
3/10/2014

1

CISC 3250

Systems Neuroscience

Professor Daniel Leeds

dleeds@fordham.edu

JMH 328A

Neural networks and

information representation

in computer science

��
��
��

� �����
�

��
��
�� 1

March 3

edition

Artificial neuron – the perceptron

Perceptron – building block of artificial neural

networks

• Weight inputs

• Perform summation

• Pass through non-linearity

��

��

��

� �����
�

��
��
��

2

w

.5

.5

.5

1

0

1

h=1x.5+0x.5+1x.5 = .5+.5 = 1

.5

.99

g(h)

h1 2

rout=g(h)=g(1)=.5

Example: Optical character recognition

Task is to identify a letter from

a picture of that letter

3

Pixel 1

Pixel 2

Pixel 99

Pixel 100

A? 0 or 1Each pixel is

0 (white) or

1 (black)

y - desired output

r - actual output

x - input

Feature vector input

xk = [pixel 1, pixel 2, …, pixel 100]

x1 – pixels in

x10 – pixels in

x15 – pixels in

4

Learning to respond correctly

5

Pixel 1

Pixel 2

Pixel 99

Pixel 100

y1=1

r1=.3

x1

Before

learning

r1=1

After

learning

r15=.7

Before

learning

r15=0

After

learning

y15=0

x15

Training the perceptron

• Learn weights that will produced desired

perceptron output for set of pictures of letters

– training set

• Evaluate these weights by testing correctness

of perceptron output for separate set of

pictures of letters – testing set

7

y=1 y=0 y=0

y=0 y=0 y=1

3/10/2014

2

Two learning approaches

Hebbian neurons: “cells that fire together, wire

together”

Delta learning: Correcting weights to minimize

error between perceptron output and expected

output

	 = 1
2� ���� − � �

8

Perceptron math

Delta learning: Correcting weights to minimize

error between perceptron output and expected

output; using weighted sum and sigmoid non-

linearity gsig

Δ�� = � 1 − ���� � − ���� �������

9

Actual

output

Desired

output

Hebb

Learning

rate

Error

correction

Weight decay

Perceptron math example

12

Feat. 1

Feat. 2

Feat. 6

Feat. 7

1

2 3

4

5 6

7

.5

.99

g(h)

h1 2

w = [.2 .2 .2 .2 .2 .2 .2]

Input , expect output y=1

h=0x.2+1x.2+1x.2+1x.2+0x.2+1x.2+0x.2=.8

r=g(.8)=.45

Learn to detect

Δ�� = � 1 − ���� � − ���� �������

Input 1 Δ��	= (1-.45) (1-.45) .45 0 = 0

Input 2 Δ��	= (1-.45) (1-.45) .45 1 = .55 .55 .45 = .14

For 0 inputs: +0 -> .2+0 = .2

For 1 inputs: +.14 -> .2+.14=.34

Perceptron math example

14

Feat. 1

Feat. 2

Feat. 6

Feat. 7

1

2 3

4

5 6

7

.5

.99

g(h)

h1 2

wnew = [.2 .34 .34 .34 .2 .34 .2]

Input , expect output y=0

h=1x.2+0x.34+1x.34+1x.34+1x.2+0x.34+

1x.2=1.28

r=g(.8)=.58

Learn to detect

Δ�� = � 1 − ���� � − ���� �������

Input 1 Δ��	= (1-.58) (0-.58) .58 1 = .42 -.42 .58 = -.10

Input 2 Δ��	= (1-.58) (0-.58) .58 0 = 0

For 0 inputs: +0

For 1 inputs: -.1

Perceptron math example

15

Feat. 1

Feat. 2

Feat. 6

Feat. 7

1

2 3

4

5 6

7

.5

.99

g(h)

h1 2

Learn to detect

Eventually, we will get

weights like:

w = [-2 .5 .5 .5 -2 .5 -2]

Requiring all edges of 4 to

be present and no spurious

edges

Hebb vs. delta learning

• Hebb is unsupervised

– no “right answer” given

– neuron/animal notices what inputs co-occur

• Delta rule is supervised

– neuron instructed how to behave

– mouse gets food reward for pushing lever -> mouse

presses lever more often

– in biology: dopamine reward

feedback from ventral

tegmental area (VTA) – in the

limbic system
16

3/10/2014

3

Multi-layer perceptron

Performing a task in multiple stages

17

Feature 1

Feature 2

Feature 3

number ()

type of

number

���� = ���� ����� �����
��

(≤)

middle

“hidden” layer

h

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

18

Feature 1

Feature 2

Feature 3

2 3

4

6

r1
h=.8

r2
h=.2

r3
h=.9

r4
h=.1

rout=.2

y=1

h layer

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

2. Correct input weights at final layer

19

Feature 1

Feature 2

Feature 3

2 3

4

6

+����r1
h

y=1

+����r2
h

+����r3
h

+����r4
h

Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

2. Correct input weights at final layer

3. Correct input weights at previous layer, etc.

20

Feature 1

Feature 2

Feature 3

2 3

4

6

+���r1
in

y=1

+���r3
in

Back-propagation:

artificial vs. biological intelligence

• Very effective learning technique in artificial

intelligence

• Feedback connections common in biology

• Mechanisms to transmit weight change back

through network according to our delta

equation seem unlikely to exist

24

From sigmoids to

complex activation functions

25

��� ����

����

-6 -4 -2 0 2 4 6

1

0.8

0.6

0.4

0.2

0

���

�� = 1

���
����

�� = −1

1 w = 4

-6 -4 -2 0 2 4 6

1

0.8

0.6

0.4

0.2

0

����

���

Reversed sigmoid

A

B

3/10/2014

4

From sigmoids to

complex activation functions (cont’d)

26

����

-6 -4 -2 0 2 4 6

1

0.8

0.6

0.4

0.2

0

���

B

����
w=.3

A w=.3

-6 -4 -2 0 2 4 6

1

0.8

0.6

0.4

0.2

0

����

���

-6 -4 -2 0 2 4 6���

����

���

Finding structure in data with

perceptron learning

• If we can learn perceptron weights from a

training set to predict correct outputs on

testing set, there is a simple connection

between the input features and the output

• Assign the input features to be variables in an

experiment, assign 0-or-1 perceptron output

to indicate condition under study

27

Example
• Have subject stare at center of

screen

• Flash image of dog or cat very quickly (50 ms)

on screen

• Ask subject to press button if they see a dog

Expect subjects will see dog only if dog appears

at center of screen where subject is looking. 28

Example

• xtrain : [1 0 0 0 1 1 …], 1 if dog appears at

center for a given display, 0 if dog at side

• ytrain : [1 0 0 0 1 1 …], 1 if subject sees dog, 0 if

subject does not see dog

• Learned perceptron weights will predict

subject’s future perception of dog based on

picture location, because there is a connection

between picture location and ability to rapidly

perceived an image
29

