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JMH 332

Systems (and Computational) Neuroscience

" 4

* How the nervous system
performs computations

* How groups of neurons work together to
achieve intelligence

* Requirement for the Integrative Neuroscience
major
* Elective in Computer and Information Science

Objectives

To understand information processing in
biological neural systems from computational
and anatomical perspectives

* Understand the function of key components
of the nervous system

* Understand how to make mathematical
models of cognition

* Understand how to use computational tools to
examine neural data

Recommended student background

Prerequisite:

* Officially: CISC 1800/1810 Intro to Programming
or CISC 2500 Information and Data

Management
Computer
Math . P
science
Some calculus Some programming
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Textbook(s)

Fundamentals of Computational
Neuroscience, Second Edition,
by Trappenberg

* Suggested

* We will focus on the ideas and study
a relatively small set of equations

Computational Cognitive Neuroscience,
by O’Reilly et al.
* Optional, alternate perspective

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for
— Announcements
— Lecture slides
— Course materials/handouts
— Assignments

Requirements

* Attendance and participation

— 1 unexcused absence allowed

— Ask and answer questions in class
* Homework: Roughly 5 across the semester
* Exams

— 1 midterm and 1 final

— 2 shorter quizzes

¢ Don’t cheat

— You may discuss course topics with other
students, but you must answer homeworks
yourself (and exams!) yourself

Matlab

Popular tool in scientific computing for:
* Finding patterns in data

* Plotting results

* Running simulations

Student license for $50 on Mathworks site

Available in computers at JMH 302 and
LL612
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Your instructor

Prof. Daniel Leeds

E-mail: dleeds@fordham.edu
Office hours: Mon 12-1, Thurs 2-3
Office: IMH 332 & )

Prof. Leeds’ Projects in
Computational Neuroscience

* Computer vision models for .

cortical vision ! i

¢ Effects of head trauma on 4D

cortical cognition >

Introducing systems and
computational neuroscience

* How groups of neurons work together to
achieve intelligence

* How the nervous system
performs computations

Levels of organization

Examples Scale
10m | People
YD s

=R

\

= ™ 100 mm |  Neurons
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From a psychological perspective...

What are elements
of cognition?

Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition

Visual
Processing
in the
Cortex

Middle Temporal. 1("'4"5“;‘;“' Coviex

Cortex (MT/V5)

Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition
* Motion planning and execution
* Learning and remembering

Computational neuroscience

Strategy used by the nervous system to solve

problems
O O &
. . . - () ()L
* Visual object perception 3 ,
through biological SECEGE
hierarchical model _
“HMAX” N () (=) - i <—Com'lilixl‘Cells
220 22) S@® - <« Simple Cells
Image . F—
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Computational neuroscience as
“theory of the brain”

David Marr’s three levels of analysis (1982):

* Computational theory: What is the
computational goal and the strategy to achieve
it?

* Representation and algorithm: What are the
input and output for the computation, and how
do you mathematically convert input to output?

* Hardware implementation: How do the physical
components perform the computation?

Marr’s three levels for “HMAX” vision

* Computational theory: Goal is to recognize
objects
* Representation and algorithm:
— Input: Pixels of light and color
— Output: Label of object identity
— Conversion: Through combining local visual
properties
* Hardware implementation:

— Visual properties “computed” by networks of
firing neurons in object recognition pathway

Levels of organization

Examples Scale Examples

Complementany
. Memony
3 Systeem

; (o) ¢ detecas
Compartmental 1%& ~—

model S %
e = % 100mm |  Neurons
pee sl |4 e Vesis

1um | Synapses ‘ and iom
Aminoadd o S ] ) ) )
o

HN=C=C —OH 1A
|

|

Molecules

Course outline

* Philosophy of neural modeling

* The neuron — biology and input/output behavior
* Learning in the neuron

* Neural systems and neuroanatomy

* Representations in the brain

* Memory/learning
* Motor control Plus: Matlab
* Perception programming

1/23/2020



The neuron
* Building block of all the systems we will study
* Cell with special properties

— Soma (cell body) can have 5-100 um diameter, but
axon can stretch over 10-1000 cm in length

— Receives input from neurons through dendrites

— Sends output to neurons through axon
dendrites nucleus NEURON

[y

axon

/ axon ending
N
/

\ myelin sheath

cell body

Neuron membrane voltage

* Voltage difference across cell membrane
— Resting potential: ~-65 mV
— Action potential: quick upward spike in voltage

LA AR

potential (mV)

time (ms)

v | ‘
Nt I W g g oo WJJ___«,_,

Example neural signals

The action potential

* Action potential begins at axon hillock and
travels down axon

Voltage-gated
Ca?* channel

* At each axon terminal,  symepticvesice
spike results in release "™
of neurotransmitters

* Neurotransmitters s
(NTs) attach to
dendrite of another
neuron, causing voltage change in this second
neuron

Inter-neuron communication

Neuron receives input from 1000s of other neurons
* Excitatory input can increase spiking

* Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

* Neuron A is pre-synaptic:
axon terminal outputs NTs
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More on neuron membrane voltage

* Given no input, membrane stays at resting
potential (~ -65 mV)

Inputs:
* Excitation temporarily increases potential

* Inhibition temporarily decreases potential

Continual drive to remain at rest

Patch clamp experiment

* Attach electrode to neuron
* Raise/drop voltage on electrode AT

* Measure nearby voltage (with ™~
another electrode)

]!j

Simplification of N
neurophysiology £ gi /
experiment g 2

More on the action potential
1. Accumulated excitation passes certain level
2. Non-linear increase in membrane voltage

3. Rapid reset

‘‘‘‘‘‘‘‘‘‘‘

Modeling voltage over time
Equations focusing on change in voltage v
Components:

* Resting state potential (voltage) E,
* Input voltages R/

* Timet
dv(t
T d(t ) = —(v(t) — E) + RI(t)
change towards incorporate new
resting state input information
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http://commons.wikimedia.org/wiki/File:Action_potential.svg

Simulation

* Initial voltage
* Time interval for update
* Input at each time

* Apply rule to compute new voltage at each
time

Applying dv/dt step-by-step

E;=-65mV v(0ms)=-65mV =1
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms dv(t)

T Fr —(w(t) — E) +RI(Y)

. _ dv(0ms)_ 10
v(10ms) = v(Oms) + dt 1000 10

= -65 + [-(-65- -65) + 20] x ——

. _ dv(10ms) 10
v(20ms) = v(10ms) + — %000

= -64.8 + [-(-64.8- -65) + 20] x ——

1000
= -64.8 +-0.2+20 X ——
51000

= .64.8 +19.8 ﬁ
= -64.602

Applying dv/dt step-by-step

E;=-65mV v(0Oms)=-65mV 7=1
RI(t)=20mV (from t=0ms to 19100th)

v
time step: 10ms Lawraks —((t) — EL) + RI(D)

dv(Oms) 10

* v(30ms) =v(20ms) + X
dt 1000 1
= -64.602 + [-(-64.602- -65) + 20] x ——

10 1000
=-64.602 + 19.602 x ——

1000
=-64.40598

Changing model terms

T has inverse effect
* increase T decreases update speed
* decrease T increases update speed

RI(t) has linear effect
* increase RI(t) increases update speed
* decrease RI(t) decreases update speed
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Voltage over time: reset

WO _ o)~ E) +RI®

When voltage passes threshold v, ..,
voltage reset to v,

V(tf) :vthresh

T

V(t+6)=V Example:
6 is small positive number close | Vi en=-42mV
to0 Vieset =-65mV

v(120ms)=-45mV
v(130ms)=-43mV
v(140ms)=-41.5mV
- v(150ms)=-65mV:s

=
o

45

50

55

60

65

<

oltage over time
dv(t)
dt

T = —(w(t) — E)) + RI(¢)

7

‘ /

/ / /
¥ St B B
0 10 20 30 40 50 60 70 80 90 100

Simulated Biological

Below and above threshold

-10 |

-20 |
EEF——————————
-40 |

-50 ]
60

70 |
0 100 200 300 400 500 0 100 200 300 400 500

+15mv input +50mv input

E,=-65mV
Newly added:

If input constant for long time RI(t)= k mV
Output v(t) will plateau to E +k if E;+k<Vy, qqh

Accumulating information over inputs

.......

myelin sheath

Positive and negative weighted inputs from
dendrites wa added together:

J

jis index over dendrites; first-pass model

40
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Accumulating inputs

D1 : A
D2

200 400 600 800 1000

10

A Accumulating inputs
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+20
o —] w,=-3
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v(t)
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Chemical level: NT receptors

Pre-synaptic: a

* Amount of NT released Synaptic vescidle

Post-synaptic: w Neurotransmitter

*  Number of receptors in
dendrite membrane

» Efficiency of receptors

+W or —-w

» Reflect excitation or inhibition

* One NT type per synapse

* Fixed sign per NT

Voltage-gated
Ca?* channel

Neurotransmitter~" ® 3
receptor ~_ * T T e

o) o

1/23/2020
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Form of dendrite input
dv(t)

Tldt

= —((t) — EL) + RI(t)

| Pre-synaptic neuron spikes

| Neurotransmitter (NT) released |

NT received by post-synaptic
dendrite at time tf

v
Post-synaptic voltage rises and
then fades, a(t)

Rl(t) = ZWJ(ZJ (t)
J

-50

-65

-70

j

55 ] New pre-synaptic

inputs at

-60 1 * 34ms

* 68 ms
¢ 100 ms
* 135ms

0 20 40 60 80 100 120 140 160

“Leaky integrate-and-fire” neuron

* Sum inputs from
dendrites (“integral”)

j

* Decrease voltage dv (D)
towards resting state 1 Frale —(w(t) —E,) +RI(t)
(“leak”)

* Reset after passing

v(tf +6) = v,
threshold (“fire”) ( )= tres

Activation function

Often non-linear relation between dendrite input

and axon output Tdv(t) — _(u(t) — E) + g(RI(®)

dt
RI(®) ZZWj“j(t) Sum inputs
Ji
g(RI(1)) Apply (non-linear?)

transformation to input

1/23/2020
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Activation function An example sigmoid

Function type S;g?;?l Mathematical formula MATLAB implementation g ( 2)= ) I
D.B-——————————I— ______
Linear / glin(x) = x X 0. ] | /
0.7 1 | /
|

Step ga=dl x>0 floor(0.5% (L4sign(x)) g(1)= 05 ]

0 elsewhere

|
0.54+— — —|— = —|—— — — ————t — —-
0.4
Threshold- theta (1) = x.*floor (0.5*% (1+sign(x)))
/ g™ () =x O™ = 0.3 1
linear g(O)—

Sigmoid

g(h)

g(-4)= AR

Radial-basis

]
|

|

0.2 4 I

gig(r) = —L— 1./ (1+exp(-x)) 01— ——+——+ (g
14exp(-x) j, |, | | ‘
1
H pEs(

855 (x) = exp(-x?) exp (-x.72)

Tuning curves .. ) . i
8 Variations in activation functions

Some single neurons fire in response to

“perceiving” a quality in the world Activation function has fixed shape
oo G S Tung RSV etoRIn CaL — Sigmoid is S shape, Radial is Bell shape
'ﬁ'150 L ESO r .o. -
’fgmo . A g . » By default, transition between 0 and 1
£ Y S b 1] o \o‘:D\Z_
g 50 /e L‘I:E_ 20F EEZ 55527
10 . w
0L : et e et * Some details of shape may vary .,
Weight [g] Orientation [degree] .
— Smallest and highest value
Ad.r|an, Henry etal, — Location of transition between valués
J Physiol 1926. J Neurophys
1974.
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Neural coding

Perception, action, and other cognitive states

represented by firing of neurons

* Coding by rate: high rate of pre-synaptic
spiking causes post-synaptic spiking

* Coding by spike timing: multiple pre-synaptic
neurons spiking together causes post-synaptic
spiking

Neuron index

Time coding at t=290ms

time

0 o 00 0
0 0 0
00 ¢ 0
0 ’ o
100 200 300

>
400ms

3s 4s 5s 6s

Spike time coding, ??7?s
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Inhibition can be informative Computing spike rate

Inputs of interest can produce * Add spikes over a period of time
* Below-normal spike rate

* Decreased synchrony among neurons num spikes in AT

v(t) =
. AT
P 1 R Coding through rate inhibition,
roughly in 2-3s interval
\I“:H\I\HH\IHH:\‘HII ‘I I I \I‘”:I‘ “HI\‘II‘IIH”HIH“I:‘ |: ¢ Average Spikes Over a Set Of neurons
“I‘I\I\I\\I“I‘\II"\HH\:II\H‘IH‘\‘\HI:H\ \‘I: \II‘\‘ \‘\:‘ I‘\I I\I\‘ HI“H\ \”IH HI \”II\I\M Ta ke nOte Of baSEIine‘
[RERTIYIRNVEN ] [N RN RN Rate and t|me Coding . 1 num SplkeS in N neurons
S [ e o deviations from AW = Jim .

Os 1s 2s 3s 4s 5s 6s baseline
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