
Daniel Leeds, April 26, 2006, Quiz Review

Understand this table:

In Page Map (aka, Page Table, PTbl)
One entry per virtual page
Resident bit (R, also called “valid” bit) = 1 if page in
 physical memory
DIRTY bit = 1 if page contents have been changed
 since loaded into physical memory

Virtual Memory

Interrupts

Arithmetic
 2p bytes per physical page
 (v+p) bits in virtual address
 (m+p) bits in physical address
 2v number of virtual pages
 2m number of physical pages
 (m+2)2v bits in page map

Operating system issues:
“OS Kernel” is a special, privileged process that oversees the other processes and handles
real I/O devices
Each process has its own Process Control Block (PCB), which encapsulates its state
Scheduler() switches among user processes

struct MState {
 int Regs[31]; /* saved state of us er's registers */
} User;

int N = 42; /* number of process es to schedule */
int Cur = 0; /* number of "active " process */

struct PCB {
 struct MState State; /* processor state * /
 Context PageMap; /* VM map for proces s */
 int DPYNum; /* console/keyboard number */
} ProcTbl[N]; /* one per process * /

Scheduler() {
 ProcTbl[Cur].State = User; /* save current user state */
 Cur = (Cur + 1)%N; /* increment modulo N */
 User = ProcTbl[Cur].State; /* make another proc ess the current one
*/
}

Fine print:
Quiz is closed-book, no calculators; covers Building the Beta, Caches, Virtual Memory, OS issues (Virtual
Machines) -- up to L18 (Virtual Machines)/R18 (this recitation)

Practice, practice, practice:
Follow “Previous terms” link from http://6004.csail.mit.edu, pick a semester (the more recent, the better),
click on the “Announcements” page for the semester, and find the PDF for Quiz 4 and 5 solutions. NOTE:
We covered material in different order this year, skipped over some subjects, and focused more on others.
Do not worry about set associative caches; instead, worry about SVC’s and questions like Problem 3 of
today’s tutorial.

Another perspective on the material – Margaret Chong’s Handbook:
Follow “Handouts” link from http://6004.csail.mit.edu, click on handbook link near the bottom of the page.

Handouts
Make sure you understand as much as you can of the Unpipelined Beta diagram and Control Logic chart
(provided on page 1).

Virtual Memory, revisited
Problem 1, Part G:
The table to the left shows the first 8 entries in the
page map. Recall that the valid bit is 1 if the page is
resident in physical memory and 0 if the page is on
disk or hasn't been allocated.

If there are 1024 (210) bytes per page, what is the
physical address corresponding to the decimal virtual
address 3956?

Virtual
page

Valid
bit

Physical
page

0 0 7
1 1 9
2 0 3
3 1 2
4 1 5
5 0 5
6 0 4
7 1 1

OS issues
Problem 2:
. = VEC_RESET
 BR(I_Reset) | on Reset (start-up)
. = VEC_II
 BR(I_IllOp) | on Illegal Instruction
 | (eg SVC)
. = VEC_CLK
 BR(I_Clk) | On clock interrupt
. = VEC_KBD
 BR(I_Kbd) | on Keyboard interrupt
. = VEC_MOUSE
 BR(I_BadInt) | on mouse interrupt
. . .
I_Reset:
 CMOVE(P0Stack, SP)
 CMOVE(P0Start, XP)
 JMP(XP)

Problem 1:
A
ReadKey_h() {
 int kdbnum = ProcTbl[Cur].DPYNum;
 while (BufferEmpty(kdbnum)) {
 /* busy wait loop */
 }
 User.Regs[0] =
ReadInputBuffer(kdbnum);
}

C
ReadKey_h() {
 int kdbnum = ProcTbl[Cur].DPYNum;
 if (BufferEmpty(kdbnum))
 User.Regs[XP] = User.Regs[XP] - 4;
 else
 User.Regs[0]=ReadInputBuffer(kdbnum);
}

 D
 ReadKey_h() {
 int kdbnum = ProcTbl[Cur].DPYNum;
 if (BufferEmpty(kdbnum)) {
 User.Regs[XP] = User.Regs[XP] - 4;
 Scheduler();
 } else
 User.Regs[0] = ReadInputBuffer(kdbnum);
 }

