
A Comparison of Alternative Client/Server Architectures for
Ubiquitous Mobile Sensor-Based Applications

Gary M. Weiss

Fordham University

gweiss@cis.fordham.edu

Jeffrey W. Lockhart

Fordham University

lockhart@cis.fordham.edu

ABSTRACT

Mobile devices such as smart phones, tablet computers, and

music players are ubiquitous. These devices typically contain

many sensors, such as vision sensors (cameras), audio sen-

sors (microphones), acceleration sensors (accelerometers)

and location sensors (e.g., GPS), and also have some capabil-

ity to send and receive data wirelessly. Sensor arrays on these

mobile devices make innovative applications possible, espe-

cially when data mining is applied to the sensor data. But a

key design decision is how best to distribute the responsibili-

ties between the client (e.g., smartphone) and any servers. In

this paper we investigate alternative architectures, ranging

from a “dumb” client, where virtually all processing takes

place on the server, to a “smart” client, where no server is

needed. We describe the advantages and disadvantages of

these alternative architectures and describe under what cir-

cumstances each is most appropriate. We use our own

WISDM (WIreless Sensor Data Mining) architecture to pro-

vide concrete examples of the various alternatives.

Author Keywords sensors, sensor mining, data mining,

smartphone, ubiquitous computing, mobile computing.

ACM Classification Keywords C.2.4 [Computer Commu-

nication Networks]: Distributed Systems Client/Server

General Terms Design, Measurement, Performance, Se-

curity.

INTRODUCTION

Mobile devices possess significant and rapidly developing

computational, network, and sensing capabilities. These

devices typically contain many sensors, such as vision sen-

sors (cameras), audio sensors (microphones), acceleration

sensors (accelerometers) and location sensors (e.g., GPS),

and also are able to send and receive data wirelessly. These

mobile devices, such as smartphones, smart music players,

and tablets are now ubiquitous and smartphone sales alone

now exceed PC sales [6]. However, the sensor and network

capacity of these devices is underutilized. Most applications

only support direct user interaction (e.g. reading email,

making calls, playing games) and the potential for ubiqui-

tous smart sensing applications which run continuously in

the background is largely unexplored.

As the next wave of ubiquitous computing applications is

developed to take advantage of and integrate the sensors on

these devices into intelligent systems, questions about the

architecture of these systems will be critical [4]. Designing

ubiquitous systems for these platforms presents a number of

unique challenges. Although smart devices have unprece-

dented computing, memory, and network capacities for mo-

bile sensor platforms, they are still very limited in their re-

sources. Mobile devices must have reasonable battery life

and performance when running other applications: mobile

sensing is still only a secondary concern to activities like

making calls, reading emails, and browsing the web on these

devices. Network resources are also critical to users, who

may have expensive data plans or limited network access for

their devices. In order to navigate these concerns, it is im-

portant to consider the advantages of different architectures

for ubiquitous sensor-based applications. The “Code in the

Air” mobile sensing application development platform makes

the architecture decisions for developers, pushing all respon-

sibilities to the phone except those which require data from

multiple devices [7]. We believe that this is not always the

most efficient or desirable distribution of responsibilities

given limited device resources and researcher/developer in-

terests.

Throughout this paper we will use our own Actitracker [1]

application to illustrate alternative ways of partitioning re-

sponsibilities between the client and the server. This applica-

tion utilizes our activity recognition research [3] to recognize

a person's physical activity using the accelerometer in their

Android smartphone, and then presents this activity infor-

mation to the user via a graphical user interface. Actitracker

is built on top of our WISDM (Wireless Sensor Data Mining)

platform [5], which will ultimately allow the client and server

responsibilities to be partitioned in a number of different

ways.

CLIENT/SERVER RESPONSIBILITIES

In this section we describe how responsibilities can be di-

vided between the mobile client and the server. We talk

about “client/server responsibilities” rather than “cli-

ent/server architectures” because we feel the former term is

more accurate and focused, although the latter term certain-

ly is appropriate.

Basic Responsibilities for Sensor-Based Applications

In order to describe alternative ways to partition responsi-

bilities between the client and server, we need to first iden-

tify the component tasks of sensor-based applications.

While these responsibilities could be broken up in many

ways—based on the specific application and on the level of

Copyright is held by the author/owner(s).

This material is based upon work supported by the National Science
Foundation under Grant No. 1116124.
UbiComp’12, September 5-8, 2012, Pittsburgh, USA.

ACM 978-1-4503-1224-0/12/09.

granularity at which these responsibilities are represented—

we feel that the following list is reasonably general and

applicable to a wide range of applications. Nonetheless, the

list is undoubtedly influenced by our recent work [3, 5, 8]

and also by the data mining/knowledge discovery paradigm.

However, we have tried to generalize the terminology be-

low so that it is not restricted to data mining applications.

The first four steps are generally viewed as sequential,

while the last step occurs outside of this sequence (it could

occur before, during, or after the other steps). Some of the

steps may not be present for all applications.

1. Sensor Collection: This includes the measurement and

recording of the raw sensor data.

2. Data Processing and Transformation: This involves sim-

ple modifications to the raw data as well as data trans-

formation that may summarize/aggregate the data to a

different level.

3. Decision Analysis/Model Application: This involves the

application of some decision process to the data, which

for data mining applications usually involves applying a

predictive model. This will generate results that can be

viewed as knowledge.

4. Data and Knowledge Reporting: This involves storing

the results and presenting them either periodically or on

demand. The results may trigger responses or automated

actions by the system.

 Learning/Model Generation: This involves learning from

the data to generate some form of decision strategy or

predictive model.

Table 1. Basic Responsibilities for Sensor-Based Applications

We use our Actitracker application in “dumb client” mode

to illustrate what the responsibilities in Table 1 entail and

how they can be partitioned between a mobile client and a

server. Because these responsibilities occur sequentially we

refer to them as “steps.” In step 1 Actitracker collects the

raw accelerometer data from the smart phone 20 times per

second and then sends it to the server. Then, in step 2, every

10 seconds the server aggregates the resulting 200 raw

samples into a single example, which describes the data

using several dozen features, such as average accelera-

tion [3]. This step is omitted in the framework created by

Lane et al. [4] based on a survey of existing systems, but we

feel that it is an architecturally significant step. Next, in step

3, a classification model, which was previously built using

labeled training data, is applied to the generated examples

to identify the activity that the user is performing. In step 4

the identified activity is saved for future use, and at some

point later this information will be viewed by the user, most

likely via a web-based interface.

The learned model can be generated via classifier induction

methods (e.g., decision trees or neural networks) at various

points. Our impersonal models are generated using labeled

data from other people and hence may have been built in

the distant past, while personal and hybrid models use data

from the current user, and thus would be built after the user

entered a training phase [8].

Alternative Schemes for Partitioning Responsibilities

Because the basic responsibilities in Table 1 are usually ap-

plied sequentially, they can be partitioned in only a limited

number of meaningful ways. Table 2 indicates the possible

partitions by specifying the client responsibilities (all other

responsibilities are assumed to be done by the server). The

client configurations (CC) specify these responsibilities and

vary from CC-1, a dumb client, to CC-4, a smart client that

assumes all responsibilities and does not require a server. In

the following, we defer the discussion of model generation

until the end.

 Client Configuration

Responsibility
CC-1

Dumb

CC-2 CC-3 CC-4

Smart

1 Sensor Collection

2
Data

Transformation

3
Model

Application

4 Reporting

Model

Generation
 ? ?

Table 2. Four Basic Client Configurations

Client configuration 1, CC-1, is a “dumb” client in that it

assumes the minimum possible responsibility; it collects the

sensor data and transmits it to the server, which then assumes

the other responsibilities. CC-2 assumes a bit more responsi-

bility and processes and/or transforms the raw data before

sending it to the server. This will usually reduce the amount

of data that needs to be transmitted, since the transformed

data is usually much smaller than the raw data. CC-3 applies

the decision process on the client and the results are then

transmitted to and stored on the server so that they can be

viewed via the web. Finally, CC-4 provides everything on the

client, including the reporting function, thus avoiding the

need for a server.

Thus far we have not covered the model creation step, where

learning occurs. This step is needed for intelligent applica-

tions. Model creation may occur on the client or on the serv-

er, although it is only recently that mobile devices have be-

come powerful enough to run sophisticated machine learning

algorithms. It makes little sense to create a model on a client

and then not apply that model to the data on the client, so

CC-1 and CC-2 will not normally perform model generation.

In CC-3 the model is executed on the client, which may or

may not generate the model; we refer to the variant that per-

forms model generation on the client as CC-3MG. Because it

is often very simple to apply a model, as is the case with de-

cision trees or rules, but computationally intensive to con-

struct one, CC-3, and not CC-3MG, may be the best choice for

many applications. In CC-3, the model can be either hard-

coded in the client (based on learning that occurred before

the software was coded) or generated by the server and

downloaded to the client. Similarly for CC-4, the “smart”

client, the model may be generated before the client is in-

stalled and packaged with the client or it can be generated on

the client (CC-4MG). Neither configuration requires a server.

In our WISDM platform, our initial work supported CC-1,

which in many ways is the simplest to implement. We are

currently making enhancements to the client to support CC-2

and CC-3. Implementing CC-3 to move the models to the

smartphone will only require a modest amount of work, since

we use the WEKA data mining suite [10] to build our mod-

els, and WEKA can export models as Java code, which An-

droid smartphones can run natively. We may implement

CC-3MG as well, if model generation with our data set does

not over-tax the device. We do not plan to implement CC-4,

since we want to provide web-based reporting capabilities.

COMPARISON OF CLIENT/SERVER PARTITIONS

Each partition of client and server responsibilities has its own

benefits and drawbacks. Before we can compare the various

alternatives, we need to identify the factors that will form the

basis of the comparison. These factors are described below:

 Resource Usage: Mobile devices contain limited battery

power, processing, memory, and transmission bandwidth,

all of which must be conserved.

 Scalability: The architecture should be scalable in terms

of the number of mobile sensor devices.

 Access to Data: Developers and/or researchers will often

want full access to the data, including the raw data, for fu-

ture use (transformed data loses some information).

 Privacy/Security: Users will often want to maintain the

privacy of their data and keep it secure.

 User Interface: Users will want the best interface possible,

where “best” factors in aesthetics as well as ability to

view the results on multiple platforms.

 Application Restrictions: Some applications will require a

central server to aggregate data from multiple users or de-

vices, or to make data available to external systems.

We now analyze each of these factors, one at a time, with

respect to the various client/server responsibilities. The CC-1

dumb client configuration keeps the client simple, which

reduces processing and memory requirements, but requires

the raw data to be transmitted to the server. Since the trans-

formed data will take up less space than the raw data, CC-2

will make less use of the wireless radio. When using our

WISDM architecture to support the activity recognition ap-

plication, ten seconds worth of raw data takes up 3.1kB,

while the resulting transformed example takes up only 176

bytes, a reduction of nearly 95%. Cellular data network con-

nections often charge based on the amount of data transmit-

ted, so there is financial incentive to limit transmissions. Ad-

ditionally, wireless network connections require large

amounts of power to transmit data, so reducing network use

saves power. But computationally intensive data processing

and data transformations, such as Fourier Transforms, can

rapidly negate the power savings. If the CPU is overused,

device performance and other applications may suffer, and

the processor's battery use will exceed the power required for

Bluetooth and Wi-Fi transmissions (3G cellular radio re-

quires even more power). In such cases it may be more effi-

cient to transmit the raw data and have the computationally

intensive processing occur on the server.

CC-3 requires some extra computing power to apply the

model or decision logic. This power will be minimal for rule

or tree based logic, and extensive for algorithms like nearest-

neighbor, where most of the work is done at classification

time. However, in this case only the results need to be trans-

mitted over the network; for Actitracker that could be repre-

sented in 1 Byte, which would encode the user’s activity. In

this case it is not clear whether less power would be used,

especially considering the overhead involved in establishing

and maintaining wireless network connections. Finally, CC-4

would require no network access and use the same pro-

cessing power as CC-3, except to the extent that viewing the

results on the phone will consume some processing and dis-

play power. Overall, it is not clear which client configuration

will use the least power, although we are fairly sure that

CC-2 would be more power efficient than CC-1. At all stag-

es, the hardware, protocols, and algorithms used will have

significant impact on power consumption. However, within

the next year we may have empirical results for CC-1, CC-2,

and CC-3, for Actitracker.

With respect to memory and clock cycles, as the client takes

on more work, the amount of memory and CPU time con-

sumed by the application will grow. Given all of these fac-

tors, it is not clear which client configuration performs best

with respect to overall resource usage. This question is best

answered empirically, although there are many factors that

may make it difficult to generalize from a single platform.

Scalability is a much easier factor to assess—the more func-

tionality that is moved to the client, the more scalable the

architecture. Ultimately the smart client is perfectly scalable,

since no server is required and the client performs all tasks.

In Actitracker's CC-1 dumb client configuration, the server

requires 1 minute to process and store 1 minutes worth of

data from 942 simultaneous users (on a server with 8 pro-

cessing cores running at 2.26 GHz and 24 GB of RAM). We

find that we do not exceed 25% total CPU use and 5GB

RAM use, because the server is limited by the rate we can

commit results to our MySQL database, which is hosted on

the same machine. With an additional server to store the da-

tabase we might be able to support three or four thousand

users simultaneously, but clearly there are scalability issues if

we wanted to support millions of users.

As researchers who would like to preserve every piece of

data, CC-1 is the optimal client configuration. Our transfor-

mation process involves summarizing the accelerometer data

with high level features such as average acceleration. Over

time, we may certainly decide to alter our data transformation

process and incorporate additional features. If we have the

raw data, we can apply our new data transformation scripts

and evaluate our results. However, once we move to CC-2

we lose this ability. Maintaining all of this raw data comes at

a steep price, however, in the form of data transmission costs

as well as the cost of preserving all of this data on the server.

Given that we sample every 50ms, a single user will generate

791MB of raw data in a month. Once we move to CC-3, only

the results are sent to the server. This drastically reduces the

historical data we maintain on the server, while still preserv-

ing the results. For our Actitracker application that means

that we know when and how much time each person spends

walking, sitting, etc., which is mainly all we need to know

from an application perspective. Finally, with the smart client

configuration, there is no server to send data to and hence no

information will be generally available (unless we are permit-

ted to query the mobile device, but that only has limited stor-

age space). It is for these reasons that our project will contin-

ue to use the CC-1 configuration for some clients even after

we have implemented some of the other configurations.

On the other hand, privacy and security favor the smart client

configuration, in which no data or knowledge leaves the mo-

bile devices. But for many applications, there may not be

much a difference between CC-1, CC-2, and CC-3 in terms

of security and privacy because the aggregated information

may be almost as sensitive as the raw data. For example,

aggregated GPS information that describes the regions that

someone occupied might be as sensitive as the raw GPS trac-

es, even though the latter contains more detailed information.

Overall, privacy is a key reason for preferring the smart client

configuration, although good security measures (e.g., en-

crypting data during transmission) can help address the pri-

vacy concerns. But even when data is kept on one’s mobile

device, it is still not completely private or secure, since the

device can be stolen or compromised. This can partially be

addressed by encrypting the data that is stored on the device.

A central server can enhance the user interface both by mak-

ing data available to one's desktop or other large displays and

by making data available from anywhere over the web rather

than only on the device which generates it. Additionally, a

central server can help the user share or compare her data

with friends or colleagues and via social networks.

Finally, some applications will benefit from a central server

performing analytics on group or aggregate data. For exam-

ple, traffic applications need access to the locations and

speeds of multiple users, while home automation may require

accounting for the needs of multiple occupants or gathering

data from multiple sensing devices. Such applications will

require client configurations CC-1 or CC-2 since they require

the server to have access to data from multiple devices.

CONCLUSION

In this paper we described four basic models for distrib-

uting client and server responsibilities for ubiquitous sensor

applications. This framework is then used to evaluate the

comparative advantages and disadvantages of the different

client/server architectures. Applications which do more

processing on the mobile device will inherently be more

scalable and use less bandwidth, but they will encounter

other resource barriers. Further, some applications will need

central servers to report data in a user-friendly way, or to

process data aggregated from several devices. Finally, re-

searchers and developers have incentives to maintain as

much data as possible on the server, while users who desire

privacy will prefer to keep data and information on the mo-

bile devices. Ultimately each system must balance these

concerns based on the needs of the application and the us-

ers. In our Actitracker application, we aim to implement

multiple schemes, so that a researcher or user could in theo-

ry choose the one they find most appropriate. Such a solu-

tion could also work for future commercial systems.

REFERENCES

1. Actitracker. http://actitracker.com

2. Android, Google. http://www.android.com

3. Kwapisz, J., Weiss, G.M., and Moore, S.A. Activity

recognition using cell phone accelerometers. ACM

SIGKDD Explorations, 12(2):74-82.

4. Lane, N.D., Miluzzo, E., Hong Lu, Peebles, D.,

Choudhury, T., and Campbell, A.T. A survey of mobile

phone sensing. Communications Magazine, IEEE

Vol.48, 9 (Sept. 2010): 140-150.

5. Lockhart, J.W., Weiss, G.M., Xue, J.C., Gallagher, S.T.

Grosner, A.B., and Pulickal, T.T. Design considerations

for the WISDM smart phone-based sensor mining archi-

tecture. Proc. 5
th

 International Workshop on Knowledge

Discovery from Sensor Data, San Diego, CA (at KDD-

2011): 25-33.

6. Menn, J. Smartphone shipments surpass PCs. February

8, 2011. Retrieved from

http://www.ft.com/cms/s/2/d96e3bd8-33ca-11e0-b1ed-

00144feabdc0.html

7. Ravindranath, L., Thiagarajan, A., Balakrishnan, H., and

Madden S. Code in the air: simplifying sensing and co-

ordination tasks on smartphones. Proc. HotMobile’12

San Diego, CA.

8. Weiss, G.M., Lockhart, J.W. The impact of personaliza-

tion on smartphone-based activity recognition. Proc. of

the Activity Context Representation Workshop, Toronto,

Canada (at AAAI-2012).

9. WIreless Sensor Data Mining (WISDM) Lab.

http://www.cis.fordham.edu/wisdm

10. Witten, I.H. and Frank, E. Data Mining: Practical Ma-
chine Learning Tools and Techniques. 2

nd
 Ed. 2005.

