3/10/2014

CISC 3250
Systems Neuroscience

Neural networks and
information representation

in computer science
Professor Daniel Leeds

dﬁ\x dleeds@fordham.edu
RN o T M JMH 328A

March 3
edition

Artificial neuron — the perceptron

Perceptron — building block of artificial neural
networks " wy

¢ Weight inputs
¢ Perform summation
* Pass through non-linearity

r, W2

w3

w

v

h=1x.5+0x.5+1x.5 = .5+.5 = 1 rou=8(h)=g(1)=.5

Example: Optical character recognition

Task is to identify a letter from
a picture of that letter

X - input
y - desired output X, — pixelsin ﬁ
Pixel 1
Each pixel is ? . .
0 (whrijte) or Pixel2 A7Qorl X10— pixels in ﬁ
1 (black) .
. r - actual output o
X15— pixels in ﬁ
Pixel 99
Pixel 100

Feature vector input

X, = [pixel 1, pixel 2, ..., pixel 100]

Learning to respond correctly

y;=1
Xy
Pixel 1 r=.3 r=1
Pixel 2 Beforfa After‘
learning learning
X15 ‘
ﬁ Pixel 99 y15=0
Pixel 100 rs=.7 ri5=0
Before After
learning learning

Training the perceptron

¢ Learn weights that will produced desired
perceptron output for set of pictures of letters
— training set

¢ Evaluate these weights by testing correctness
of perceptron output for separate set of
pictures of letters — testing set

y=0 y=1

3/10/2014

Two learning approaches

Hebbian neurons: “cells that fire together, wire
together”

Delta learning: Correcting weights to minimize
error between perceptron output and expected
output

Perceptron math

Delta learning: Correcting weights to minimize
error between perceptron output and expected
output; using weighted sum and sigmoid non-
linearity gsi

Learning .
Weight
rate eight decay

¥ -
— out out out..in
Aw;j = 6(1 -1)(yi -1 i

t) T
Desired Actual Hebb
output output

=

Error
correction

Perceptron math example

Learn to detect L{

w=[2.2.2.2.22.2]
Input LI , expect output y=1

h=0x.2+1x.2+1x.2+1x.2+0x.2+1x.2+0x.2=.8
r=g(.8)=.45

Input 1 Aw;, = (1-45) (1-.45) .450=0
Input 2 Aw;; = (1-45) (1-.45) .45 1= 55 .55 .45 = .14

Feat. 7 For O inputs: +0 ->.2+0 = .2
For 1inputs: +.14 -> .2+.14=.34

sS“mee R / l ut\(I ut u; i
— [} [} [} U
a Awyj = (1 =) (y; — 1)r

\
v

g(h)
Perceptron math example

Learn to detect L{

[
|
Feat. 1 2

whew=[.2.34.34 .34 .2 .34.2]

1 Feat. 2 Input E , expect output y=0

h=1x.2+0x.34+1x.3441x.34+1x.2+0x.34+
1x.2=1.28
r=g(.8)=.58

Feat. 6 Input 1 Aw;; = (1-.58) (0-.58) .58 1= .42 -.42 .58 =-.10
5 6 Input 2 Aw;; = (1-.58) (0-.58) .58 0=0
Feat. 7 For 0 inputs: +0
7 For 1inputs: -.1
_A

= Il

“«\e r P 1 r L tl U i 1
— ou ou ou mn
(X Awi]- = e(l -7)(yl- -7y)ri 7

Perceptron math example

Learn to detect L{

Feat. 1
1 Feat. 2
, s . Eventually, we will get
4 ¢ weights like:
Feat. 6 w=[-2.5.5.5-2.5-2]
5 6
- Feat. 7 Requiring all edges of 4 to
be present and no spurious
edges

Hebb vs. delta learning

¢ Hebb is unsupervised
— no “right answer” given

— neuron/animal notices what inputs co-occur

e Delta rule is supervised
— neuron instructed how to behave

— mouse gets food reward for pushing lever -> mouse
presses lever more often

Frontal

—in biology: dopamine reward
feedback from ventral
tegmental area (VTA) —in the
limbic system

3/10/2014

Multi-layer perceptron
Performing a task in multiple stages
number ("l)

Feature 1

Feature 2

middle
“hidden” layer
h

R

k

Feature 3

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

h layer

/ y=1

Feature 1
23)
: rout=2

Feature 2
6

Feature 3

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer
2. Correct input weights at final layer

/ y=1

Feature 1
2 3
4
Feature 2
6

Feature 3

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer
2. Correct input weights at final layer
3. Correct input weights at previous layer, etc.

Feature 1
2 3
4
Feature 2
6

Feature 3

+8rin

Back-propagation:
artificial vs. biological intelligence

¢ Very effective learning technique in artificial
intelligence

* Feedback connections common in biology

¢ Mechanisms to transmit weight change back
through network according to our delta
equation seem unlikely to exist

From sigmoids to
complex activation functions

out

Ty 1
wj =1 038
in out 06
04
0.2
0

6 4 2 0 2 4 6

mn

i

Ny

Reversed sigmoid

out
7 1

08 -

out 1

T u 0.6 .

in 04
rj w;=-1

02

3/10/2014

From sigmoids to
complex activation functions (cont’d)

out out

L LA
08 08 -
06 06 |
04 04

Finding structure in data with
perceptron learning

« If we can learn perceptron weights from a
training set to predict correct outputs on
testing set, there is a simple connection
between the input features and the output

¢ Assign the input features to be variables in an
experiment, assign 0-or-1 perceptron output
to indicate condition under study

Example

¢ Have subject stare at center of +
screen

¢ Flash image of dog or cat very quickly (50 ms)

on screen %

¢ Ask subject to press button if they see a dog

Expect subjects will see dog only if dog appears
at center of screen where subject is looking. *

Example

® Xirain 1100011 ..], 1if dog appears at
center for a given display, O if dog at side

® Virain: [100011..], 1if subject sees dog, 0 if
subject does not see dog

* Learned perceptron weights will predict
subject’s future perception of dog based on
picture location, because there is a connection
between picture location and ability to rapidly
perceived an image

