```
fun transpose M =
    if null (hd M) then [] else
    (map hd M) :: transpose (map tl M)
fun nth 1 (x::L) = x
    nth i (x::L) = nth (i-1) L
```

For all i:
row $i=n t h i$

```
col i = map (nth i)
```

Prove for all well-formed matrices M,
$\mathrm{P}(\mathrm{M})$: for all i , s.t. $1<=\mathrm{i}<=\mathrm{m}, \operatorname{dim} \mathrm{M}=(\mathrm{m}, \mathrm{n})$ row i (transpose M) = col i M

Prove for all well-formed matrices M,
$P(M)$: for all i, s.t. $1<=i<=m, \operatorname{dim} M=(m, n)$
row i (transpose M) $=$ col i M

Proof by strong induction on $m+n$, s.t. $\operatorname{dim} M=(m, n)$
Base Case: $\mathrm{M}=[](\mathrm{m}+\mathrm{n}=0)$
there is no i , s.t. $1<=\mathrm{i}<=\mathrm{m}$
therefore, $\mathrm{P}([])$ is vacuously true

Inductive case:
Assume $P\left(M^{\prime}\right)\left(m_{M^{\prime}}+n_{M^{\prime}}\right)$
Show $P\left(r:: M^{\prime}\right)\left(m_{r:: M}{ }^{\prime}+n_{r:: M^{\prime}}=m_{M^{\prime}}+n_{M^{\prime}}+1\right)$
row i (transpose r:: M^{\prime})
$=\operatorname{row} i\left(\left(\operatorname{map} h d\left(r:: M^{\prime}\right)\right)::\left(t r a n s p o s e ~\left(m a p ~ t l ~\left(r:: M^{\prime}\right)\right)\right)\right)$
$=n t h i\left(\left(\operatorname{map} h d\left(r:: M^{\prime}\right)\right)::\left(t r a n s p o s e\left(m a p ~ t l\left(r:: M^{\prime}\right)\right)\right)\right)$
$I f i=1$

```
= map hd (r::M')
    = map (nth i) (r::M')
    = col i (r::M')
```

If i>1

```
= nth (i-1) (transpose (map tl (r::M')))
= row (i-1) (transpose (map tl (r::M')))
= col (i-1) (map tl (r::M'))
= map (nth (i-1)) (map tl (r::M'))
= map ((nth (i-1)) o tl) (r::M')
= map ((hd o tll(i-2)})\circ\textrm{tl})(r::M'
= map (hd o tl (i-1)) (r::M')
= map (nth i) (r::M')
= col i (r::M')
```

Lemma: $\mathrm{P}(\mathrm{i}):$ Given $\mathrm{i}>=1$, nth $i=h d \circ t l^{(i-1)}$, where $t l^{i}$ signifies $t l$ composed with itself i times, e.g., $t l^{0}=f n x=>x$ and $\left.t l^{2}=t l \circ t l\right)$
B.C. $\mathrm{P}(1)$
nth 1 (x::L) $=x$

$$
=\left(\text { hd } \circ \mathrm{tl}^{0)}(\mathrm{x}:: \mathrm{L})\right.
$$

Iterative case, Assume $\mathrm{P}\left(\mathrm{i}^{\prime}\right)$, show $\mathrm{P}\left(\mathrm{i}^{\prime}+1\right)$
nth i'+1 (x::L) = nth i' L
$=\left(h d \circ t l^{\left(i^{\prime}-1\right)}\right) L$
$=\left(h d \circ t l^{\left(i^{\prime}-1\right)}\right)(t l(x:: L))$
$=$ hd $\circ\left(t l^{\left(i{ }^{\prime \prime-1)}\right.} \circ t l\right)(x:: L)$
$=$ hd \circ tli' (x::L)
$=\left(\right.$ hd $\left.\circ t l^{\left(\left(i^{\prime}+1\right)-1\right)}\right)(x:: L)$

```
fun zap f ([],[]) = []
    | zap f (x::L,y::L) = f (x,y)::zap f (L,R)
fun Transpose [row] = map (fn x => [x]) row
    Transpose (row::rows) = zap (op ::) (row, Transpose rows)
```

Prove for all well-formed matrices M,
$P(M)$: Transpose $M=$ transpose M
Proof by strong induction on $m+n$, s.t. $\operatorname{dim} M=(m, n)$
Base Case: $\mathrm{M}=[](\mathrm{m}+\mathrm{n}=0)$

```
transpose [] = []
    = map (fn x => [x]) []
    = Transpose []
```

Inductive case:
Assume $\mathrm{P}\left(\mathrm{M}^{\prime}\right)\left(\mathrm{m}_{\mathrm{M}^{\prime}}+\mathrm{n}_{\mathrm{M}^{\prime}}\right)$
Show $P\left(r:: M^{\prime}\right)\left(m_{r:: ~}{ }^{\prime}+n_{r:: M}{ }^{\prime}=m_{M^{\prime}}+n_{M^{\prime}}+1\right)$
transpose (r::M) $=\operatorname{map} h d(r:: M):: t r a n s p o s e ~\left(m a p ~ t l ~\left(r:: M^{\prime}\right)\right.$)
$=\operatorname{map} h d(r:: M):: T r a n s p o s e ~\left(m a p ~ t l ~\left(r:: M^{\prime}\right)\right)$
$=\left(h d r:: m a p\right.$ hd $\left.M^{\prime}\right)::$
(zap (op : :) (hd (map tl (r: : M^{\prime})), Transpose (tl (map tl (r::M'))))
$=\operatorname{zap}(o p::)\left(h d r:: h d \quad\left(m a p ~ t l ~\left(r:: M^{\prime}\right)\right)\right.$,
map hd $M^{\prime}:$:Transpose (tl (map tl (r:: $\left.M^{\prime}\right)$)))
$=\operatorname{zap}(o p::) \quad$ (hd r::tl r,
map hd $M^{\prime}:: T r a n s p o s e ~\left(t l ~\left(m a p ~ t l ~\left(r:: M^{\prime}\right)\right)\right)$)

```
    = ... ,map hd M'::Transpose (map tl M'))
    = ... ,map hd M'::transpose (map tl M'))
    = ... ,transpose M')
    = zap (op ::) (r,transpose M')
    = zap (op ::) (r,Transpose M')
    = Tranpose (r::M')
```

```
fun merge p ([],ys) = ys
    merge p (xs,[]) = xs
    merge p (x::xs,y::ys) =
        if p (x,y)
        then x::(merge p (xs,y::ys))
        else if p(y,x)
            then y::(merge p (x::xs,ys))
            else x::y::(merge p (xs,ys))
```

Let: perm(P,L) mean "P is a permutation of L"
properties:
perm(P1,L1) \& perm(P2,L2) $->\operatorname{perm}(P 1 @ P 2, L 1 @ L 2)$
perm(P,L) \rightarrow perm(x::P,x::L)
perm(x::y:P1@P2,L) $->\operatorname{perm}((x:: P 1) @(y:: P 2), L)$
Let: psort (S,L) mean "S is a p-sorted permutation of L"
and psort(S) mean "S is p-sorted"
and $x<=L$, where L : 'a list mean "for every y in L, not $p(x, y)$ "
properties:
psort(x::S) <-> psort(S) \&\& x <= S
Prove: merge p (L1,L2) = L, where psort(L,L1@L2) if psort(L1) \&\& psort(L2)
Induct on (length L1) * (length L2)
Base case: (length L1) * (length L2) = 0
L1 = [] or L2 = []
$\mathrm{L} 1=[]$
merge $p([], L 2)=$ L2
psort (L2) (from above)
IH: L1' = x::L1, L2' = y::L2
merge p L1' L2' =
merge p ($x:: L 1$) ($y:: L 2)$
if $p(x, y)$ then ... else ...
CASE 1: $\mathrm{p}(\mathrm{x}, \mathrm{y})$
$\mathrm{x}::($ merge p L1 (y::L2))
x: L
p (x,y) \&\& psort(y::L2) -> $y<=L 2$-> $x<=L 2, x<=(y:: L 2)$
psort(x::L1) -> $x<=L 1$
$\mathrm{x}<=\mathrm{L} 1$ \&\& $\mathrm{x}<=(\mathrm{y}:: \mathrm{L} 2)->\mathrm{x}<=\mathrm{L} 1 @(\mathrm{y}:: \mathrm{L} 2)$
psort(L,L1@(y::L2))
psort(L,L1@(y::L2)) \&\& x<=L1@(y::L2) -> psort(x::L, x::L1@(y::L2))
CASE 2: p (y, x)
y::(merge p (x::L1) L2)
y: L
$p(y, x) \& \& \operatorname{psort}(x:: L 1)->x<=L 1->y<=L 1, y<=(x:: L 1)$
psort(y::L2) -> y<=L2
$\mathrm{y}<=\mathrm{L} 2 \& \& \mathrm{y}<=(\mathrm{x}::$ L1) $->\mathrm{y}<=(\mathrm{x}::$ L1 $)$ @L2

```
psort(L, (x::L1)@L2)
psort(L,(x::L1)@L2) && y<=(x::L1)@L2 -> psort(y::L,y::(x::L1)@L2)
psort(y::L,y::(x::L1)@L2) -> psort(y::L, (x::L1)@ (y::L2))
CASE 3: other
    x::y::(merge p L1 L2)
    x::y::L
psort(x::L1) -> x<=L1
psort(y::L2) -> y<=L2
!p(x,y) && y<=L2 -> x<=y::L2
!p(y,x) && x<=L1 -> y<=L1
psort(L,L1@L2) && x<=L1 && y<=L2 && x<=y::L2 && y<=L1 ->
psort(x::y::L,x::y::L1@L2) -> psort(x::y::L,(x::L1)@(y::L2))
```

