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Artificial neuron – the perceptron

Perceptron – building block of artificial neural 

networks

• Weight inputs

• Perform summation

• Pass through non-linearity
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Example: Optical character recognition

Task is to identify a letter from 

a picture of that letter
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Pixel 1

Pixel 2

Pixel 99

Pixel 100

A? 0 or 1Each pixel is 

0 (white) or 

1 (black)

y - desired output

r - actual output

x - input

Feature vector input

xk = [pixel 1, pixel 2, …, pixel 100]

x1 – pixels in

x10 – pixels in 

x15 – pixels in

4

Learning to respond correctly
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Training the perceptron

• Learn weights that will produced desired 

perceptron output for set of pictures of letters 

– training set

• Evaluate these weights by testing correctness 

of perceptron output for separate set of 

pictures of letters – testing set

7

y=1 y=0 y=0

y=0 y=0 y=1



3/10/2014

2

Two learning approaches

Hebbian neurons: “cells that fire together, wire 

together”

Delta learning: Correcting weights to minimize 

error between perceptron output and expected 

output
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Perceptron math

Delta learning: Correcting weights to minimize 

error between perceptron output and expected 

output; using weighted sum and sigmoid non-

linearity gsig

Δ�� = � 1 − ���� � − ���� �������
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Perceptron math example
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w = [.2 .2 .2 .2 .2 .2 .2]

Input       ,  expect output y=1

h=0x.2+1x.2+1x.2+1x.2+0x.2+1x.2+0x.2=.8

r=g(.8)=.45 

Learn to detect 

Δ�� = � 1 − ���� � − ���� �������

Input 1 Δ��	= (1-.45) (1-.45) .45 0 = 0

Input 2 Δ��	= (1-.45) (1-.45) .45 1 = .55 .55 .45 = .14

For 0 inputs: +0 -> .2+0 = .2

For 1 inputs: +.14 -> .2+.14=.34

Perceptron math example

14

Feat. 1

Feat. 2

Feat. 6

Feat. 7

1

2 3

4

5 6

7

.5

.99

g(h)

h1 2

wnew = [.2 .34 .34 .34 .2 .34 .2]

Input       ,  expect output y=0

h=1x.2+0x.34+1x.34+1x.34+1x.2+0x.34+ 

1x.2=1.28

r=g(.8)=.58 

Learn to detect 

Δ�� = � 1 − ���� � − ���� �������

Input 1 Δ��	= (1-.58) (0-.58) .58 1 = .42 -.42 .58 = -.10

Input 2 Δ��	= (1-.58) (0-.58) .58 0 = 0

For 0 inputs: +0

For 1 inputs: -.1

Perceptron math example
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Learn to detect 

Eventually, we will get 

weights like:

w = [-2 .5 .5 .5 -2 .5 -2]

Requiring all edges of 4 to 

be present and no spurious 

edges

Hebb vs. delta learning

• Hebb is unsupervised

– no “right answer” given

– neuron/animal notices what inputs co-occur

• Delta rule is supervised

– neuron instructed how to behave

– mouse gets food reward for pushing lever -> mouse 

presses lever more often

– in biology: dopamine reward 

feedback from ventral 

tegmental area (VTA) – in the

limbic system
16
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Multi-layer perceptron

Performing a task in multiple stages
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Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer
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Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

2. Correct input weights at final layer
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Multi-layer delta “back-propagation”

1. Input features and compute outputs at each layer

2. Correct input weights at final layer

3. Correct input weights at previous layer, etc.
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Back-propagation: 

artificial vs. biological intelligence

• Very effective learning technique in artificial 

intelligence

• Feedback connections common in biology

• Mechanisms to transmit weight change back 

through network according to our delta 

equation seem unlikely to exist
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From sigmoids to 

complex activation functions
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From sigmoids to 

complex activation functions (cont’d)
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Finding structure in data with 

perceptron learning

• If we can learn perceptron weights from a 

training set to predict correct outputs on 

testing set, there is a simple connection 

between the input features  and the output

• Assign the input features to be variables in an 

experiment, assign 0-or-1 perceptron output 

to indicate condition under study
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Example
• Have subject stare at center of 

screen

• Flash image of dog or cat very quickly (50 ms) 

on screen

• Ask subject to press button if they see a dog

Expect subjects will see dog only if dog appears 

at center of screen where subject is looking. 28

Example

• xtrain : [1 0 0 0 1 1 …], 1 if dog appears at 

center for a given display, 0 if dog at side

• ytrain : [1 0 0 0 1 1 …], 1 if subject sees dog, 0 if 

subject does not see dog

• Learned perceptron weights will predict 

subject’s future perception of dog based on 

picture location, because there is a connection 

between picture location and ability to rapidly 

perceived an image
29


