
Daniel Leeds, 15-212 R10, October 31, 2007 
 
Modules 
 
A signature describes an interface 
signature PB =  
sig  
  type Phonebook  
  val empty : Phonebook  
  val get : Phonebook -> string -> int option  
  val put : ((string * int) * Phonebook) -> Phonebook  
  val delete : Phonebook -> string -> Phonebook  
end  
 
A structure contains an implementation 
structure PhonebookList : PB =  
struct  
  type Phonebook = (string * int) list  
  val empty = nil  
  fun get nil s = NONE  
    |  get ((a,b)::xs) s = if a = s then SOME(b) else get xs s  
  fun put (entry,P) = entry::P  
  fun delete nil s = nil  
    |  delete ((a,b)::xs) s = if a = s then (a,b)::(delete xs s) else delete xs s  
end 
 
PhonebookList.empty 
open PhonebookList 
empty 
 
 
Imperative Programming – coding with side effects 
 
Assignment:    val x = ref 2 : int ref 
Re-assignment:  x := 5 
De-referencing: !x 
Evaluating multiple expressions: 
     (y := 12; x := !y+4; y := 9) 
Loops:     while E do (E1; E2; …; EN) 
 



fun impFact n = 
   let val resultp = ref 1 
        and ip = ref 0 
   in while !ip < n do (ip := !ip + 1; 
                                  resultp := !resultp * !ip) ; 
       !resultp 
   end 
 
fun irev l = 
   let val resultp = ref [] 
        and lp = ref l 
   in while not (null (!lp)) do 
            (resultp := hd(!lp) :: !resultp 
             lp := tl(!lp)); 
       !resultp 
end 
 
 
 
signature COMPLEX =   
sig  
  type t  
  val empty : t  
  val complement : t -> t  
  val sum : t * t -> t  
  val prod : t * t -> t  
  val diff : t * t -> t  
end  
  
structure Comp : COMPLEX =  
struct  
  type t = real*real  
  val empty = (0.0,0.0)  
  fun complement (x,y) = (x,~1.0*y)  
  fun sum ((a,b),(c,d)) = (a+c,b+d) : (real*real)  
  fun prod ((a,b),(c,d)) = (a*c-b*d,a*d+b*c) : (real*real)  
  fun diff ((a,b),(c,d)) = (a-c,b-d) : (real*real)  
end 


