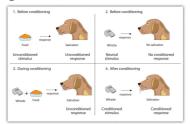


Two forms of plasticity Structural plasticity: generation of new connections between neurons Functional plasticity: changing strength of connections between neurons

Hebbian plasticity: "cells that fire together, wire together"

Cognitive level: Conditioning

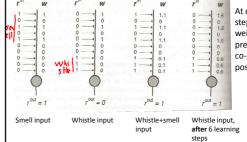


Associating both smell and whistle with food

- Unconditioned stimulus: smell already associated with food
- · Conditioned stimulus: whistle indicates food coming

Computing level: Associator network

Define input $h=\sum_i w_i r_i^{in}$ Neuron fires when h>1.5 – step activation function



At each learning step, add 0.1 to weights of pre-synaptic inputs co-occuring with post-synaptic firing

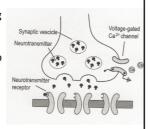
Chemical level: NT receptors

Increase weight by improving NT detection Post-synaptic:

- Insert more receptors into dendrite membrane
- Improve performance of receptors

Pre-synaptic:

 Increase amount of NT released



Marr's levels of analysis

- Computational theory: Learn associations among sensations
- Representation and algorithm: Associate each sense with set of neural outputs, adjust weights on these outputs into another neuron
- Hardware implementation: Insert/remove NT receptors from dendrites

1

Features of associators

• Pattern completion/ generalization

- Fault tolerance
 - Selected dendrites miss input, post-synaptic neuron still fires
- Learning prototypes

- Neuron firing for common combinations

Math of Hebbian spike learning

- Pre-synaptic spike followed by post-synaptic spike -> increase weight
- Post-synaptic spike followed by pre-synaptic spike -> decrease weigh

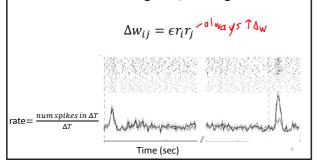
$$\Delta w_{ij}^{\pm} = \epsilon^{\pm}(w) K^{\pm}(t^{post} - t^{pre})$$
Prevent weights from increasing to ∞

$$to \infty$$

$$+ \frac{1}{2}$$

Math of Hebbian rate learning

"Cells that fire together, wire together"



Math of Hebbian rate learning

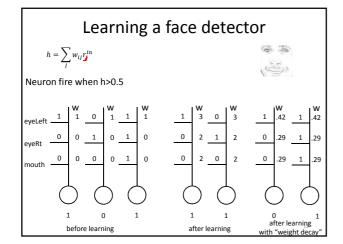
"Cells that fire together," wire together"

$$\Delta w_{ij} = \underbrace{\frac{e}{e}r_ir_j}^{\text{al}} v_{\text{a}} \text{ ys } \uparrow \Delta_{\text{W}}$$
Prevent weights
from increasing

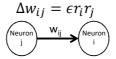
Notation correction:

 w_{ij} is weight of synapse \emph{from} neuron j \emph{to} neuron i

$$w_{ij} = w_{j o i}$$
 Neuron W_{ij} Neuro



Weight decay



At each learning step, add $\epsilon r_i r_j$ to weight of synapse from neuron j firing at rate r_j onto neuron i firing at rate r_i

Assume default weight w_{ij} =0, weights tend to return to 0

- Require multiple pre-synaptic neural inputs for post-synaptic excitation – prototypes
- Allow weights on unused synapses to shrink unlearn associations

Weight decay:

• Move weight towards 0 push to () $\Delta w_{ij} = r_i r_j - r_i w_{ij} - \textit{Willshaw}$ fring

Weight normalization:

 Force all incoming weights to add up to 1 after each weight update:

$$w_{ij} \leftarrow \frac{w_{ij}}{\sum_{j} w_{ij}} / \sum_{j} w_{ij} = 1$$

13