9/16/2015

Introduction to programming

with C++
Learn

CISC 1600/1610 .
- * Fundamental programming concepts
Computer Science | e Key techniques

¢ Basic C++ facilities

Programming in C++ By the end of the course, you will be able to:

) * Write small C++ programs
Professor Daniel Leeds

dleeds@fordham.edu
JMH 328A

* Read much larger programs
* Learn the basics of many other languages
* Proceed to advanced C++ courses

Requirements How to succeed in class

Ask questions

Lectures and lab sessions
* Labs assignments — roughly 8 across semester
* Quizzes — each 15 minutes, roughly 5 across

* Inclass
* In office hours, tutor room

semester * Study together and discuss assignments with
* Final project each other (without plagiarizing!)
* Exams — 1 midterm, 1 final Textbook

* Read and re-read the material
* Academic integrity — discuss assignments with

your classmates, but you MUST write all your code
and all your answers yourself Start coding and studying early

* Complete practice problems

Course textbook Course website

http://storm.cis.fordham.edu/leeds/cisc1600

Problem Solving win (G++

Problem Solving
With C++

Ninth Edition

Go online for

* Lecture slides

* Assignments

¢ Course materials/handouts

Walter Savitch
* Announcements

Instructor

Prof. Daniel Leeds

dleeds@fordham.edu

Office hours: Tues 1-2p, Fri 10:30-11:30a
Office: JIMH 328A

Programs are everywhere

On your computer:
* Web browser
— Request and display information from distant sites
* Word processor
— Record text, change appearance, save to disk
* Music player
— Organize mp3’s, select time in song, play, stop

Programs are everywhere
In humans:

¢ Sports

— When to run, where to run; when to pass, who to
pass to; when to shoot

* The brain
— Neurons working together to combine information
about an image to recognize a dog or a car
.+ Head
I\Q@y fyﬁ(detector
I\{ I/ﬁ(Tail
L

JSepe
e ‘ detector

2 Lo
é CEAY é dOg

9/16/2015

A program provides a

computer with a set of

simple instructions to
achieve a goal

Programs are everywhere

In the dining hall:
* Cashier

— Compute price of food purchase, charge payment
to account, (if pay cash: compute change)

* HVAC
— Monitor temperature, adjust A/C or heating
* Electronic signs

— Display menus and prices, load and display
university news

Computer system structure

Central processing unit Output
(CPU) — performs all the AN
instructions B N
Memory — stores data and . ACPU
instructions for CPU /
Input — collects /’7“?“:" 4 T l
;np . X —
information from the —
world \ P,
. —Z
Output — provides Input

information to the world

C++ — high-level language

High-level language

— Uses words to describe

— More intuitive to people Q

— Computer-independent l 3

Machine-language assembly code %

— Uses binary to describe l -
instructions 10000000 10000100
00110010 01110100

— Less intuitive to people
— Computer-dependent

C++ code

instructions balance=balance-charge;

machine code

Why C++?

Some programming history:

C++ developed as improvement on C

C developed as improvement on B

B developed as improvement on ...

BCPL — Basic Computer Programming
Language

Various languages before BCPL — ADA, COBOL,
FORTRAN

Programming basics

Program structure and components
Output text

Variables

Input information

Perform arithmetic

Type safety

9/16/2015

Why C++?

* Popular modern programming language

* In use since

1980’s

* Similar structure to many/most other popular
languages (Java, CH, Perl, Python)

* Programming

Course outline

basics, input/output, arithmetic

* Conditional statements

* Loops

* Modularity — functions

* Complex data

Throughout the

— arrays, vectors strings, and classes

semester:

* Proper programming style

Our first program: “Hello world!”

// include library of standard input and output commands
#include <iostream>
using namespace std;

int main ()
{ // Begin main function

}

cout << "Hello

return 0;

world!\n"; // output "Hello world!"“

/* indicate successful
program completion */

// End main function

> . /myProgram
Hello world!
>

The components of “Hello world!”

e Comments //, /* */
* main function
* Preprocessor directives #include

Preprocessor directives
#m;;.u;;;li;t;;;m>1 standard input and output commands
1 r namespace 1;

‘ vr‘ v”w"v) T y " itput "Hel o

* Lines beginning with #
* Executed before compiling the program

Statement

Ny

yin main function

couf << "Hello world'!\n"; // output "Hello world!"

return 0; /* indicate successful
program completion */

¢ Instructions to be performed when the program is
run
e Each statement is completed with a ;

t and output commands

9/16/2015

Using comments

// include library of standard input and output commands
#include <iostream>
using namespace std;

int main()
{ // Begin main function
cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful
program completion */
} // End main function

* Explain programs to other programmers
* lIgnored by compiler
¢ Syntax:
// single line comment
/* multi-line
comment */

main function

andard input and output commands

using name

int main()
{ // Begin main function
cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful
program completion */
} // End main function

Every C++ program has the function int main ()

* main contains the instructions to be executed by
the program

¢ The instructions included in the “body” of main are
placed between curly braces { }

Using “white spaces”

// include library of standard input and output commands
#include <iostream>
using namespace std;

int main ()
{ // Begin main function
cout << "Hello world!\n"; // output "Hello world!"

return 0; /* indicate successful
program completion */
} // End main function

* “White spaces” are blank lines, space characters,
and tabs

* White spaces are ignored by the compiler

¢ Use indentation to group pieces of code together

Output command

cout << "Hello world!\n";

* cout << "text"; outputsthe specified text
to the screen
* cout is the output stream object
* The text is delimited by double-quotes "™ "
* Only use simple quotes (") not curly quotes (")
* << isthe “stream insertion operator” directing the
text into cout

Terminology:
A “character” is any single letter or symbol. E.g.:
NN Y
A collection of characters is called a “string.” E.g.:
"Hello world", "afe094n", "C++is fun! "

Output command, part 3

cout << "Hello world!\n";

> ./myProgram
Hello world!
>

* We can place multiple stream insertion operators in a
sequence.

cout << "Hello world" << "!!lI";
cout << "How are \nyou today?";

> ./myProgram

Variables

Variables store information

char single character ('a', 'Q')

int integers (-4, 82)
bool logic (true or false)
float real numbers (1.3, -0.45)
string text ("Hello", "reload")

9/16/2015

Output command, part 2

cout << "Hello world!\n";

> . /myProgram
Hello world!
>

* Escape character: backslash \

* Escape sequence: backslash followed by another
character
* New line: \n
e Tab: \t

cout << "Hello\n world!\n";

> ./myProgram

. L u ”

User input: “Hello !

// include library of standard input and output commands
#include <iostream>

using namespace std;

int main ()
{ // Begin main function
string name; // create variable called name
cout << "What is your name?";
cin >> name; // get name from user
cout << "Hello "; // output "Hello "
cout << name << "!\n"; // output "<name>!"
return 0; // end program

} // End main function

> ./myProgram

What is your name? Alice
Hello Alice!

>

Variable decl

aration
standard input and output commands

{ Begin main functior
string name; // create variable called name
ut << "What is your na ?

“Declare” new variable by writing type followed by variable name.

More examples:
int age, weight; // multiple declarations

9/16/2015

Variable declaration and initialization Variable assignment
* Typically, variables are assigned values with the =
* All variables must be declared before they are used operator
int cost; // declare variable string weather;
* Variables are initialized with the first assighment weather = "sunny";
statement cout << "The weather today is ";

Wy cout << weather << endl;
cost = 25; initialize variable i X
¢ The variable to be changed is always to the left of

* Declaration and initialization can be performed in the = operator

one line

)) * The value assigned from the right of the = operator
int weight = 140;

— Constants: weight = 140;

— Variables: ageErica

ageden;
— Expressions: balance = balance - cost;

Input command

include library of andar npu utput commands

Variable names

sing namespace std; * Avariable name is any valid identifier that is
not a keyword

— Starts with a letter, contains letters, digits, and
underscores (_) only

strir name; create variabl alled nam

cin >> name; // get name from user
cout << "He " output "Hello "

ame>!" — Case sensitive:
username#userName#UserName

— Cannot begin with a digit

“nd main function

e cin >> varName; receivesinputfrom keyboard
saves into the varName

Variable names, part 2 Keywords
Choose meaningful names
* Avoid acronyms Also known as: “Reserved names”
* Avoid lengthy names * Examples
—cout, return, string, int
* Good: * Must be used as they are defined in the
age, size, address, count, sumData programming language
%, y, 1 —single letters as counting variables « Cannot be used as variable names

* Bad:

rbi, 1da, x225,
neuron response magnitude

Arithmetic in C++

Operators

e Addition: 5 + 2 evaluates to 7

* Subtraction: 5 - 2 evaluates to 3

* Multiplication: 5 * 2 evaluates to 10
* Division: 4 / 2 evaluates to 2

* Modulo: 5 % 2 evaluates to 1 (only integers)

Order of operations

 First: Parentheses

* Second: Multiplication, Division, Modulo

Third: Add, Subtract

Evaluate from Left to Right

ones

inta=(4* (5+2) -4)/

Increment and decrement

int ¢ = 12;
¢ Increment by 1: c++ evaluatestoc + 1

* Decrement by 1: c—- evaluatestoc - 1

Evaluate inner-most parentheses before outer

4;

What does this program do?

#include <iostream>

int main ()

{

using namespace std;

int dollars, coins;

cout << "How many dollars do you have? ";

cin >> dollars;

coins = dollars*4;

cout << "I will give you " << coins;
cout << " coins.\n";

return 0;

Assignment operators

int a = 6;

» Standard assignment:

* Other assignments:

—-a +=3; // a

—a -=3; // a
—a *=3; // a
—-a /=3; // a
—-a %=3; // a

(U VI

o N+

The binary representation

* int age = 65; assigns a binary code to

memory:

01000001

9/16/2015

* char grade = 'A'; assigns a binary code to

memory: 01000001

* Every variable value is a number in binary,
C++ interprets the binary number based on

the variable type

Interpreting binary

Base 10
253 -> 253
2x100+5x10+3x1

Base 2
128643216 8 4 2 1

00001001=?
00110000=?
10010010=?

Variable types, revisited

char | single character ('a','Q’) 1 byte
int integers (-4, 82) 4 bytes
bool logic (true or false) 1 byte
float |real numbers (1.3, -0.45) 4 bytes
string| text ("Hello", "reload") ? bytes

* Each variable is represented by a certain number of Os and 1s

¢ Each 0-or-1is a bit

¢ 8bitsinarow is a byte

Assigning between types

int x = 5;
float v = -2.5;
float z = x *
int g =y - x;

From numbers to symbols:

the ASCII table

9/16/2015

Numeric Character Numeric Character Numeric Character Numeric Character
code code code code

45 65 A 85 U 105 i
a6 . 66 B 86 v 106 j
a7 / 67 C 87 w 107 k
48 0 68 D 88 X 108 |
49 1 69 E 89 Y 109 m
50 2 70 F 90 z 110 n
51 3 7 G 91 [111 o
52 a4 72 H 92 \ 112 P
53 5 73 1 93 1 113 q
54 6 74 J 94 ” 114 r
55 7 75 K 95 _ 115 s
56 8 76 L 96 N 116 t
57 9 77 L 97 a 117 u
58 : 78 N 98 b 118 v
59 5 79 o 99 C 119 w
60 < 80 P 100 d 120 x
6l = 81 Q 101 e 121 y
62 > 82 R 102 f 122 z
63 2 83 s 103 € 123 {
4 @ 84 T 104 h 124 |

Variables — locations in memory

* Each variable indicates a location in memory

* Each location holds a value

* Value can change as program progresses
* Variable value exists before initialization

Address Value
grade
04201320 A
aht 04201328 =
WeIBNt ~~.1 04201336
04201344
04201352 L0
04201360
04201368 p
Assighing between types
e int vs float

— If compiler permits, floats will be rounded to nearest
integer and ints will be expanded to a precision float
* int vs char
— If compiler permits, char will be converted to integer
ASCII code and int will be converted to corresponding
ASCII character
* int vs bool
— If compiler permits, bool will be converted to O (if
false) or 1 (if true) and int will be converted to false
(of 0) or 1 (if not 0)

int x
float
float
int g

I N

5;

9/16/2015

Type safety

* Ideally, every variable will be used only
according to its type
— A variable will only be used after it has been
initialized
— Only operations defined for the variable’s declared
type will be applied

— Every operation defined for a variable leaves the
variable with a valid value

