
4/20/2015

1

CISC 1600/1610

Computer Science I

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Programming a

virtual world

How do we represent a

complex problem?

• Outline what needs to be done

(e.g., diagram of program steps)

• Determine C++ variables to use

• Determine C++ statements to use

The world of a video game

Two-dimensional grid containing:

• Players

• Walls

• Open spaces

Each player has:

• Location

• Facing-direction

The world of a video game (continued)

For each character, request an action

Possible actions

• Move forward

• Change direction

• Player 1 move
forward

• Character 2 turn to
face down

Progress of game

Move player 1 Move player 2 Move player 3

Representing the world

First approach:

• List locations of players and walls

int players[maxP][2];

int walls[maxW][2];

players[0][0]=2;

players[0][1]=1;

4/20/2015

2

Representing the world

First approach:

• List locations of players and walls

players[0][0]=2;
players[0][1]=1;
walls[0][0]=2

walls[0][1]=3

Players

1: row 3, col 2

2: row 2, col 7

3: row 6, col 5

Walls

1: row 3, col 4

2: row 3, col 5

3: row 5, col 7

4: row 7, col 8

Representing the world
Second approach:

• Record the contents of each location

char world[8][8];

world[0][0]='O';

world[0][1]='O';

world[1][6]='A';

world[2][1]='B';

world[2][3]='W';

world[2][4]='W';

(players labeled as A, B, C)

Moving through the world

To move player 1 forward by 1 box

• Find player current location

• Check if target location is

empty

• Update player location

Find player 1 location

Approach 1:

• Look up players[0][0] and

players[0][1]

Approach 2:

• Loop through each element of world, look for

'B'

Approach 1 is faster!

Check if target location empty

• Approach 1:

• Look at locations of all players and walls –

confirm none are xNew, yNew

• Approach 2:

• Check world[xNew][yNew]=='O'

Approach 2 is faster!

Abstraction

• Function – a set of actions called by one word

• Class – a set of data held in one word

Information hiding

• So long as action/data unit acts correctly, we

don’t need to know the details

• Hiding details can prevent accidents in

programming (e.g., overdrawn account)

12

