1

Computational representations CISC 3250 describing a visual object • A picture is worth a million pixels Systems Neuroscience - Digital picture broken into a grid of boxes - pixels **Representations** - Each pixel contains a color in the brain . dkGrn dkdkGrn dkGrn white white **Professor Daniel Leeds** ItGrey grey dleeds@fordham.edu • Translate from pixels to category label: JMH 332 floss flour flower flume flute foam

Simple outline of vision pathway

- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors

• • •

N. Higher-cortical layer: Full-object detectors

<section-header><section-header><section-header><section-header><section-header><text><text><image>

Classes of representation

Local representation

- Neural level: "grandmother" cell
- "Region" level: face region, place region

Parahippocampal place area Fusiform face area Visual word form area

Lateral occipital cortex (shapes)

19

Coding on a scale:			
distributed + overlapping			
Responses	for each property	/ add together	
1 - 1 Hz – sad 25 – 25 Hz – neutral 50 – 50 Hz – happy	- 1 1 Hz – young - 25 25 Hz – middle - 50 50 Hz – old	 - 1 Hz – bald - 25 Hz – middle - 50 Hz – full-hair 	
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)	
How do we encode	: happy (100%), m light hair (1%)? $\sum_j level_j pattern$	id-age (50%), j	
			25

Coding on a scale:		
distributed + overlapping Responses for each property add together		
1 - 1 Hz - sad - 1 1 Hz - young - 1 Hz - bald 25 - 25 Hz - neutral - 25 25 Hz - middle - 25 Hz - middle 50 - 50 Hz - happy - 50 50 Hz - old - 50 Hz - full-hair mood age amount hair (sad - happy) (0 - 100) (bald - long)		
How do we encode: sad (5%), mid-age (50%), hairy (100%)? $\sum_{j} level_{j} pattern_{j}$		
		27

Coding on a scale:			
distr	distributed + overlapping		
Response	Responses for each property add together		
1 – 1 Hz – sad 25 – 25 Hz – neutral 50 – 50 Hz – happy	- 1 1 Hz – young - 25 25 Hz – middle - 50 50 Hz – old	1 Hz – bald 25 Hz – middle 50 Hz – full-hair	
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)	
How do we encode: happy (100%), mid-age (50%),			
light hair (1%)?			
$\sum_j level_j \ pattern_j$			
n1 n2 n3			
50 0 50	happy		
0 25 25	mid-age		
<u>0 0 0.5</u> 50 25 75.5	light hair		26

Coding on a scale:		
distributed + overlapping		
Response	s for each property	/ add together
1— 1 Hz – sad 25 – 25 Hz – neutral 50 – 50 Hz – happy	- 1 1 Hz – young - 25 25 Hz – middle - 50 50 Hz – old	1 Hz – bald 25 Hz – middle 50 Hz – full-hair
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)
How do we encode: sad (5%), mid-age (50%), hairy (100%)?		
	$\sum_{j} level_{j} pattern$	j
n1 n2 n3		
2.5 0 2.5	happy	
0 25 25	mid-age	
<u>0 0 50</u>	light hair	
2.5 25 77.5		
		28

Coding on a scale: distributed + overlapping

Responses for each property add together

29

1 – 1 Hz – sad	- 1 1 Hz – young	1 Hz – bald
25 – 25 Hz – neutral	- 25 25 Hz – middle	25 Hz – middle
50 – 50 Hz – happy	- 50 50 Hz – old	50 Hz – full-hair
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)

What does this encode? 0 20 40

What does this encode? 50 20 75

Coding on a scale: distributed + overlapping			
Responses for each property add together			
1– 1 Hz – sad 25 – 25 Hz – neutral 50 – 50 Hz – happy	- 1 1 Hz – young - 25 25 Hz – middle - 50 50 Hz – old	1 Hz – bald 25 Hz – middle 50 Hz – full-hair	
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)	
What does this encode? $50\ 20\ 75$ $e^{\mu e^{n}e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{\nu e^{\nu e^{n}e^{\nu e^{\nu e^{\nu e^{\nu e^{\nu e^{\nu e^{\nu e^{\nu $			31

Coding on a scale: distributed + overlapping Responses for each property add together 1 – 1 Hz – sad - 1 1 Hz – young - - 1 Hz – bald 25 – 25 Hz – neutral - 25 25 Hz – middle - - 25 Hz – middle 50 – 50 Hz – happy - 50 50 Hz – old - - 50 Hz – full-hair mood amount hair age (sad – happy) (0 - 100)(bald – long) Neuron¹ Neuron² ron³ What does this encode? 0 20 40 **Very sad:** contributes: $0 \times [50050] = 000$ Middle-age: contributes .4 x [0 50 50] = 0 20 20 **Middle-hair:** contributes .4 x [0 0 50] = 0 0 20

0 20 40

30

Summing together:

- Left matrix: data
 - Rows: different data points
 - Columns: different features
- Right matrix: column contains weights for weighted sum

51

Example Matrix multiplication

$$\begin{bmatrix} 2 & 0 & -1 \\ 3 & 1.5 & -2 \end{bmatrix} \begin{bmatrix} 0.5 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0.5 + 0 \cdot (-1) - 1 \cdot 2 \\ 3 \cdot 0.5 + 1.5 \cdot (-1) - 2 \cdot 2 \end{bmatrix}$$

=
$$\begin{bmatrix} 1 + 0 - 2 \\ 1.5 - 1.5 - 4 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \end{bmatrix}$$

Alternatively:
$$\begin{bmatrix} 2 & 0 & -1 \\ 3 & 1.5 & -2 \end{bmatrix} \begin{bmatrix} 0.5 \\ -1 \\ 2 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 1 \cdot \begin{bmatrix} 0 \\ 1.5 \end{bmatrix} + 2 \cdot \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

Linear algebra and distributed neural coding	
Three features: [tired, happy, cold]	
features -> brain response	
[0.5, 0.1, 0.8] -> [49.1, 32.5, 22.8, 30.0, 36.4, 16.7]	
[0.9, 0.4, 0.1] -> [33.2, 26.0, 15.1, 45.0, 36.8, 23.8]	
[0.4, 0.9, 0.7] -> [45.9, 56.5, 27.7, 41.0, 63.6, 15.3]	
[0.3, 0.1, 0.5] -> [30.5, 21.5, 14.5, 19.0, 24.0, 10.2]	
22	

