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ABSTRACT 

Mobile devices such as smart phones, tablet computers, and 

music players are ubiquitous. These devices typically contain 

many sensors, such as vision sensors (cameras), audio sen-

sors (microphones), acceleration sensors (accelerometers) 

and location sensors (e.g., GPS), and also have some capabil-

ity to send and receive data wirelessly. Sensor arrays on these 

mobile devices make innovative applications possible, espe-

cially when data mining is applied to the sensor data. But a 

key design decision is how best to distribute the responsibili-

ties between the client (e.g., smartphone) and any servers. In 

this paper we investigate alternative architectures, ranging 

from a “dumb” client, where virtually all processing takes 

place on the server, to a “smart” client, where no server is 

needed. We describe the advantages and disadvantages of 

these alternative architectures and describe under what cir-

cumstances each is most appropriate. We use our own 

WISDM (WIreless Sensor Data Mining) architecture to pro-

vide concrete examples of the various alternatives. 

Author Keywords   sensors, sensor mining, data mining, 

smartphone, ubiquitous computing, mobile computing. 

ACM Classification Keywords  C.2.4 [Computer Commu-

nication Networks]: Distributed Systems Client/Server  

General Terms   Design, Measurement, Performance, Se-

curity. 

INTRODUCTION 

Mobile devices possess significant and rapidly developing 

computational, network, and sensing capabilities. These 

devices typically contain many sensors, such as vision sen-

sors (cameras), audio sensors (microphones), acceleration 

sensors (accelerometers) and location sensors (e.g., GPS), 

and also are able to send and receive data wirelessly. These 

mobile devices, such as smartphones, smart music players, 

and tablets are now ubiquitous and smartphone sales alone 

now exceed PC sales [6]. However, the sensor and network 

capacity of these devices is underutilized. Most applications 

only support direct user interaction (e.g. reading email, 

making calls, playing games) and the potential for ubiqui-

tous smart sensing applications which run continuously in 

the background is largely unexplored.  

As the next wave of ubiquitous computing applications is 

developed to take advantage of and integrate the sensors on 

these devices into intelligent systems, questions about the 

architecture of these systems will be critical [4]. Designing 

ubiquitous systems for these platforms presents a number of 

unique challenges. Although smart devices have unprece-

dented computing, memory, and network capacities for mo-

bile sensor platforms, they are still very limited in their re-

sources. Mobile devices must have reasonable battery life 

and performance when running other applications: mobile 

sensing is still only a secondary concern to activities like 

making calls, reading emails, and browsing the web on these 

devices. Network resources are also critical to users, who 

may have expensive data plans or limited network access for 

their devices. In order to navigate these concerns, it is im-

portant to consider the advantages of different architectures 

for ubiquitous sensor-based applications. The “Code in the 

Air” mobile sensing application development platform makes 

the architecture decisions for developers, pushing all respon-

sibilities to the phone except those which require data from 

multiple devices [7]. We believe that this is not always the 

most efficient or desirable distribution of responsibilities 

given limited device resources and researcher/developer in-

terests. 

Throughout this paper we will use our own Actitracker [1] 

application to illustrate alternative ways of partitioning re-

sponsibilities between the client and the server. This applica-

tion utilizes our activity recognition research [3] to recognize 

a person's physical activity using the accelerometer in their 

Android smartphone, and then presents this activity infor-

mation to the user via a graphical user interface. Actitracker 

is built on top of our WISDM (Wireless Sensor Data Mining) 

platform [5], which will ultimately allow the client and server 

responsibilities to be partitioned in a number of different 

ways. 

CLIENT/SERVER RESPONSIBILITIES 

In this section we describe how responsibilities can be di-

vided between the mobile client and the server. We talk 

about “client/server responsibilities” rather than “cli-

ent/server architectures” because we feel the former term is 

more accurate and focused, although the latter term certain-

ly is appropriate. 

Basic Responsibilities for Sensor-Based Applications 

In order to describe alternative ways to partition responsi-

bilities between the client and server, we need to first iden-

tify the component tasks of sensor-based applications. 

While these responsibilities could be broken up in many 

ways—based on the specific application and on the level of 
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granularity at which these responsibilities are represented—

we feel that the following list is reasonably general and 

applicable to a wide range of applications. Nonetheless, the 

list is undoubtedly influenced by our recent work [3, 5, 8] 

and also by the data mining/knowledge discovery paradigm. 

However, we have tried to generalize the terminology be-

low so that it is not restricted to data mining applications. 

The first four steps are generally viewed as sequential, 

while the last step occurs outside of this sequence (it could 

occur before, during, or after the other steps). Some of the 

steps may not be present for all applications. 

 

1. Sensor Collection: This includes the measurement and 

recording of the raw sensor data. 

2. Data Processing and Transformation: This involves sim-

ple modifications to the raw data as well as data trans-

formation that may summarize/aggregate the data to a 

different level. 

3. Decision Analysis/Model Application: This involves the 

application of some decision process to the data, which 

for data mining applications usually involves applying a 

predictive model. This will generate results that can be 

viewed as knowledge. 

4. Data and Knowledge Reporting: This involves storing 

the results and presenting them either periodically or on 

demand. The results may trigger responses or automated 

actions by the system. 

     Learning/Model Generation: This involves learning from 

the data to generate some form of decision strategy or 

predictive model. 
 

Table 1. Basic Responsibilities for Sensor-Based Applications 

We use our Actitracker application in “dumb client” mode 

to illustrate what the responsibilities in Table 1 entail and 

how they can be partitioned between a mobile client and a 

server. Because these responsibilities occur sequentially we 

refer to them as “steps.” In step 1 Actitracker collects the 

raw accelerometer data from the smart phone 20 times per 

second and then sends it to the server. Then, in step 2, every 

10 seconds the server aggregates the resulting 200 raw 

samples into a single example, which describes the data 

using several dozen features, such as average accelera-

tion [3]. This step is omitted in the framework created by 

Lane et al. [4] based on a survey of existing systems, but we 

feel that it is an architecturally significant step. Next, in step 

3, a classification model, which was previously built using 

labeled training data, is applied to the generated examples 

to identify the activity that the user is performing. In step 4 

the identified activity is saved for future use, and at some 

point later this information will be viewed by the user, most 

likely via a web-based interface. 

The learned model can be generated via classifier induction 

methods (e.g., decision trees or neural networks) at various 

points. Our impersonal models are generated using labeled 

data from other people and hence may have been built in 

the distant past, while personal and hybrid models use data 

from the current user, and thus would be built after the user 

entered a training phase [8].  

Alternative Schemes for Partitioning Responsibilities 

Because the basic responsibilities in Table 1 are usually ap-

plied sequentially, they can be partitioned in only a limited 

number of meaningful ways. Table 2 indicates the possible 

partitions by specifying the client responsibilities (all other 

responsibilities are assumed to be done by the server).  The 

client configurations (CC) specify these responsibilities and 

vary from CC-1, a dumb client, to CC-4, a smart client that 

assumes all responsibilities and does not require a server. In 

the following, we defer the discussion of model generation 

until the end. 

  Client Configuration 

Responsibility 
CC-1 

Dumb 

CC-2 CC-3 CC-4 

Smart 

1 Sensor Collection     

2 
Data 

Transformation 
    

3 
Model 

Application 
    

4 Reporting     

 
Model 

Generation 
  ? ? 

Table 2. Four Basic Client Configurations 

Client configuration 1, CC-1, is a “dumb” client in that  it 

assumes the minimum possible responsibility; it collects the 

sensor data and transmits it to the server, which then assumes 

the other responsibilities. CC-2 assumes a bit more responsi-

bility and processes and/or transforms the raw data before 

sending it to the server. This will usually reduce the amount 

of data that needs to be transmitted, since the transformed 

data is usually much smaller than the raw data. CC-3 applies 

the decision process on the client and the results are then 

transmitted to and stored on the server so that they can be 

viewed via the web. Finally, CC-4 provides everything on the 

client, including the reporting function, thus avoiding the 

need for a server. 

Thus far we have not covered the model creation step, where 

learning occurs. This step is needed for intelligent applica-

tions. Model creation may occur on the client or on the serv-

er, although it is only recently that mobile devices have be-

come powerful enough to run sophisticated machine learning 

algorithms. It makes little sense to create a model on a client 

and then not apply that model to the data on the client, so 

CC-1 and CC-2 will not normally perform model generation. 

In CC-3 the model is executed on the client, which may or 



may not generate the model; we refer to the variant that per-

forms model generation on the client as CC-3MG. Because it 

is often very simple to apply a model, as is the case with de-

cision trees or rules, but computationally intensive to con-

struct one, CC-3, and not CC-3MG, may be the best choice for 

many applications. In CC-3, the model can be either hard-

coded in the client (based on learning that occurred before 

the software was coded) or generated by the server and 

downloaded to the client. Similarly for CC-4, the “smart” 

client, the model may be generated before the client is in-

stalled and packaged with the client or it can be generated on 

the client (CC-4MG). Neither configuration requires a server. 

In our WISDM platform, our initial work supported CC-1, 

which in many ways is the simplest to implement. We are 

currently making enhancements to the client to support CC-2 

and CC-3. Implementing CC-3 to move the models to the 

smartphone will only require a modest amount of work, since 

we use the WEKA data mining suite [10] to build our mod-

els, and WEKA can export models as Java code, which An-

droid smartphones can run natively. We may implement 

CC-3MG as well, if model generation with our data set does 

not over-tax the device. We do not plan to implement CC-4, 

since we want to provide web-based reporting capabilities. 

COMPARISON OF CLIENT/SERVER PARTITIONS 

Each partition of client and server responsibilities has its own 

benefits and drawbacks. Before we can compare the various 

alternatives, we need to identify the factors that will form the 

basis of the comparison. These factors are described below: 

 Resource Usage: Mobile devices contain limited battery 

power, processing, memory, and transmission bandwidth, 

all of which must be conserved.  

 Scalability: The architecture should be scalable in terms 

of the number of mobile sensor devices. 

 Access to Data: Developers and/or researchers will often 

want full access to the data, including the raw data, for fu-

ture use (transformed data loses some information). 

 Privacy/Security: Users will often want to maintain the 

privacy of their data and keep it secure. 

 User Interface: Users will want the best interface possible, 

where “best” factors in aesthetics as well as ability to 

view the results on multiple platforms.  

 Application Restrictions: Some applications will require a 

central server to aggregate data from multiple users or de-

vices, or to make data available to external systems.  

We now analyze each of these factors, one at a time, with 

respect to the various client/server responsibilities. The CC-1 

dumb client configuration keeps the client simple, which 

reduces processing and memory requirements, but requires 

the raw data to be transmitted to the server. Since the trans-

formed data will take up less space than the raw data, CC-2 

will make less use of the wireless radio. When using our 

WISDM architecture to support the activity recognition ap-

plication, ten seconds worth of raw data takes up 3.1kB, 

while the resulting transformed example takes up only 176 

bytes, a reduction of nearly 95%. Cellular data network con-

nections often charge based on the amount of data transmit-

ted, so there is financial incentive to limit transmissions. Ad-

ditionally, wireless network connections require large 

amounts of power to transmit data, so reducing network use 

saves power. But computationally intensive data processing 

and data transformations, such as Fourier Transforms, can 

rapidly negate the power savings. If the CPU is overused, 

device performance and other applications may suffer, and 

the processor's battery use will exceed the power required for 

Bluetooth and Wi-Fi transmissions (3G cellular radio re-

quires even more power). In such cases it may be more effi-

cient to transmit the raw data and have the computationally 

intensive processing occur on the server. 

CC-3 requires some extra computing power to apply the 

model or decision logic. This power will be minimal for rule 

or tree based logic, and extensive for algorithms like nearest-

neighbor, where most of the work is done at classification 

time. However, in this case only the results need to be trans-

mitted over the network; for Actitracker that could be repre-

sented in 1 Byte, which would encode the user’s activity. In 

this case it is not clear whether less power would be used, 

especially considering the overhead involved in establishing 

and maintaining wireless network connections. Finally, CC-4 

would require no network access and use the same pro-

cessing power as CC-3, except to the extent that viewing the 

results on the phone will consume some processing and dis-

play power. Overall, it is not clear which client configuration 

will use the least power, although we are fairly sure that 

CC-2 would be more power efficient than CC-1. At all stag-

es, the hardware, protocols, and algorithms used will have 

significant impact on power consumption. However, within 

the next year we may have empirical results for CC-1, CC-2, 

and CC-3, for Actitracker. 

With respect to memory and clock cycles, as the client takes 

on more work, the amount of memory and CPU time con-

sumed by the application will grow. Given all of these fac-

tors, it is not clear which client configuration performs best 

with respect to overall resource usage. This question is best 

answered empirically, although there are many factors that 

may make it difficult to generalize from a single platform.  

Scalability is a much easier factor to assess—the more func-

tionality that is moved to the client, the more scalable the 

architecture. Ultimately the smart client is perfectly scalable, 

since no server is required and the client performs all tasks. 

In Actitracker's CC-1 dumb client configuration, the server 

requires 1 minute to process and store 1 minutes worth of 

data from 942 simultaneous users (on a server with 8 pro-

cessing cores running at 2.26 GHz and 24 GB of RAM). We 

find that we do not exceed 25% total CPU use and 5GB 

RAM use, because the server is limited by the rate we can 

commit results to our MySQL database, which is hosted on 

the same machine. With an additional server to store the da-

tabase we might be able to support three or four thousand 

users simultaneously, but clearly there are scalability issues if 

we wanted to support millions of users. 



As researchers who would like to preserve every piece of 

data, CC-1 is the optimal client configuration. Our transfor-

mation process involves summarizing the accelerometer data 

with high level features such as average acceleration. Over 

time, we may certainly decide to alter our data transformation 

process and incorporate additional features. If we have the 

raw data, we can apply our new data transformation scripts 

and evaluate our results. However, once we move to CC-2 

we lose this ability. Maintaining all of this raw data comes at 

a steep price, however, in the form of data transmission costs 

as well as the cost of preserving all of this data on the server. 

Given that we sample every 50ms, a single user will generate 

791MB of raw data in a month. Once we move to CC-3, only 

the results are sent to the server. This drastically reduces the 

historical data we maintain on the server, while still preserv-

ing the results. For our Actitracker application that means 

that we know when and how much time each person spends 

walking, sitting, etc., which is mainly all we need to know 

from an application perspective. Finally, with the smart client 

configuration, there is no server to send data to and hence no 

information will be generally available (unless we are permit-

ted to query the mobile device, but that only has limited stor-

age space). It is for these reasons that our project will contin-

ue to use the CC-1 configuration for some clients even after 

we have implemented some of the other configurations.  

On the other hand, privacy and security favor the smart client 

configuration, in which no data or knowledge leaves the mo-

bile devices. But for many applications, there may not be 

much a difference between CC-1, CC-2, and CC-3 in terms 

of security and privacy because the aggregated information 

may be almost as sensitive as the raw data. For example, 

aggregated GPS information that describes the regions that 

someone occupied might be as sensitive as the raw GPS trac-

es, even though the latter contains more detailed information. 

Overall, privacy is a key reason for preferring the smart client 

configuration, although good security measures (e.g., en-

crypting data during transmission) can help address the pri-

vacy concerns. But even when data is kept on one’s mobile 

device, it is still not completely private or secure, since the 

device can be stolen or compromised. This can partially be 

addressed by encrypting the data that is stored on the device. 

A central server can enhance the user interface both by mak-

ing data available to one's desktop or other large displays and 

by making data available from anywhere over the web rather 

than only on the device which generates it. Additionally, a 

central server can help the user share or compare her data 

with friends or colleagues and via social networks.  

Finally, some applications will benefit from a central server 

performing analytics on group or aggregate data. For exam-

ple, traffic applications need access to the locations and 

speeds of multiple users, while home automation may require 

accounting for the needs of multiple occupants or gathering 

data from multiple sensing devices. Such applications will 

require client configurations CC-1 or CC-2 since they require 

the server to have access to data from multiple devices.  

CONCLUSION 

In this paper we described four basic models for distrib-

uting client and server responsibilities for ubiquitous sensor 

applications. This framework is then used to evaluate the 

comparative advantages and disadvantages of the different 

client/server architectures. Applications which do more 

processing on the mobile device will inherently be more 

scalable and use less bandwidth, but they will encounter 

other resource barriers. Further, some applications will need 

central servers to report data in a user-friendly way, or to 

process data aggregated from several devices. Finally, re-

searchers and developers have incentives to maintain as 

much data as possible on the server, while users who desire 

privacy will prefer to keep data and information on the mo-

bile devices. Ultimately each system must balance these 

concerns based on the needs of the application and the us-

ers. In our Actitracker application, we aim to implement 

multiple schemes, so that a researcher or user could in theo-

ry choose the one they find most appropriate. Such a solu-

tion could also work for future commercial systems. 
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