
9/28/2014

1

CISC 1600/1610

Computer Science I

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Flow of control

Linear execution of statements

• Each action performed in written order

What is the result of this set of statements?

int a=1, b=2, c;

c = a+b;

a=5;

cout << c;

2

Linear execution of statements

• Each action performed in written order

What is the result of this set of statements?

int a=1, b=2, c;

a=5;

c = a+b;

cout << c;

Statement 1

Statement 2

Statement 3

Statement 4

3

Alternatives to “linear execution”

Conditional actions

> ./myProgram

What is your name? Joe

What time is it? 0900

Good morning, Joe.

> ./myProgam

What is your name? Laura

What time is it? 1400

Good afternoon, Laura.

>

Statement 1

Statement 2a

Statement 3

Statement 4

Statement 2b

4

Alternatives to “linear execution”

Repeated actions

> ./myProgram

Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

Infinite bottles of beer. Take one down.

>
Statement 1

Statement 2

Statement 3
5

The if-else statement

• if-else is used to perform a two way branch

if (condition)

statement1;

else

statement2;

• statement1 is performed if condition is true

• statement2 is performed if condition is false

• Only one of the two statements is performed!
6

9/28/2014

2

condition – a Boolean expression

• Boolean expressions are either true or false

• Conditions often consist of comparisons

– age ≥ 21 // can buy drinks

– age < 4 // can ride subway for free

– year = 2 // you are a sophomore

7

Comparisons in C++

= equal to == a == b

≠ not equal to != a != b

< less than < a < b

≤ less than or <= a <= b

equal to

> greater than > a > b

≥ greater than or >= a >= b

equal to
8

Be careful with =

= is the assignment operator

• a=b; assigns the value of b to a

== tests equivalence

• a==b determines if a and b have the same value

9

Where spaces matter:

• Correct: a>=b a<=b a!=b

• Incorrect: a> =b a< =b a! =b

No space between > and =, < and =, ! and =

Where spaces don’t matter:

• Correct: a>=b a <=b a !=b

Multi-character comparisons

10

if statement

Can write if statement without else

> ./myProgram

Enter charge: 32.00

Free delivery!

Thanks for shopping!

> ./myProgram

Enter charge: 10.00

Thanks for shopping!

>

Charge card

“Free delivery!”

“Thanks for shopping!”

≥30 <30

11

Compound statements: the use of { }

• Must group multiple statements with { } in
if-else

if (condition)
{

statement1;
statement2;
statement3;

}
else
{

statement4;
statement5;

} 12

9/28/2014

3

What does this do?

int numBagels=5;

cout << "You are getting" << numBagels;

cout << " bagels!\n";

if (numBagels>12)
{

numBagels++;
cout << "You also get an extra bagel free!";
cout << endl;

}

cout << "Have a good day.\n“;
13

What does this do?

int numBagels=5;

cout << "You are getting" << numBagels;

cout << " bagels!\n";

if (numBagels>12)

numBagels++;

cout << "You also get an extra bagel free!";

cout << endl;

cout << "Have a good day.\n“;

14

Groups of statements

• White space (indents, extra blank lines)

ignored by compiler … BUT

• White space is good programming style

• Visually groups statements together

• Braces { } create groups for compiler

15

Compound Boolean expressions

Expressions can be combined with logical operators

• The AND operator &&:

expression1 && expression2 true only if

both expression1 and expression2 are true

if ((2<x) && (x<7))

• true only if x is between 2 and 7, e.g, x is 4, x is 7

• false otherwise, e.g., x is 0, x is 10

• Equivalently: if (2<x && x<7)

• Invalid: if (2<x<7)
16

Compound Boolean expressions

Expressions can be combined with logical operators

• The OR operator || :
expression1 || expression2 true only if at

least one of expression1 and expression2 are

true

if ((ageZoe==20) || (ageZoe==25))

• true only if ageZoe is 20 or 30

• false otherwise

• Equivalently: if (ageZoe==20 && ageZoe==25)

17

Logical operators, continued

Expressions can be altered with logical operators

• The NOT operator ! :
!expression true only if expression is false

if (!(ageZoe>20))

• true only if ageZoe is below 20

• false otherwise

• Preferably: if (ageZoe<=20)

• Preferable to avoid !expression
18

9/28/2014

4

In summary

19

a b a && b

true true true

true false false

false true false

false false false

a b a || b

true true true

true false true

false true true

false false false

a !a

true false

false true

What does this code do?
#include<iostream>

using namespace std;

int main () {

float soupTemp;

cout << "What is your soup temperature? ";

cin >> soupTemp;

if ((soupTemp > 80) && (soupTemp<95))

cout << "This soup is just right!\n";

else

cout << "This soup is no good!\n";

return 0;

} 20

When do we need parentheses?

(soupTemp > 80) && (soupTemp<95)

is the same as

soupTemp > 80 && soupTemp<95

How about:

(soupTemp > 80) && !(soupTemp>=95)

vs.

soupTemp > 80 && !soupTemp<95

21

Order of operations for logic

1. Parentheses: ()

2. Negation: !

3. Comparison: <, >, <=, >=, ==, !=

4. And: &&

5. Or: ||

Operations on same level evaluated left-to-right

22

Order of operations in action

int soupTemp=100;

(soupTemp > 80) && !(soupTemp>=95)

vs.

soupTemp > 80 && !soupTemp<95

23

Cautionary notes

• Be careful using ! , better to avoid it

• Remember int -to-bool conversion

– 0 as false

– 1 (or any non-zero number) as true

24

9/28/2014

5

Short-circuit evaluations

• If the value of the leftmost sub-expression
determines the value of the full expression, the rest
of the expression is not evaluated

float x=0, y=20;
if (x!=0 && y/x>=3) // only x!=0

// evaluated
{ . . .
}
if (y/x >= 3 && x!=0) // error

// divide-by-0
25

Different parts of the afternoon

Conditional actions

> ./myProgram

What is your name? Jill

What time is it? 1400

Good afternoon, Jill.

> ./myProgam

What is your name? Leon

What time is it? 2100

Good evening, Leon.

>
26

Nested if s

if (time > 1200)

if (time < 1800)

cout << "Good afternoon\n";

else

cout << "Good evening\n";

else

cout << "Good morning\n";

27

Remembering const

Constant variables – replace numbers with

meaningful names

const int noon=1200, startOfEve=1800;

if (time > noon)

if (time < startOfEve)

cout << "Good afternoon\n";

else

cout << "Good evening\n";

else

cout << "Good morning\n";
28

What does this code do?

// buying a laptop

int price=500; // $500

float weight=50.5; // 50.5 pounds

if (weight<5.5)

if (price<1000)

cout << "Buy this!" << endl;

else

cout << "Too heavy!" << endl;

29

Grouping of if and else

• else statement is connected with closest if

• Indentation ignored by compiler!

• { } braces instruct the compiler for grouping

30

9/28/2014

6

Multiway if -else statement

Actions for multiple mutually-exclusive conditions

if (expression1)
statement1;

else if (expression2)
statement2;

. . .
else if (expressionN)

statementN;
else // all above expressions false

statementLast;
31

Branching on grade

> ./myProgram

Enter score: 94

You get an A.

> ./myProgram

Enter score: 78

Your get a C

32

Score input

“A”

Exit

≥90

“B”

<90,

≥80

“C”

<80,

≥ 70

“D”

<70,

≥ 60

“F”

Scope

• Variables declared inside a block are not

“visible” outside the block

• Variables declared in an outer block are visible

to inner blocks

• Blocks are enclosed by braces { }

33

What does this code do?

int main () {

int a=5, b=10;

if (a >= 3) {

int a=8;

cout << a << " " << b << endl;

}

cout << a << " " << b << endl;

return 0;

}

34

What does this code do?

int main () {

int a=5, b=10;

if (a >= 3) {

int a=8, c=5;

cout << a << " " << b << endl;

}

cout << a << " " << c << endl;

return 0;

}

35

What does this code do?

int main () {

int a=5, b=10;

if (a >= 3) {

int a=8, c=5;

b=12;

cout << a << " " << b << endl;

}

cout << b << " " << c << endl;

return 0;

}
36

9/28/2014

7

Multiway switch statement

switch picks which statements to perform

based on value of controlStatement

switch (controlStatement)

{

. . .

case constantX :

statementSequenceX

break;

. . .

}

37

Full switch syntax

switch (controlStatement)
{

case constant1 :
statementSequence1
break;

. . .
case constantN :

statementSequence3
break;

default :
statementSequence

} 38

controlStatement
Must return a value of type:

• bool

• integer (int , and related types)

• char

39

break statement

break; exits the current block of code

case statement
case constantX : tells program to start

running following code if

controlStatement has given value

switch example

switch (letter) {
case 'A':

cout << "A is for apple\n";
break;

case 'B':
cout << "B is for banana\n";
break;

case 'C' :
cout << "C is for cherry\n";
break;

default :
cout << "No fruit for you\n";
break;

}
40

switch example

switch (letter) {
case 'A':

cout << "A is for apple\n";
break;

case 'B':
cout << "B is for banana\n";
break;

case 'C' :
cout << "C is for cherry\n";
break;

default :
cout << "No fruit for you\n";
break;

}
41

A
switch example

switch (letter) {
case 'A':

cout << "A is for apple\n";
break;

case 'B':
cout << "B is for banana\n";
break;

case 'C' :
cout << "C is for cherry\n";
break;

default :
cout << "No fruit for you\n";
break;

}
42

C

9/28/2014

8

43

switch (letter) {
case 'A':
case 'a':

cout << "A is for apple\n";
break;

case 'B':
case 'b':

cout << "B is for banana\n";
break;

case 'C' :
case 'c' :

cout << "C is for cherry\n";
break;

default :
cout << "No fruit for you\n";
break;

}

Can omit break statements to group conditions
Write a program that takes in the month as

a number between 1 and 12 (1 is January, 2

is February…). Print a different message for

each season. For example, for Winter

(January-March), print “It is cold!”; for

summer, “It is hot”

Extra: Ask the user what the temperature

is. Say if it is too hot or cold for the season.

44

Alternatives to “linear execution”

Repeated actions

> ./myProgram

Hello world.

Hello world.

Hello world.

Hello world.

>
Statement 1

Statement 2

Statement 3
45

The while loop

while (condition)
statement_to_repeat;

OR

while (condition)
{

statement_to_repeat1;
. . .
statement_to_repeatN;

}
46

block of

statements

condition – a Boolean expression

• Boolean expressions are either true or false

• Conditions often consist of comparisons

– age ≥ 21 // can buy drinks

– age < 4 // can ride subway for free

– year = 2 // you are a sophomore

47

Just a reminder from our earlier

if-else slides

How can we output “Hello world”

4 times?

int x=4;

while (x>0)

{

cout << "Hello world.\n";

x--;

}

Remember x--; same as x=x-1;

Repeats until x≤0 48

9/28/2014

9

Execution of while loop

• If condition is true, enter while loop

– Complete all statements in block

– Return to top (re-evaluate condition)

• Otherwise, continue to statements beyond

loop

49

Execution of while loop
• If condition is true , enter while loop

– Complete all statements in block

– Return to top (re-evaluate condition)

• Otherwise, continue to statements beyond loop

int x=2;
while (x>0)
{

x--;
cout << "Hello world.\n";

}

50

How many

“Hello world”s

are output?

What code will do this for us?

> ./myProgram

1 mississippi

2 mississippi

3 mississippi

4 mississippi

5 mississippi

>

51

Ask the user for a minimum and maximum
number (integer)

Use a loop to calculate the sum of the numbers
between minimum and maximum

E.g., if min is 3 and max is 6, sum is 3+4+5+6=18

Extra: Ask the user for two numbers (don’t
specify the order) and have the computer figure
out the min and max

Extra 2: Compute the product of the numbers
between min and max (E.g., 3x4x5x6=360)

52

a++ vs. ++a

• a++ returns value of a, then adds 1 to a

• ++a adds 1 to a, then returns value of a

Different results for:

53

int a=0;
while (++a < 3)

cout << "Hi!\n";

int a=0;
while (a++ < 3)

cout << "Hi!\n";

do-while loop

• while evaluates condition , then performs
statements if condition is true

• do-while performs statements, then evaluates
condition to determine whether to perform
statements again

do
{

statement1;
. . .
statement N;

}
while (condition); 54

9/28/2014

10

What does this code do?

int main () {

int a=5;

do {

cout << "one ";

a-=2;

cout << "two\n";

} while (a > 0);

return 0;

}

55

What does this code do?

int main () {

int a=5;

do {

cout << "one ";

a-=2;

cout << "two\n";

} while (a != 0);

return 0;

}

56

Beware infinite loops!

• Loops that never stop are called infinite loops

• Typically, write code so each loop will stop

57

for loop
a while loop alternative

for (init; condition; update)
{

statement1;
. . .
statement N;

}

typical example:

int i, product=1;
for (i=1; i<=5; i++)
{

product = product*i;
} 58

init – initializes variable

59

condition – statement about variable,
must stay true for loop to keep running

update – updates the variable after each
loop execution

Reviewing scope
Counter i exists outside of loop

int i, product=1;
for (i=1; i<=5; i++)
{

product = product*i;
}

Counter i exists only inside of loop

int product=1;
for (int i=1; i<=5; i++)
{

product = product*i;
}

60

9/28/2014

11

What does this code do?

int main () {

int i, product=1;

for (i=1; i<=5; i++);

product = product*i;

cout << i << "! = " << product << endl;

return 0;

}

61

Beware the misplaced ;

Placing a semicolon after the parentheses of a

for loop causes an empty statement as the

body of the loop

62

Picking a loop

• do-while if you need to perform the action
at least once

• for if there is a standard repeated
mathematical update to your loop variable
(e.g., count++)

• while loop for less-standard loop variable
updates

“loop variable” is the variable tested by the
condition in your given loop

63

