Daniel Leeds, 6.004 R15, April 12, 2006; Quiz #Jiee

Fine print:
Quiz is closed-book, no calculators; covers up1d [Stacks and Procedures)/R15 (this recitation)

Practice, practice, practice:

Follow “Previous terms” link from http://6004.csailit.edu, pick a semester (the more recent, thefet
click on the “Announcements” page for the semested, find the PDF for Quiz 3 solutions. Don't rehd
answers until you first figure them out for youfsel

Another perspective on the material — Margaret Chog’s Handbook:
Follow “Handouts” link from http://6004.csail.mitla, click on handbook link near the bottom of tlage.

Handouts

In past years, we have given students the “Sumwfdnstructions Format” sheet (available from the
handouts web page) as a reference during the eXdhnile studying for the exam, you also might wamt t
look at “Beta Documentation” — thigon't be available on test day.

Good topics to know:
Models of Computation
Turing Machines (TMs) — more powerful than FSMs
Implementation: FSM attached to infinite tape
Parenthesis checker — requiring arbitrarily maayes
Universal TMs capable of performing the computaperformed by any TM
Can compute all “computable” functions
Uncomputable functions — for example, will TRVever halt on tapg?
(Note “will TM k halt on tapg in fewer tharm steps” iscomputable)
Programmable MachinesndMachine Language
Memory
stores both data and coded instructions in
words of W bits (we tend to use 32 bits (= 4 byfes)word)
Program Counter (PC) specifies address of nextuictsdn to be executed
Binary layout of the two Beta instruction formats:

lopcooe] fe. | Ta | Mo | wmeed |
| OF{:O’D‘E| Fe | r; | 16-bit signed constant |
Instructions

move data between memory and registers

operate on register data and store results istexgi

change program counter (for loops, procedure ,catisditional statements)
Sample Beta ops:

BEQ(R1, br_addr, R2) R2=PC+4 Machine Language Format

branch relative to R2 -> PC = R2 #4*((br_addr — R2)/4)if R1==0

PC =R2,if R1!=0

OPCODE Rc=R2 Ra=R1 16-bit literal Bi nary Encodi ng For nat
011101 00010 00001 0000000000001010 (PC = PC+4+4*literal, if R1==0)

LD(R1,c,R2) R2 = Mem[R1+c] (load value ddeess R1+c into R2)

Stacks and Procedures
Special registers: BP Base pointer is a referpoa# in the most recent
activation record in the stack
LP Linkage pointer specifies return addressIfdP at end of
procedure call
SP Stack pointer points to top of the stack
Operations: PUSH, POP
ALLOCATE, DEALLOCATE (moves SP without read oriterto
memory)

Typical procedure call:

= 0x00000708 St ack:
PUSH(R2) |
BR(f act, LP) | CALL SEQUENCE 2 input
B38 LP
1058 BP
2 R
1 input
. = 0x00000B04 | later in nenory B38 LP
fact: 1068 BP
PUSH(LP) | BP- > 1 R
PUSH(BP) | SP- > EDED
MOVE(SP, BP) | ENTRY SEQUENCE
I

PUSH(R1)

LD(BP,-12,R1l) | reads input left by
caller 3 address slots
| above BP

| details of fact onmitted
= 0x00000B44 | at end of fact
POP(R1) I
MOVE(BP, SP) |
POP(BP) | EXIT SEQUENCE
POP(LP) |
JMP(LP) |

Higher points in computability theory (unlikely be tested, but people asked in class)

Showing something is not computable often emplogsiby contradiction - assume the
function is computable, use it as part of a momamgex Turing machine to construct a
Turing machine that does something clearly impdsgiiecall the TM, T, that “halts
when it doesn’t halt and doesn't halt when it HaltS here are various non-computable
functions, but you usually see them in theory psp@ther than computer consumer
magazines.

Quiz #3 Spring 2003

Problem 1:

Identify whether the following behavior can be ieplented using an FSM, a universal
Turing Machine, or none at all. (Circle FSM ita&n be implemented via either a Turing
Machine or FSM).

A. A device that takes a stream of parentheseoatpits 1 if the input thus far
represents a well-formed parenthesis string witmesting(no (...) within (...)). It
outputs a zero on mismatched or nested parens. FEM! uncomputable

D. A machine that takes two binary inputs i andd &alts if and only if executing th8 i
TM on tape j also halts. FSM TM uncomputable

Quiz #3 Spring 2004
Problem 3. (13 points): Digging into Beta code
£: PUSH(LE)

You are given the following incomplete listing of a C DUSH (BE)

procedure and its translation to Beta assembly code on the MOVE (SE, BE)

left: DUSH (R1)
PUSH (R2)

LD (B, -12, RO}

R 2 2 LD{BEF, -16, R1})
int f£f(int a, int b) L, it BE
{ xx: BEQ(RZ, L1)
if (a < b)
: ADDC (R1, 1, R1)
return f({a+a, b+l); PUSE (R1)
else return 7777; BOD (RO, RO, RO)
} DUSH (RO)
BR{f, LB}

SUBC (5P, 8, SB)

Note: while working this problem, vou may wish 10 refer o 12 igz :ifi
the reference informarion (instruction set summary) MOVE (BB, 5P)
artached ro this guiz, PCP (BP)

POE (LP)

IMP (LB}

Ll: SUB(RD, R1, RO}
BR{L2Z)

Give the HEX value of the instruction labeled ‘xi’the program above.
(C) What is the missing C expression correspontbrtpe ???? in the above C program?

(D) What would be the effect of removing the instron MOVE(BP,SP)?
Procedure would work fine
Procedure would compute right value, but not mestegisters correctly
Procedure would no longer compute f(a,b) prgper

The call f{2, 5} is made via the instruction BR (£, LP) from an external main program and its
execution is interrupted just prior to an execution (not necessarily the first) of the BEQ
instruction labeled xx:. The contents of a region of memory are shown to the right.

NB: All addresses and data values are shown in hex. The contents of BP are 0x128.

Address Contents
(HEX) (HEX)
100 5
104 2
108 LB
i10C 0
110 0
114 6004
112 6
11cC 4
120 54
124 110
BP? 128 &

1z2C

(E) (2 points) What are the arguments to the
crrrent (most recent) call to £7

Current arguments, a= ;b=

(F1 (1 point} What value is in SP?

Contents of SP(HEXy Ox

(G) (2 points) What is the address of the
BR({f, LP) instruction that made the
original call to £(2, 57

Address of BR making original call:0x_

(H) {2 points) What value was in B2 at the time
of the original call?

