the performance measure 
described in Section 2 is based on the correlation between the 
fused feature and the minority-class examples, the features that are 



more likely to improve minority-class performance are considered 
first. This makes them more likely to be added, since adding other 
features first might obscure these improvements. Secondly, it is 
often quite difficult to identify “rare cases” and algorithms that 
look at multiple features in parallel are more likely to find the 
subtle classification rules that might otherwise get overlooked [19]. 

Although our primary interest is in improving classifier perform-
ance with respect to the area under the ROC curve, our method 
can be used to improve accuracy as well. We repeated a subset of 
our experiments, using accuracy instead of AUC to determine 
whether adding a fused feature improves the performance of the 
classifier with the required level of statistical confidence. Table 14 
provides the results when using the 2-fusion strategy. We did not 
repeat these experiments for the other two strategies because AUC 
is our primary measure of interest and because the three strategies 
appear to perform similarly. 

Table 14: Accuracy Results using 2-Fusion Strategy 

w/o w Diff w/o w Diff w/o w Diff
 bio 98.8 98.8 0.0 99.4 99.4 0.0 99.2 99.2 0.0
 letter-a 98.4 98.4 0.0 98.6 98.6 0.0 98.9 98.9 0.0
 income 92.0 92.0 0.0 94.5 94.5 0.0 92.4 92.4 0.0
 stock 80.4 80.4 0.0 90.3 90.3 0.0 86.3 86.3 0.0
 hepatitis 84.0 84.0 0.0 86.2 80.7 -5.6 89.3 89.3 0.0
 physics 68.9 75.3 6.5 75.1 75.2 0.1 62.6 75.0 12.4
 german 73.2 73.2 0.0 69.5 73.0 3.5 68.1 71.6 3.5
 crx 70.1 70.1 0.0 60.3 75.1 14.9 60.4 73.6 13.2
 bands 67.0 67.0 0.0 61.4 61.4 0.0 65.3 65.3 0.0
 boa1 55.0 57.0 2.0 51.0 56.9 6.0 52.6 57.5 5.0

1-NNDecision TreesBayes
Dataset

 

The results in Table 14 indicate that our combinatorial fusion 
method is also effective for accuracy. While most of the data sets 
show no improvement, only in one case did the combinatorial 
fusion strategy lead to a decrease in accuracy. In contrast, in ten 
cases there was an increase in accuracy. In virtually every case 
where the accuracy remains the same, the combinatorial fusion 
strategy did not add any fused features. Similar to what we saw 
for AUC, the naïve Bayes method shows the least improvement. 

5. RELATED WORK 
There has been a significant amount of work on feature min-
ing/feature construction and so in this section we only mention 
some representative work. One way to organize work in this area 
is by the operator used to combine the features. In our work, for 
example, numeric features are combined by mapping their feature 
values (i.e., scores) to ranks and then averaging the values of these 
ranks. 

One approach is to assume that the features represent Boolean 
values and then use the standard logical operators (e.g., ∧,∨) to 
combine the features[2]. Other methods, such as the X-of-N 
method [21] differ in some ways but can nonetheless be used to 
implement most of the logical operators. These logic-based meth-
ods require that categorical features and numerical features first be 
mapped into Boolean values. This is not necessarily difficult, 

since data reduction algorithms already exist for this (e.g., C4.5 
[17] can generate binary splits for numerical features), but this 
step loses information and, especially for numerical features, may 
not be a natural choice. This mapping can also lead to other prob-
lems. For example, with decision trees, repeatedly partitioning a 
numeric feature into binary values can lead to data fragmentation, 
whereas our method actually reduces this problem by allowing 
one to combine multiple numeric features directly.   

Other methods are much more ambitious in the operators they 
implement. For example, some systems implement multiple 
mathematical operators, such as “+”, “-“, “×”, and “÷”, and rela-
tional operators such as “≤” and “≥” [1, 15]. Because these sys-
tems provide a richer set of operators than we do, it is not feasible 
to try all possible combinations, such as our exhaustive fusion 
strategies. These methods rely on more complex, search-based, 
heuristic methods. Thus our method has the advantage of simplic-
ity. Again, a key difference is that our method combines ranks, 
whereas this other work combines the scores.  

It is informative to describe our work using a general framework 
for feature construction that has been proposed [13]. This frame-
work involves the following four steps: 1) detection of when fea-
ture construction is required, 2) selection of constructors, 3) gen-
eralization of the selected constructors, and 4) evaluation of the 
new features. The first step involves detecting when there is a 
need for feature construction. We use a “no detection” policy 
since we always perform feature construction. Other options 
would be to only construct features when the classifier that is 
initially produced fails to meet a pre-specified requirement (e.g., 
accuracy is too low). The next step involves selecting the con-
structors to use, which in our case is simple since we only have a 
single constructor (i.e., combination operator). We do not general-
ize during the feature construction process, so our work is not an 
example of constructive induction.  Finally, we evaluate our new 
features by tentatively adding them to the classifier one at a time, 
based on their ranked performance, but only keep the feature if we 
are statistically confident that it will improve classifier perform-
ance. 

Feature selection [8], which involves determining which features 
are useful and should be selected, is often mentioned in the same 
context as feature construction. Although we did not discuss fea-
ture selection in this paper, we have used the techniques in this 
paper to implement feature selection and plan to investigate this 
topic in the future. In particular, the measure of feature perform-
ance that is introduced in this paper can be used to select the most 
useful features and to prune feature with low performance. 

6. CONCLUSION 
This paper examined how a method from information fusion could 
be applied to feature construction. This method was described in 
detail and then three combinatorial fusion strategies were evalu-
ated on ten data sets and three learning methods.  This combinato-
rial feature-fusion method was applied to numeric features and our 
results were quite positive, especially for the data sets with the 
greatest class imbalance. When measuring AUC, the methods 
were of greatest benefit to the decision tree learning method, al-
though it also substantially improved the performance of the 1-
nearest neighbor method. Our results also indicate that this 
method is effective at improving accuracy.  



The work described in this can be extended in many ways. While 
the ten data sets we analyzed is a reasonable number of data sets, 
it clearly would be a benefit to evaluate our methods on additional 
data sets, including several additional, highly imbalanced, data 
sets. It would also be interesting to evaluate additional combinato-
rial feature-fusion strategies, other than the three we evaluated in 
this paper. However, we suspect more complex fusion strategies 
will not yield substantial further improvements, so we do not view 
this as a critical limitation of our current work. 

We also think that our basic algorithm can be extended in a few 
ways. First, although we rank our features and feature combina-
tions and then evaluate their performance based on their correla-
tion with minority-class examples, these are only used to deter-
mine the order in which the fused features are considered for in-
clusion. We plan on evaluating heuristic methods, which would 
prune feature combinations that perform poorly. This would en-
able us to evaluate more complex fusion schemes with similar 
effort or to improve the computational performance of the algo-
rithm. In this same vein, we also wish to consider simplifying the 
method for deciding whether to add a feature. Currently we use a 
validation set and only add a feature if the improvement in per-
formance passes a statistical significance test. While there are 
benefits to this strategy, it also increases the computational re-
quirements of the algorithm. 

Finally, we would like to apply our combinatorial method to nu-
meric features using operators that do more than average the ranks 
of the features. While this would greatly expand the space of pos-
sible combinations, it could lead to further improvements. 
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