
2/11/2016

1

CISC 1600/1610
Computer Science I

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Flow of control

Linear execution of statements

• Each action performed in written order

What is the result of this set of statements?

int a=1, b=2, c;

c = a+b;

a=5;

cout << c;

2

Linear execution of statements

• Each action performed in written order

What is the result of this set of statements?

int a=1, b=2, c;

a=5;

c = a+b;

cout << c;

Statement 1

Statement 2

Statement 3

Statement 4

3

Alternatives to “linear execution”
Conditional actions

> ./myProgram

What is your name? Joe

What time is it? 0900

Good morning, Joe.

> ./myProgam

What is your name? Laura

What time is it? 1400

Good afternoon, Laura.

>

Statement 1

Statement 2a

Statement 3

Statement 4

Statement 2b

4

Alternatives to “linear execution”

Repeated actions

> ./myProgram
Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

>
Statement 1

Statement 2

Statement 3
5

The if-else statement
• if-else is used to perform a two way branch

if (condition)

statement1;

else

statement2;

• statement1 is performed if condition is true

• statement2 is performed if condition is false

• Only one of the two statements is performed!
6

2/11/2016

2

condition – a Boolean expression

• Boolean expressions are either true or false

• Conditions often consist of comparisons

– age ≥ 21 // can buy drinks

– age < 4 // can ride subway for free

– year = 2 // you are a sophomore

7

Comparisons in C++

= equal to == a == b

≠ not equal to != a != b

< less than < a < b

≤ less than or <= a <= b

equal to

> greater than > a > b

≥ greater than or >= a >= b

equal to
8

Be careful with =

= is the assignment operator

• a=b; assigns the value of b to a

== tests equivalence

• a==b determines if a and b have the same value

9

Where spaces matter:

• Correct: a>=b a<=b a!=b

• Incorrect: a> =b a< =b a! =b

No space between > and =, < and =, ! and =

Where spaces don’t matter:

• Correct: a>=b a <=b a !=b

Multi-character comparisons

10

if statement

Can write if statement without else

> ./myProgram

Enter charge: 32.00

Free delivery!

Thanks for shopping!

> ./myProgram

Enter charge: 10.00

Thanks for shopping!

>

Charge card

“Free delivery!”

“Thanks for shopping!”

≥30 <30

11

Compound statements: the use of { }

• Must group multiple statements with { } in
if-else

if (condition)

{

statement1;

statement2;

statement3;

}

else

{

statement4;

statement5;

} 12

2/11/2016

3

What does this do?
int numBagels=5;

cout << "You are getting" << numBagels;

cout << " bagels!\n";

if (numBagels>12)

{

numBagels=numBagels+1;

cout << "You also get an extra bagel free!";

cout << endl;

}

cout << "Have a good day.\n“;

13

What does this do?
int numBagels=5;

cout << "You are getting" << numBagels;

cout << " bagels!\n";

if (numBagels>12)

numBagels=numBagels+1;

cout << "You also get an extra bagel free!";

cout << endl;

cout << "Have a good day.\n“;

14

Groups of statements

• White space (indents, extra blank lines)
ignored by compiler … BUT

• White space is good programming style

• Visually groups statements together

• Braces { } create groups for compiler

15

Compound Boolean expressions

Expressions can be combined with logical operators

• The AND operator &&:
expression1 && expression2 true only if
both expression1 and expression2 are true

if ((2<x) && (x<7))

• true only if x is between 2 and 7, e.g, x is 4, x is 6

• false otherwise, e.g., x is 0, x is 10

• Equivalently: if (2<x && x<7)

• Invalid: if (2<x<7)
16

Compound Boolean expressions

Expressions can be combined with logical operators

• The OR operator ||:
expression1 || expression2 true only if at
least one of expression1 and expression2 are
true

if ((ageZoe==20) || (ageZoe==25))

• true only if ageZoe is 20 or 25

• false otherwise

• Equivalently: if (ageZoe==20 || ageZoe==25)

17

Logical operators, continued

Expressions can be altered with logical operators

• The NOT operator !:
!expression true only if expression is false

if (!(ageZoe>20))

• true only if ageZoe is below 20

• false otherwise

• Preferably: if (ageZoe<=20)

• Preferable to avoid !expression
18

2/11/2016

4

In summary

19

a b a && b

true true true

true false false

false true false

false false false

a b a || b

true true true

true false true

false true true

false false false

a !a

true false

false true

What does this code do?
#include<iostream>

using namespace std;

int main () {

float soupTemp;

cout << "What is your soup temperature? ";

cin >> soupTemp;

if ((soupTemp > 80) && (soupTemp<95))

cout << "This soup is just right!\n";

else

cout << "This soup is no good!\n";

return 0;

} 20

When do we need parentheses?

(soupTemp > 80) && (soupTemp<95)

is the same as

soupTemp > 80 && soupTemp<95

(soupTemp > 80) && !(soupTemp>=95)

is not the same as

soupTemp > 80 && !soupTemp>=95

21

Order of operations for logic

1. Parentheses: ()

2. Negation: !

3. Comparison: <, >, <=, >=, ==, !=

4. And: &&

5. Or: ||

Operations on same level evaluated left-to-right

22

Cautionary notes

• Be careful using !, better to avoid it

• Remember int-to-bool conversion

– 0 as false

– 1 (or any non-zero number) as true

23

Short-circuit evaluations

• If the value of the leftmost sub-expression
determines the value of the full expression, the rest
of the expression is not evaluated

float x=0, y=20;

if (x!=0 && y/x>=3) // only x!=0

// evaluated

{ . . .

}

if (y/x >= 3 && x!=0) // error

// divide-by-0
24

2/11/2016

5

Different parts of the afternoon
Conditional actions

> ./myProgram

What is your name? Jill

What time is it? 1400

Good afternoon, Jill.

> ./myProgam

What is your name? Leon

What time is it? 2100

Good evening, Leon.

>
25

Nested ifs

if (time > 1200)

if (time < 1800)

cout << "Good afternoon\n";

else

cout << "Good evening\n";

else

cout << "Good morning\n";

26

Using const

Constant variables – replace numbers with
meaningful names

const int noon=1200, startOfEve=1800;

if (time > noon)

if (time < startOfEve)

cout << "Good afternoon\n";

else

cout << "Good evening\n";

else

cout << "Good morning\n";
27

What does this code do?

// buying a laptop

int price=500; // $500

float weight=50.5; // 50.5 pounds

if (weight<5.5)

if (price<1000)

cout << "Buy this!" << endl;

else

cout << "Too heavy!" << endl;

28

Grouping of if and else

• else statement is connected with closest if

• Indentation ignored by compiler!

• { } braces instruct the compiler for grouping

29

Multiway if-else statement

Actions for multiple mutually-exclusive conditions

if (expression1)

statement1;

else if (expression2)

statement2;

. . .

else if (expressionN)

statementN;

else // all above expressions false

statementLast;
30

2/11/2016

6

Branching on grade

> ./myProgram

Enter score: 94

You get an A.

> ./myProgram

Enter score: 78

Your get a C

31

Score input

“A”

Exit

≥90

“B”

<90,
≥80

“C”

<80,
≥ 70

“D”

<70,
≥ 60

“F”

Scope

• Variables declared inside a block are not
“visible” outside the block

• Variables declared in an outer block are visible
to inner blocks

• Blocks are enclosed by braces { }

32

What does this code do?

int main () {

int a=5, b=10;

if (a >= 3) {

int a=8;

cout << a << " " << b << endl;

}

cout << a << " " << b << endl;

return 0;

}

33

What does this code do?

int main () {

int a=5, b=10;

if (a >= 3) {

int a=8, c=5;

cout << a << " " << b << endl;

}

cout << a << " " << c << endl;

return 0;

}

34

What does this code do?

int main () {

int a=5, b=10, c=5;

if (a >= 3) {

int a=8;

b=12;

cout << a << " " << b << endl;

}

cout << b << " " << c << endl;

return 0;

}

35

Multiway switch statement
switch picks which statements to perform
based on value of controlStatement

switch (controlStatement)

{

. . .

case constantX :

statementSequenceX

break;

. . .

}

36

2/11/2016

7

Full switch syntax

switch (controlStatement)

{

case constant1 :

statementSequence1

break;

. . .

case constantN :

statementSequence3

break;

default :

statementSequence

} 37

controlStatement
Must return a value of type:

• bool

• integer (int, and related types)

• char

38

break statement
break; exits the current block of code

case statement
case constantX : tells program to start
running following code if
controlStatement has given value

switch example
switch (letter) {

case 'A':

cout << "A is for apple\n";

break;

case 'B':

cout << "B is for banana\n";

break;

case 'C' :

cout << "C is for cherry\n";

break;

default :

cout << "No fruit for you\n";

break;

}
39

switch example
switch (letter) {

case 'A':

cout << "A is for apple\n";

break;

case 'B':

cout << "B is for banana\n";

break;

case 'C' :

cout << "C is for cherry\n";

break;

default :

cout << "No fruit for you\n";

break;

}
40

A

switch example
switch (letter) {

case 'A':

cout << "A is for apple\n";

break;

case 'B':

cout << "B is for banana\n";

break;

case 'C' :

cout << "C is for cherry\n";

break;

default :

cout << "No fruit for you\n";

break;

}
41

C

42

switch (letter) {

case 'A':

case 'a':

cout << "A is for apple\n";

break;

case 'B':

case 'b':

cout << "B is for banana\n";

break;

case 'C' :

case 'c' :

cout << "C is for cherry\n";

break;

default :

cout << "No fruit for you\n";

break;

}

Can omit break statements to group conditions

