
Daniel Leeds, R14, November 28, 2007

Final Exam: Mon. Dec 17, 8:30-11:30

Various topics we’ve seen:
Recursion
Proofs: Lots of induction, proper proof style
Specifications
Continuations
Exceptions
Lazy programming
Modularity (structures and signatures)
Imperative programming
Concurrency
Type-checking

From Fall 2006 Final:
2(i)
fun foldr f z [] = z
 | foldr f z (x::L) = f(x,foldr f z L)
fun ins (x, []) = [x]
 | ins (x,y::R) = if x=y then y::R else y::ins (x,R)

We say L “has no repeats” if all its members are different.

Prove that, for all suitably typed lists L and values x, if L has no repeats then ins(x,L) has
no repeats. You can use the fact that the members of ins(x,L) are x and the members of
L.

4
signature GRAPH =
sig
 type ''a graph
 val build : (''a * ''a) list -> ''a graph
 val roots : ''a graph -> ''a list
 val delete : ''a * ''a graph -> ''a graph
 val isempty : ''a graph -> bool
end;

complete:
structure Edges : GRAPH =
struct
 type ''a graph = (''a * ''a) list
 fun build L =
 fun roots L =

 fun delete =
 fun isempty L = null L
end;

6
datatype Token = Left | Right
E ::= <empty> | Left E1 Right E2

Write parse of type
 parse : Token list -> (Token List -> bool) -> bool
such that
 parse L k is true if there is a pair of lists L1 and L2 such that L=L1@L2, L1 conforms
 to the grammar and k(L2) = true
 parse L k returns false if there is no pair of lists L1, L2 such that L=L1@L2, L1
 conforms to the grammar and k(L2) = true

Write balanced of type
 balanced : Token list -> bool
Such that for all token lists L, balanced L returns true if L conforms to the grammar,
returns false otherwise

9
Write simul of type
 simul : 'a ref list * 'a list -> unit
such that for all n>=0, all suitably typed refs x1,…,xn and values v1,…,vn,
simul([x1,…,xn],[v1,…,vn]) has the same effect as the sequence of assignments x1:=v1; …;
xn:=vn. If two lists have unequal length, the function should raise the exception Unequal.

10
Write a recursive function
 parfold : ('a * 'b -> 'b) -> 'b -> ('a chan * 'b chan) -> unit
such that, for suitably typed F, z, a and b, if channel a is supplied with the sequence
x1,…,xn,… and b is a distinct channel, a thread executing parfold F z (a,b) will send z to
be, receive x1 from a, send F(x1,z) to b, receive x2 from a, send F(x2,F(x1,z)) to b, etc..
Do NOT use foldl. Do not store intermediate results.

