
Using Rules in Object-Oriented Designs

Daniel Dvorak
Anil Mishra

Johannes P. Ros
Anoop Singhal

Gary Weiss
AT&T Network & Computing Services

Diane Litman
AT&T Research

Abstract

System requirements often express some of the behavior of a domain model in the form of poli-
cies, constraints, invariants, and rules. Although an object-oriented approach helps with the
design of this model, theimplementation is often cluttered with details necessary to enforce the
model's policies and constraints. As a result, the code is more prone to error and is more difficult
to maintain since it tends to obscure the model’s fundamental structure. R++, a rule-based exten-
sion to C++, allows developers to express policies and constraints more clearly in the form of
path-based rules. Since the rule evaluation mechanism is automatic, R++ rules enable developers
to focus onwhat to do when a rule evaluates to TRUE, rather than onhow andwhen these evalua-
tions should be carried out. It is the absence of this mechanism in the source code, and the use of
these rules in an object-oriented implementation that makes the code easier to maintain and makes
for a clearer reflection of the underlying model.

Category: Experience Report

Contact: Anil Mishra, room 2C-053
 AT&T Network & Computing Services
 480 Red Hill Road
 Middletown, NJ 07748

 email: anil@hrmaple.hr.att.com
 phone: (908) 615-4552
 fax: (908) 615-5579

Note to Reviewers

The lessons presented in this report were derived from our experience in applying R++ to a large
telephone-switch monitoring application. The key points in this report arenot about the applica-
tion but rather about how path-based rules can help in object-oriented designs. Thus, to make the
lessons more accessible to a general audience, we have generalized the ideas and eliminated
domain-specific jargon.

For those who wish to know more about this application, its basic activity is the analysis of alarms
from a largely self-checking switching system. This application uses an object model to represent
the hierarchical structure of components in the switch and the functional relationships among
those components. The application employs about 50 rules, used in three main capacities: (1) to
maintain integrity of the domain model by enforcing invariants and detecting constraint viola-
tions, (2) to propagate alarm information through the model, and (3) to monitor for conditions that
require technicians to be alerted. The application is driven by alarm messages and timeout events
which trigger all monitoring and diagnosis activities [Crawford et al., 1995].
__

Situation–Action Requirements

Many system requirements are of the form “when situationx occurs, perform actiony”. Such
requirements, which define automatic behavior within a domain model, appear variously as
invariants, business policies, engineering rules, domain laws, constraints, audits, and state transi-
tions. At first glance, such requirements seem easy to implement; just insert tests for situationx in
all the right places, and if the test is satisfied, perform actiony. The example in the following sec-
tion illustrates just how error-prone this seemingly simple approach can be.

Example: Enforcing a Policy

When a telephone company “provisions” a telephone line (such as the one serving your home),
they activate any special services the customer has requested, such as “call-waiting” and/or “call-
forwarding”. These two services, however, shouldnot be activated if the telephone line is con-
nected to a public pay phone; it’s a business policy.

An object model for this domain contains two kinds of objects: Line and Station (“Line” refers to
a port on the telephone switching system and “Station” refers to the equipment connected to the
line, such as a public pay phone). Reflecting the physical connection, there is a pointer from a
Line object to a Station object.

Line Station
 ...
 call_waiting: true
 call_forwarding: false
 stationp:
 ...

...
 type: Pay_Phone

To enforce the policy that a pay phone cannot have call-waiting or call-forwarding, code must be
placed in four different access functions, as shown below in C++ code. This code enforces the
policy no matter what order events occur within the application. Although this code is correct and

relatively simple, it is error-prone in two important ways. First, because the implementation of the
policy resides in four different functions, and because each function sees the policy from a
slightly different perspective, the implementation is vulnerable to errors of omission and duplica-
tion. Second, and more seriously in terms of long-term maintenance of code, the original policy
does not “jump out” from reading the code; it takes four separate functions to implement one very
simple policy. Although the policy and associated code may have been clear to the initial pro-
grammer, the poor maintenance programmer who has to modify the code some day (possibly
because the policy has changed) has to findall the places where the policy was enforced. In this
case the four places are divided between two classes, making the task even more prone to errors
of neglect. Further, a programmer who has to modify one of the four functions forother reasons
may inadvertently break the policy-enforcement. In short, the source of all these difficulties is that
the programming language does not provide a single programming construct for expressing and
enforcing situation–action directives.

 // Code for enforcing the policy about pay phones.

 void Line::set_call_waiting(Boolean b)
 { call_waiting = b;
 if (call_waiting && (stationp->type == Pay_Phone))
 { call_waiting = false;
 cout << "Error: ...";
 }
 }
 void Line::set_call_forwarding(Boolean b)
 { call_forwarding = b;
 if (call_forwarding && (stationp->type == Pay_Phone))
 { call_forwarding = false;
 cout << "Error: ...";
 }
 }
 void Line::set_stationp(Station *p)
 { stationp = p;
 if ((call_waiting || call_forwarding) &&
 (stationp->type == Pay_Phone))
 { call_waiting = call_forwarding = false;
 cout << "Error: ...";
 }
 }
 void Station::set_type(int t)
 { type = t;
 if ((type == Pay_Phone) &&
 (linep->call_forwarding || linep->call_waiting))
 linep->call_waiting = linep->call_forwarding = false;
 }

Using Rules in R++ to Enforce Policies

R++ is a small extension to C++ that adds a single new programming construct: arule. Rules are
data-driven since they are triggered automatically by changes to the data that they monitor, and
thus are well-suited to enforcing situation–action requirements such as policies and invariants and
constraints. In contrast to other rule languages, rules in R++ arepath-based rather than pattern-
matching. This enables rules to be treated as a new kind of class member that adds data-driven
object-centered behavior to a class [Crawford et al., 1996b]. For more information about R++, see
http://www.research.att.com/orgs/ssr/people/dvorak/r++.

The example below illustrates how the pay-phone policy is expressed in a single R++ rule. This

rule (and every rule) has a condition and an action. The semantics are that whenever the condition
becomes true the action is executed. Literally, this rule says “whenever a line object has call-wait-
ing or call-forwarding, and it has an associated station, and that station is a pay-phone, then report
the mistake and reset the call-waiting and call-forwarding flags.”

There are obvious and not-so-obvious benefits of using rules to express and enforce policies like
this. One obvious benefit is that there is now a one-to-one mapping between a policy and its code.
This makes it not only easier for the original programmer to encode the policy but alsomuch eas-
ier for any subsequent programmers to see and understand such policies. This kind of clarity pays
real dividends in the long maintenance phase of typical applications.

A second benefit of rules is that they are triggered automatically by any changes in the values of
variables monitored in the rule condition. As long as all monitored variables are modified through
R++-defined access functions, R++ ensures that the appropriate rules are triggered in response to
changes. This means that the programmer of a rule does not have to worry aboutwhere andwhen
to test the rule condition; instead he/she can focus onwhat condition the rule should watch for and
what action to take when it occurs. Not only does this simplify the thought process of the pro-
grammer, it also eliminates clutter in the application logic. It also makes programs more robust
because, while a programmer might neglect to insert a test somewhere, the compilation of rules
by R++ guarantees that all rule triggering is inserted automatically.

A third benefit of R++ is that it reduces the conceptual complexity of the information flow among
the objects. Message passing in object-oriented programming requires the programmer to be cog-

 rule Line::public_phone_check {
 (call_waiting || call_forwarding) &&
 Station *s = stationp &&
 s->type == PAY_PHONE
 =>
 cout << "Error: ...";
 set_call_waiting(false);
 set_call_forwarding(false);
 }

class name rule name

{

{

condition

action

nizant of the information flow, which may exhibit complex bi-directional relationships between
objects. In event-driven models, these relationships can often be separated into requests and
(asynchronous) responses. In the procedural object-oriented paradigm, it is the responsibility of
the service provider to send the responses (events) back to the corresponding requester, which
requires back-pointer maintenance. R++ provides this back-pointer mechanism automatically as a
result of the requestermonitoring the service provider. By relieving the programmer of back-
pointer bookkeeping, R++ effectively reduces the perceived complexity of the information flow to
a directed acyclic graph.

A final benefit of R++ is that rules are organized by the type hierarchy and are inherited and over-
ridden in a way similar to virtual functions. For instance, in the pay-phone policy example, the
public_phone_check rule is associated with theLine object. This organization makes it easier to
find, understand, and maintain the rules. Existing rule-based systems, such as OPS5, provide no
such organizing principle for rules.

Effect of Rules on System Engineering

Object-oriented design creates a model of a problem domain — a mini-world, in effect, that oper-
ates according to its own laws and policies and constraints. For the model to work correctly, it’s
essential that such laws and policies and constraints be consistently enforced in an application.
Since R++ makes that easy to do, we have been encouraging our systems engineers to try to
clearly identify three categories of rule-like requirements: (1) “things that mustalways be true”,
such as invariants, laws of nature, business policies, and engineering rules; (2) “things that must
never be true”, such as constraint violations and logical impossibilities; and (3) “expected reac-
tions”, such as propagation of information, state transitions, warnings, and logical consequences
of changes. Interestingly, it is easier to do this when one is first learning the domain; the more
experienced systems engineers have internalized so much domain knowledge that they can’t artic-
ulate it completely.

Caveats

We have noticed three disadvantages in using R++. The first is that compilation times have
increased. Part of the increase is in the time needed to run the R++ translator, but the larger part is
in increased C++ compilation time. The C++ code emitted by the translator is larger and the emit-
ted code uses several template classes; template instantiation is notoriously slow in some C++
compilers. A second [short-term] disadvantage is that it takes time for programmers to adjust to
the paradigm shift, where data-driven computation can be used to express some things more
clearly than in conventional object-oriented programming. The third disadvantage is that object-
oriented development tools (and methodologies) don’t yet incorporate the idea of rules (or situa-
tion–action directives), so the current tools provide no help in working with and debugging rules.

Conclusion

Our experience using R++ in an industrial application encourages us in the belief that the addition
of path-based rules brings significant benefits to object-oriented programming. The purpose of a
programming language is to reduce the gap between what youwant to say and what youhave to

say1. R++ reduces the gap between what we want to say (invariants, constraints, business poli-
cies, engineering rules, etc.) and what we have to say (one rule instead of multiple functions). The
three most important benefits of R++ are, in our experience, the one-to-one mapping from
requirements to code, thewhat-rather-than-when style of thinking that it encourages, and the eas-
ier way of managing asynchronous information flow among objects.

Acknowledgments

We would like to thank our management, especially Ron Brachman, Pramod Warty, Raj Dube,
and Jennifer Thien for their support of this project. We also owe a lot to James Crawford and Peter
Patel-Schneider for shaping the R++ language and implementing the R++ translator. Finally, we
thank Walid Saba for the implementation of some of these ideas using R++.

References

[Crawford, 1990] James Crawford. Access-Limited Logic-A language for knowledge representa-
tion. Ph.D. thesis, department of Computer Sciences, The University of Texas at Austin, 1990.
Also published as technical report AI 90-141, Artificial Intelligence Laboratory, The University
of Texas at Austin.

[Crawford et al., 1994] James Crawford, Daniel Dvorak, Diane Litman, Anil Mishra, and Peter F.
Patel-Schneider. Path-based Production Rules.Proceedings of the OOPSLA 94 workshop on
Embedded Object-Oriented Production Systems (EOOPS),F. Pachet, editor, Portland, Oregon
October 1994.

[Crawford et al., 1996a] James Crawford, Daniel Dvorak, Diane Litman, Anil Mishra, and Peter
F. Patel-Schneider. Path-Based Rules in Object-Oriented Programming. Submitted to AAAI-96.

[Crawford et al., 1996b] James Crawford, Daniel Dvorak, Diane Litman, Anil Mishra, and Peter
F. Patel-Schneider. R++: Adding Path-Based Rules to C++. Submitted to OOPSLA-96.

[Crawford and Kuipers, 1991] James M. Crawford and Benjamin Kuipers. Negation and proof by
contradiction in access-limited logic. InProceedings of the Ninth National Conference on Artifi-
cial Intelligence, pages 897-903, Anaheim, California, July 1991. American Association for Arti-
ficial Intelligence.

[Crawford et al., 1995] James Crawford, Daniel Dvorak, Diane Litman, Anil Mishra, and Peter F.
Patel-Schneider.Device representation and reasoning with affective relation. InProceedings of the

1. Thanks to Brian Kernighan for this insightful comment.

14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1814-1820, Mon-
treal, August 1995.

