Pathways to perception in 3 (or fewer) synaptic steps

0 Input through sensory organ/tissue
1 Synapse onto neurons in spinal cord/brain stem
2 Synapse onto neurons in thalamus
3 Synapse onto cortical neurons in “primary ____ cortex”
4 Further cortical processing

Touch/“Tactile”

Skin
Spinal cord
Dorsal horn
Thalamus
Ventral posterolateral (VPL) nucleus
Cortex
Post-central sulcus (SI)

Communications in the spinal cord

- Sensory activity in back – *dorsal*
- Motor command in front – *ventral*

Touch: Inputs

Mechanoreceptors in skin
- Pacinian corpuscles – vibrations
- Meissner’s corpuscles – light touch
- Merkel’s discs – pressure and texture
- Ruffini endings – stretch

Thalamus – the “relay” station

Region names largely based on location
VPL for somatosensation

Region names
- VPL for somatosensation
- Nucleus ventralis posterolateralis
- Nucleus ventralis anterior
- Nucleus ventralis medialis
- Nucleus medialis dorsalis
- Nucleus medialis lateralis
- Nucleus reuniens
- Ventralis intermediolateralis
- Ventralis lateralis
- Ventralis oralis

Hearing/“Auditory”

- Cochlea
- Cochlear nerve
- Cochlear nucleus (→ Superior olive) → Inferior colliculus
- Thalamus
- Medial geniculate nucleus (MGN)
- Brain stem
- Primary auditory cortex (AI)
- Cortex

Regions of the brainstem

- Dorsal view (back-of-the-head)
- 2-3 synapses in auditory brainstem path

Seeing/“Visual”

- Retina
- Optic nerve
- Thalamus
- Lateral geniculate nucleus (LGN)
- Cortex
- Primary visual cortex (VI)

Lateralization

- Flipping of right and left in vision
 - Left hemisphere – right visual field
 - Right hemisphere – left visual field

Sensitivity to perceptual variations

- V1: Surround-suppression for shifted edges
- PFC: Same object detected at diverse locations and scales

Selectivity to perceptual variations

- More complex percepts invariant to greater spatial transformations
HMAX – model of hierarchical vision

- Higher cortical levels cover larger visual spans
- Object recognition invariant to changes in location and orientation

Higher HMAX layers cover more space

Example coverage for layer \(x \) neurons

Functions of HMAX layers

- Odd layers (layer 1, 3, 5, ...) look for specific combinations of lower-level features
- Even layers (layer 2, 4, 6, ...) provide invariance to some feature changes (e.g., shift in position)

Estimating the max

- Earlier models: \(r_{out} = g(\sum_i w_i r_i) \)
- What if \(g() \) were log()?
 - \(\log(100+4+5) = \log(100) \)
 - \(\log(20+5+2) = \log(20) \)
- Logarithms in nature:
 - Sound with 100x greater magnitude sounds \(\sim 3x \) louder
 - Sigmoid function \(g(x)=1/(1+\exp(-x)) \) ... \(\exp \) is \(\log^-1 \)
Each combination layer “tiles” visual space

- Compute weighted sum (combination) at every location
- Called “convolution”

Visual attention
- Emphasize details currently of interest

Model of Attention/Recognition
- Find blob -> Focus on blob
- Match blob w/memory
- Inhibit blob

Attention when percepts overlap

Attention when percepts overlap

Attention when percepts overlap

Attention when percepts overlap
- Attention to A dims effects of other inputs; ignoring bars dims their effects
- \[h = \sum w_{ij} r_i a_i \]
- \(w \) – weight on input
- \(r \) – current strength of input
- \(a \) – attention to input

Attention when percepts overlap
- Can attend to one of two voices (e.g., high-pitched voice or low-pitched voice)
Modulating inputs through multiplication

Algorithm: “Sigma-Pi Node”
- Multiply rates to modulate each input
- Sum to compute output rate

\[h_i = \sum_t w_i r_i^{\text{att}} r_i^{\text{in}} \]

- \(r_i^{\text{att}} \) - attention input
- \(r_i^{\text{att}} = \sum_j r_{ij}^{\text{att}} \) - can sum over multiple attention inputs

Dynamic synaptic reweighting

Voltage-dependent NT-receptors (e.g., NMDA):
1. Other nearby receptor decreases voltage
2. Voltage dependent receptor detects NTs

Dendrite input

- Pre-synaptic neuron spikes
- Neurotransmitter (NT) released
- NT received by post-synaptic dendrite at time \(t' \)
- Post-synaptic voltage rises and then fades, \(\alpha(t) \)

\[I(t) = \sum_j w_j \alpha_j(t) \]

Complexity of cortical networks

- Feedback: connections in both directions along cortical “pathways”

Creative Commons, some rights reserved