

Systems Neuroscience

- How groups of neurons work together to achieve intelligence
- How the nervous system performs computations

- Requirement for the Integrative Neuroscience
 major
- Elective in Computer and Information Science

Objectives

To understand information processing in biological neural systems from computational and anatomical perspectives

- Understand the function of key components of the nervous system
- Understand how neurons interact with one another
- Understand how to use computational tools to examine neural data

Recommended student background

• Prerequisite: CISC 2500 Data and Information Management – not strict requirement this semester

Math

Computer

science

Some calculus

Some programming

Textbook(s)

Fundamentals of Computational Neuroscience, Second Edition, by Trappenberg

- Required
- We will focus on the ideas and study a relatively *small set* of equations

Lippincott's Pocket Neuroanatomy, by Gould

• Optional, better anatomy diagrams

Requirements

- Attendance and participation
 - 1 unexcused absence allowed
 - Ask and answer questions in class
- Homework: Roughly 5 across the semester
 - 2 midterms, in February and April
 - You may discuss homeworks with other students, but your submitted work must be your own

Introducing systems and computational neuroscience

- How groups of neurons work together to achieve intelligence
- How the nervous system performs computations

From a psychological perspective...

What are the elements of cognition?

Systems neuroscience

Regions of the central nervous system associated with particular elements of cognition

- Visual object recognition
- Motion planning and execution
- Learning and remembering

Computational neuroscience as "theory of the brain"

David Marr's three levels of analysis (1982):

- Computational theory: What is the computational goal and the strategy to achieve it?
- Representation and algorithm: What are the input and output for the computation, and how do you mathematically convert input to output?
- Hardware implementation: How do the physical components perform the computation?

Marr's three levels for "HMAX" vision

- Computational theory: Goal is to recognize objects
- Representation and algorithm:
 - Input: Pixels of light and color
 - Output: Label of object identity
 - Conversion: Through combining local visual properties
- Hardware implementation:
 - Visual properties "computed" by networks of firing neurons in object recognition pathway

Levels of organization

Course outline

- Philosophy of neural modeling
- The neuron biology and input/output behavior
- Learning in the neuron
- Neural systems and neuroanatomy
- Information representation with features in computer science
- Representations in the brain
- Perception
- Memory/learning
- Motor control

The neuron

- Building block of all the systems we will study
- Cell with special properties
 Some (cell hedr) can have 5 100 up
 - Soma (cell body) can have 5-100 μm diameter, but axon can stretch over 10-1000 cm in length
 - Receives input from neurons through **dendrites**
 - Sends output to neurons through axon

More on the action potential

mvelin sheath

- Action potential begins at axon hillock and travels down axon
- At each axon terminal, spike results in release of **neurotransmitters**

axon ending

 Neurotransmitters (NTs) attach to dendrite of another

neuron, causing voltage change in this second neuron

Voltage over time Coding in scilab: $\tau \frac{dv(t)}{dt} = -(v(t) - E_L) + RI(t)$	
dt=0.001	// ms time increment
vCurr=-50	// vCurr is current voltage
vRest=-70	<pre>// vRest is resting voltage</pre>
vThresh=20	//vThresh is reset threshold
tau=20	// tau is scaling factor
for time = 1:100	
vCurr = vCurr+(input(time)-(vCurr-vRest))*dt/tau	

