Basic Lazy Lists:

datatype 'a lazyList = Cons of 'a lazyList * (unit -> 'a lazyList)
fun nats $\mathrm{n}=\operatorname{Cons}(\mathrm{n}, \mathrm{fn}()=>$ nats $(\mathrm{n}+1))$
fun $\operatorname{Map} \mathrm{f}(\operatorname{Cons}(\mathrm{x}, \mathrm{y}))=\operatorname{Cons}(\mathrm{fx}, \mathrm{fn}() \Rightarrow \operatorname{Map} \mathrm{f}(\mathrm{y}()))$
(* given L1 and L2 are sorted to be ascending lazy lists,

* Merge L1 L2 returns a sorted lazy list containing all
* the elements of L1 and of L2 *)
fun Merge $(\operatorname{Cons}(\mathrm{x}, \mathrm{f}))(\operatorname{Cons}(\mathrm{y}, \mathrm{g}))=$

Factorial Lists:

fun factgen $n=\operatorname{Cons}(n, f n()=>\operatorname{Map}(f n x=>n *)(f a c t g e n(n+1)))$
(* What does this do? *)
fun lotsOfFacts $\mathrm{n}=$ Cons (factgen $\mathrm{n}, \mathrm{fn}()=>$ lotsOfFacts $(\mathrm{n}+1)$)

Taxicab Numbers:

(According to Wikipedia...) The nth taxicab number, typically denoted $\mathrm{Ta}(n)$, is defined as the smallest number that can be expressed as a sum of two positive cubes in n distinct ways, up to the order of summands.

$$
\begin{aligned}
& \mathrm{Ta}(1)=2=1^{3}+1^{3} \\
& \mathrm{Ta}(2)=1729=1^{3}+12^{3}=9^{3}+10^{3} \\
& \mathrm{Ta}(3)=87539319=167^{3}+436^{3}=228^{3}+423^{3}=255^{3}+414^{3}
\end{aligned}
$$

Exercise: Write a function (really, a set of functions) to find $\mathrm{Ta}(\mathrm{n})$.

