Daniel Leeds, 6.004 R17, April 21, 2006; Lecture and Tutorial Problems Excerpts
Virtual Memory (VM)
TRANSPARENCY - VM locations "look" the same to program whether on DISK or in RAM

FUNCTION: Given Virtual Address,

- Map to PHYSICAL address

OR

- Cause PAGE FAULT allowing page replacement

Pagemap Characteristics:
One entry per virtual page
RESIDENT bit $(\mathrm{R})=1$ for pages stored in RAM
DIRTY bit says we've changed this page since loading from disk (and will need to write back to disk eventually)

Arithmetic	
2^{p}	bytes per physical page
$(\mathrm{v}+\mathrm{p})$	bits in virtual address
$(\mathrm{m}+\mathrm{p})$	bits in physical address
2^{v}	number of virtual pages
2^{m}	number of physical pages
$(\mathrm{m}+2) 2^{\mathrm{v}}$	bits in page map

When our page map gets too big, we store it in "main memory" (DRAM)
To allow fast VM->PM translation, we cache the most common VM pages indices in the Translation Look-aside Buffer (TLB)

Problem 1

Part G:
The table to the left shows the first 8 entries in the page map. Recall that the valid bit is 1 if the page is resident in physical memory and 0 if the page is on disk or hasn't been allocated.

If there are $1024\left(2^{10}\right)$ bytes per page, what is the physical address corresponding to the decimal virtual address 3956 ?

Virtual page	Valid bit	Physical page
0	0	7
1	1	9
2	0	3
3	1	2
4	1	5
5	0	5
6	0	4
7	1	1

Problem 2
A particular 32-bit microprocessor includes support for paged virtual memory addressing with 2^{12} byte pages. The mapping of virtual to physical addresses requires two translation steps:

1 The most significant 10 bits of the virtual address (the Dir field) are multiplied by 4 and appended to the 20 most significant bits of the dirbase (directory base) register to get the address in main memory of a page directory entry. Each entry in the page directory is a 32-bit record composed of a 20-bit PTBL field and various control bits (Present, Dirty, Read-only, etc.).
2 The bits of the Page field (virtual address bits 21 to 12) are multiplied by 4 and appended to the PTBL field to form the page-table address. This page table address references a 32-bit page table entry. Each page table entry is composed of a 20 -bit physical page number (PPN) and a series of control bits.

All page-table entries and the page directory are stored in main memory. The results of these translations are cached in a fully-associative translation look-aside buffer (TLB) with a total of 64 entries, and a LRU replacement strategy is used on TLB misses.

