
Daniel Leeds, 6.004 R10, March 15, 2006; Quiz #2 Review

Fine print:
Quiz is closed-book, no calculators; covers up to L09 (Pipelining)/R10 (this recitation)

Practice, practice, practice:
Follow “Previous terms” link from http://6004.csail.mit.edu, pick a semester (the more
recent, the better), click on the “Announcements” page for the semester, and find the PDF
for Quiz 2 solutions. (For semesters from a few years ago, some (or all) of the material
may be in Quiz 1.) Don’t read the answers until you first figure them out for yourself!

Another perspective on the material – Margaret Chong’s Handbook:
Follow “Handouts” link from http://6004.csail.mit.edu, click on handbook link near the
bottom of the page.

Good topics to know:
Synthesis of Combinational Logic
ROMs

 _ _ _ _ _ _
S = A B C + ABC + A B C + ABC

Each vertical (“word”) line
represents an and term. The word
line takes the and of all input lines
 _ _ _
(A,B,C,A,B,C) connected to it
via NFET. For example, right-most
line is ABC

Horizontal (“bit”) line represents the
or of all vertical word lines
connected to it. (For example, the
right-most word line is connected,
via NFET, to the bit line for S, so S
includes a term for ABC.)

Karnaugh Maps

“A truth table arranged so that terms which differ by exactly one variable are
adjacent to one another”

 Strategy (circling the 1s):
 Circle largest N-dimensional rectangles (with sides of 2N)
 Keep circling largest remaining rectangles (even if they overlap) until no
 1s are left
 Choose fewest rectangles to cover all the ones -> Minimal SOP form
 Include terms for all prime implicants to construct a lenient circuit.

Sequential Logic
 Our registers latch in new value at rising clock edge
 tSETUP,R1 and tHOLD,R1 must be met by R1’s input to guarantee valid output at R1
 tCD,R1 and tPD,R1 relate to R1 output after clock edge

tHOLD,R2 < tCD,R1 + tCD,CL

tCLK > tSETUP,R2 + tPD,R1 + tPD,CL ↔ tSETUP,R2 < tCLK – (tPD,R1 + tPD,R2)

FSMs
A Finite State Machine consists of k states. Each state has a set of transition rules for
each input, and may have one or many outputs.
Hardware Implementation
 ROM-register loop
 2n states, m inputs, p outputs -> p*2(n+m) bits in ROM (i.e., output entries in FSM
 truth table)

Synchronization/Metastability
Time-based problem – inputs occur too close together in time (asynchronous inputs)
Metastable state resolves in unbounded time
“Solution:” Cascading flip-flops increases the probability that the metastable state will be
resolved to valid logic value before our logic circuitry sees it.
Alternative “solution:” realize you are supposed to be using combinational logic.
Combinational logic has valid output in bounded time.

Pipelining
Typically, better performance means:

decreasing latency and/or
increasing throughput

Pipelines:
can increase throughput (not always)
may increase latency (not always)

Un-pipelined circuit: Latency = 1 / Throughput
In pipelined circuit: Latency = (# pipeline stages) * (tPD at longest pipeline stage)

Methodology:
1 Draw a line that crosses every output
in the circuit and mark the endpoints as
terminal points.

2 Continue to draw new “separating
lines” between the terminal points
across various circuit connections; add a
pipeline register at every point where a
separating line crosses a connection in
the circuit.

Can place multiple registers between
two circuit components, but each
register must be part of a separate
pipeline stage.

Circuit Interleaving: Interleaving n copies of a device increases throughput n-fold.

Pipelining starting with ibm 7094 circa 1969

