
Daniel Leeds, 6.004 R15, April 12, 2006; Quiz #3 Review

Fine print:
Quiz is closed-book, no calculators; covers up to L14 (Stacks and Procedures)/R15 (this recitation)

Practice, practice, practice:
Follow “Previous terms” link from http://6004.csail.mit.edu, pick a semester (the more recent, the better),
click on the “Announcements” page for the semester, and find the PDF for Quiz 3 solutions. Don’t read the
answers until you first figure them out for yourself!

Another perspective on the material – Margaret Chong’s Handbook:
Follow “Handouts” link from http://6004.csail.mit.edu, click on handbook link near the bottom of the page.

Handouts
In past years, we have given students the “Summary of Instructions Format” sheet (available from the
handouts web page) as a reference during the exam. While studying for the exam, you also might want to
look at “Beta Documentation” – this won’t be available on test day.

Good topics to know:
Models of Computation
Turing Machines (TMs) – more powerful than FSMs
 Implementation: FSM attached to infinite tape
 Parenthesis checker – requiring arbitrarily many states
 Universal TMs capable of performing the computation performed by any TM
 Can compute all “computable” functions
 Uncomputable functions – for example, will TM k ever halt on tape j?
 (Note “will TM k halt on tape j in fewer than m steps” is computable)
Programmable Machines and Machine Language
Memory

stores both data and coded instructions in
words of W bits (we tend to use 32 bits (= 4 bytes) per word)

Program Counter (PC) specifies address of next instruction to be executed
Binary layout of the two Beta instruction formats:

Instructions
 move data between memory and registers
 operate on register data and store results in registers
 change program counter (for loops, procedure calls, conditional statements)
Sample Beta ops:
 BEQ(R1, br_addr, R2) R2 = PC+4 Machine Language Format
 branch relative to R2 -> PC = R2 + 4*((br_addr – R2)/4), if R1==0
 PC = R2, if R1!=0
OPCODE Rc=R2 Ra=R1 16-bit literal Binary Encoding Format
011101 00010 00001 0000000000001010 (PC = PC+4+4*literal, if R1==0)

 LD(R1,c,R2) R2 = Mem[R1+c] (load value at address R1+c into R2)

Stacks and Procedures
Special registers: BP Base pointer is a reference point in the most recent

activation record in the stack
 LP Linkage pointer specifies return address for JMP at end of
 procedure call
 SP Stack pointer points to top of the stack
Operations: PUSH, POP
 ALLOCATE, DEALLOCATE (moves SP without read or write to
 memory)

Typical procedure call:
. = 0x00000708
 PUSH(R2) |
 BR(fact,LP) | CALL SEQUENCE

. = 0x00000B04 | later in memory
fact:
 PUSH(LP) |
 PUSH(BP) |
 MOVE(SP,BP) | ENTRY SEQUENCE
 PUSH(R1) |

 LD(BP,-12,R1) | reads input left by
 | caller 3 address slots
 | above BP

 | details of fact omitted

. = 0x00000B44 | at end of fact
 POP(R1) |
 MOVE(BP,SP) |
 POP(BP) | EXIT SEQUENCE
 POP(LP) |
 JMP(LP) |

Stack:

 2 input
 B38 LP
 1058 BP
 2 R1
 1 input
 B38 LP
 1068 BP
BP-> 1 R1
SP-> EDED

===

Higher points in computability theory (unlikely to be tested, but people asked in class)

Showing something is not computable often employs proof by contradiction - assume the
function is computable, use it as part of a more complex Turing machine to construct a
Turing machine that does something clearly impossible (recall the TM, TN, that “halts
when it doesn’t halt and doesn’t halt when it halts”). There are various non-computable
functions, but you usually see them in theory papers, rather than computer consumer
magazines.

Quiz #3 Spring 2003

Problem 1:
Identify whether the following behavior can be implemented using an FSM, a universal
Turing Machine, or none at all. (Circle FSM if it can be implemented via either a Turing
Machine or FSM).

A. A device that takes a stream of parentheses and outputs 1 if the input thus far
represents a well-formed parenthesis string with no nesting (no (…) within (…)). It
outputs a zero on mismatched or nested parens. FSM TM uncomputable

D. A machine that takes two binary inputs i and j and halts if and only if executing the ith
TM on tape j also halts. FSM TM uncomputable

Quiz #3 Spring 2004

Give the HEX value of the instruction labeled ‘xx:’ in the program above.

(C) What is the missing C expression corresponding to the ???? in the above C program?

(D) What would be the effect of removing the instruction MOVE(BP,SP)?
 Procedure would work fine
 Procedure would compute right value, but not restore registers correctly
 Procedure would no longer compute f(a,b) properly

