Daniel Leeds, 6.004 R12, March 24, 2006; Lecture and Tutorial Problems Excerpts

Give feedback! http://web.mit.edu/ddleeds/www/6004/form.html

von Neumann Computer

Key idea: Memory holds not only data, but *coded instructions* that make up a *program* **INSTRUCTIONS** coded as binary data

LD(Ra, literal, Rc): "load value at **address** *Ra*+*literal* <u>into</u> **register** *Rc*" ST(Rc, literal, Ra): "store value in **register** *Rc* <u>into</u> **address** *literal*+*Ra*"

ans:	$ = 0x100 \\ long(0) $	ans = $0x100$ R0 = 0 (the value at address $0x100$)
	• • •	
	LD(R31, ans, R0)	

F Build a controller that will cause the circuit above to execute the following algorithm:

	DRA	DRB	DRALU	LDA	LDB	FN
Reg A <- A	1	0	0	1	0	Х
Reg B <-B	0	1	0	0	1	Х
A==B?						
(if A>B) Reg A <- Reg A – Reg B						
(else) Reg B \leq Reg B – Reg A						
(loop up to A=B?)						
(if A==B) do nothing						

Machine Language:

Problem 4:

D Explain why PC-relative branch addressing is a good choice for computers like the Beta that can encode only a "small" constant in each instruction.

Problem 9: Which of the following Beta instruction sequences might have resulted from compiling the following C statement? int x[20], y;

y = x[1] + 4; A LD(R31,x+4,R0) ST(R0,y+4,R31)	<pre>B CMOVE(4,R0) LD(R0,x,R1) ST(R1,y,R0)</pre>	C LD(R31,x+4,R0) ADDC(R0,4,R0) ST(R0,y,R31)	<pre>D ADDC(R31,x+1,R0) ADDC(R0,4,R0) ST(R0,y,R31)</pre>
Problem 3: A Hand a following:	assemble the	I=0x5678 B=0x1234 LD(I,R0) SHLC(R0,2,R0) LD(R0,B,R1) MULC(R1,17,R1) ST(R1,B,R0)	

Enjoy Spring Break!