Systems Neuroscience CISC 3250

Memory

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Declarative vs. non-declarative memory

- Declarative
 - "Winter break ended on January 15"
 - "Apples are edible, chairs are not edible"
- Non-declarative
 - Throwing a baseball
 - Pattern completion (seeing the dog behind the fence)

Types of memory

Memory

Declarative

Non-declarative

Procedural

Procedural

Conditioning

Perceptual

Reflet

Reflet

Motor cortex

Cerebral cortex

Cerebellum

Basal ganglia

Motor cortex

Cerebellum

Basal ganglia

Cerebellum

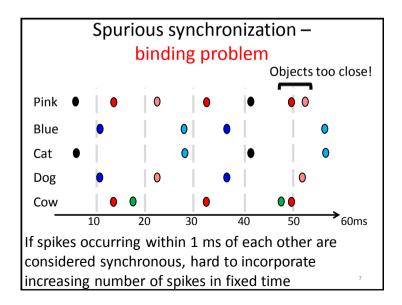
Cerebellum

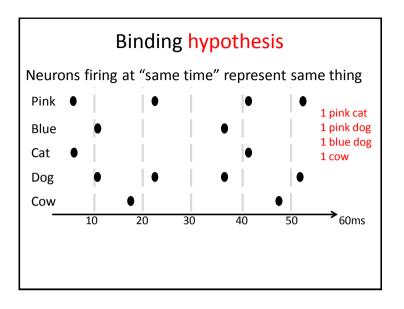
Short-term vs. long-term memory

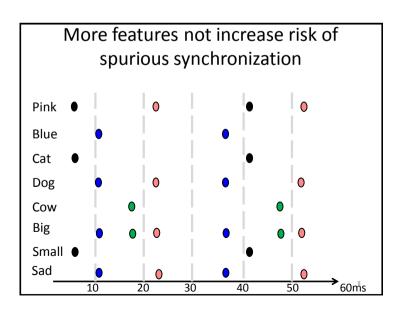
- Short-term memory aka "working" memory
 - Hold facts in memory for 1-200 seconds
 - Sometimes prolonged version of perception
 - Associated with prefrontal cortex (PFC)
- · Long-term memory
 - Stores facts over years
 - Associated with hippocampus (also, amygdala)

Modeling limits of working memory

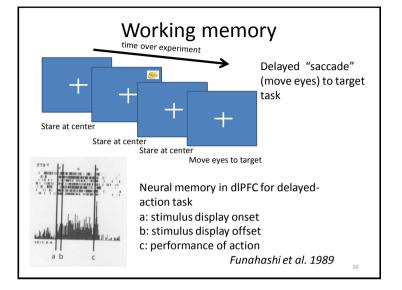
- How much can we hold in working memory?
 - -7 ± 2 things
 - Things can be simple AQRLG
 - Things can be complex

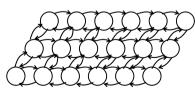






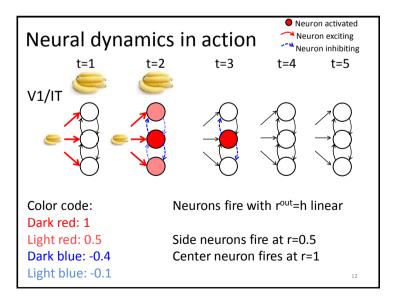
- Why is our working memory limited?
 - Binding hypothesis: distributed code with synchronous spiking – errors with spurious synchronization

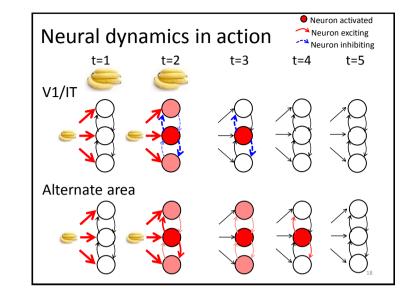

5

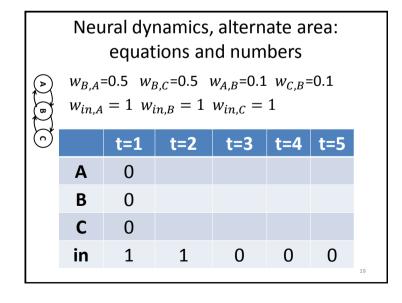


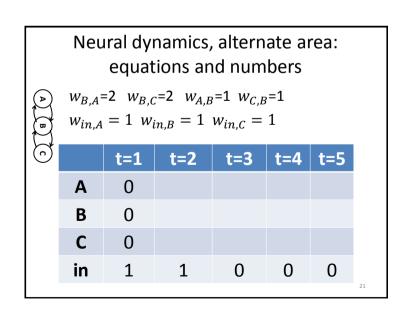
Note adding more features
(with more neurons!) to a concept/object
does **not** cause a problem – no risk of extra
overlap in time with more features

Neural dynamics in "cortical sheet"

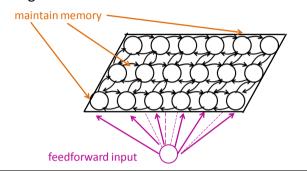

- Cortical sheet: group of neurons on same level of hierarchy interacting with lateral connections
- Balance between local cooperation and local inhibition

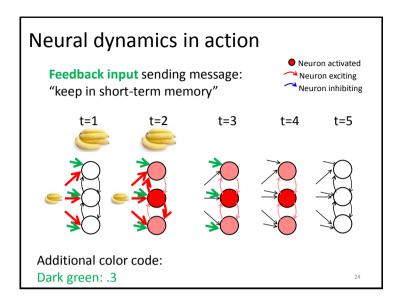

• r^{out} determined from


$$h = \left(\sum_{j} w_{j} r_{j}^{feedfwd}\right) + \left(\sum_{k} w_{k} r_{k}^{lateral}\right) + \left(\sum_{m} w_{m} r_{m}^{feedback}\right)$$


1

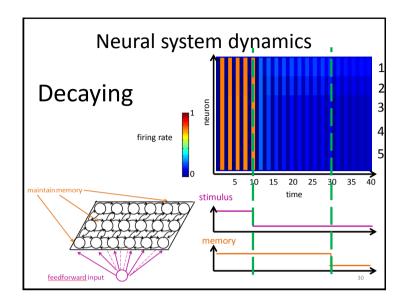
(A)	Neural dynamics: equations and numbers • $r_A^{t=2} = w_{A,in}r_{in}^{t=1} + w_{B,A}r_B^{t=1}$										
	• $r_B^{t=2}$ • $r_C^{t=2}$ • $w_{B,A}$ =-0	• $r_B^{t=2} = w_{B,in}r_{in}^{t=1} + w_{A,B}r_A^{t=1} + w_{C,B}r_C^{t=1}$ • $r_C^{t=2} = w_{C,in}r_{in}^{t=1} + w_{B,C}r_B^{t=1}$ • $w_{B,A}$ =-0.4 $w_{B,C}$ =-0.4 $w_{A,B}$ =-0.1 $w_{C,B}$ =-0.1 • $w_{in,A} = 0.5$ $w_{in,B} = 1$ $w_{in,C} = 0.5$									
		t=1	t=2	t=3	t=4						
	Α	0									
	В	0									
	С	0									
	in	1	1	0	0	13					

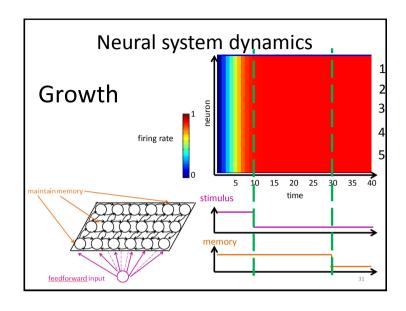


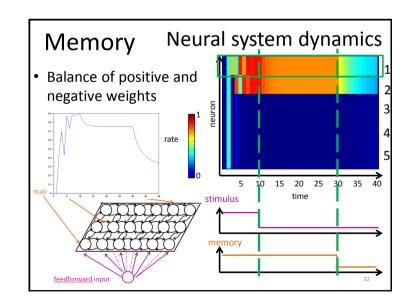


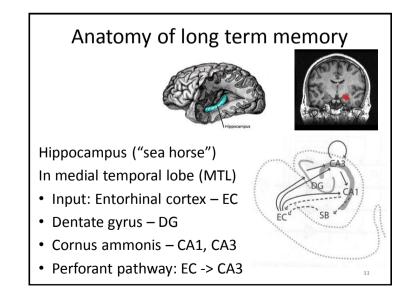
Neural system dynamics

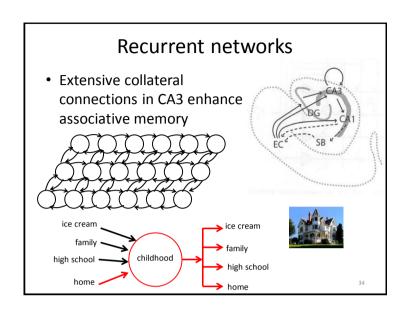
 In an interconnected cortical sheet, neural activity can continue after feedforward input is gone

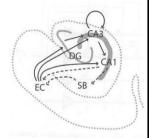

Neural dynamics + memory											
	$W_{B,A}=.$	$w_{B,A}$ =.5 $w_{B,C}$ =.5 $w_{A,B}$ =.5 $w_{C,B}$ =.5									
P	$w_{in,A} = 1 \ w_{in,B} = 1 \ w_{in,C} = 1$										
	$w_{mem,A} = .3, w_{mem,B} = .3, w_{mem,C} = .3$										
		t=1	t=2	t=3	t=4	t=5	t=6				
	Α	0									
	В	0									
	С	0									
	in	1	1	0	0	0	0				
	mem	1	1	1	1	0	0				




Neural system dynamics


Trappenberg 7.3.2


- Decaying activity: mutual inhibition suppresses continued neural activity after feedforward input is gone – V1
- Growing activity: mutual excitation produces global, non-stop activity over time – epilepsy
- Memory activity: balance of mutual excitation and mutual inhibition produces maintained activity (sparse) distributed coding during "working memory" time period – PFC



Recurrent networks

- Extensive collateral connections in CA3
- Broader loop: EC -> CA3 -> CA1->EC

$$\Delta w_{ij} = r_i r_j - r_i w_{ij}$$

Cells that fire together, wire together Loop repeatedly increases weight – increasingly encourage simultaneous firing

5